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Abstract: Recognition of biological tissue denaturation is a vital work in high-intensity focused
ultrasound (HIFU) therapy. Multiscale permutation entropy (MPE) is a nonlinear signal processing
method for feature extraction, widely applied to the recognition of biological tissue denaturation.
However, the typical MPE cannot derive a stable entropy due to intensity information loss during
the coarse-graining process. For this problem, an improved multiscale permutation entropy (IMPE)
is proposed in this work. IMPE is obtained through refining and reconstructing MPE. Compared
with MPE, the IMPE overcomes the deficiency of amplitude information loss due to the coarse-
graining process when computing signal complexity. Through the simulation of calculating MPE
and IMPE from white Gaussian noise, it is found that the entropy derived by IMPE is more stable
than that derived by MPE. The processing method based on IMPE feature extraction is applied
to the experimental ultrasonic scattered echo signals in HIFU treatment. Support vector machine
and Gustafson–Kessel fuzzy clustering based on MPE and IMPE feature extraction are also used
for biological tissue denaturation classification and recognition. The results calculated from the
different combination algorithms show that the recognition of biological tissue denaturation based
on IMPE-GK clustering is more reliable with the accuracy of 95.5%.

Keywords: denaturation recognition; improved multiscale permutation entropy; GK fuzzy clustering;
HIFU

1. Introduction

High-intensity focused ultrasound (HIFU) is a new technique for tumor therapy with
safety, high efficiency, and non-invasive [1–5]. Therefore, HIFU hyperthermia is called
an innovative “green therapy” for cancer treatment, which has attracted the attention of
clinicians, researchers, and medical companies from all over the world.

HIFU hyperthermia concentrates sound energy on the therapeutic target to instantly
generate high temperatures (more than 60 ◦C in the tissue). To ensure the efficacy and
safety in HIFU therapy, it is crucial to monitor the temperature and denaturation of treated
biological tissues. Noninvasive sensing technique such as magnetic resonance imaging
(MRI), computed tomography (CT), and ultrasound are often employed to monitor temper-
ature and denaturation in medical applications [6–13]. However, these methods still have
limitations in some specific cases. MRI equipment is expensive, and treatment cost is high.
The poor compatibility of MRI equipment requires all the treatment parts to be installed
in the narrow space of the MRI chamber, which limits the application and promotion
of MRI in HIFU therapy monitoring. The artifact is easily associated with CT imaging
on moving tissues, blood vessels, and metals, which affects the accuracy of CT real-time
monitoring. Ionizing radiation produced during CT examination is harmful to the human
body, especially for critically ill patients (liver, kidney, and heart failure), the elderly, and
children. Compared with MRI and CT, ultrasound monitoring of denaturation in HIFU
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therapy has the advantages of simple operation, high compatibility, and low cost. However,
it also has the disadvantages of low sensitivity and low accuracy.

To obtain the characteristic parameters reflecting the temperature and denaturation
of tissue in HIFU therapy with ultrasound monitoring, researchers studied the ultrasonic
signals from many aspects, such as echo energy, sound attenuation coefficient, frequency
offset, and sound velocity [14–19]. The attenuation coefficient of the ultrasonic echo is a
common parameter used to estimate the temperature of the damaged tissue in treatment.
With the rise of temperature in the HIFU treatment area, the attenuation coefficient of
the ultrasonic echo will increase significantly. The velocity of ultrasound is also used
estimate the denaturation of treatment area. The velocity of ultrasound in denatured
tissue is higher than that of non-denatured tissue. However, the measurement of sound
velocity by reflection echo is easily affected by the external experimental environment noise,
which decreases the measurement accuracy of tissue temperature [20]. In addition, HIFU
thermal damage in biological tissues causes the changes of signal complexity. Time-domain
and frequency-domain features are easily affected by environmental noise and frequency
offset due to heating up in HIFU therapy. These adverse external factors result in that
the extracted features cannot correctly represent the tissue denaturation state. Therefore,
accurate feature extraction based on a nonlinear model and recognition of biological tissue
denaturation is the essential works in applying ultrasound monitoring in HIFU therapy.

Many nonlinear feature algorithms, including Shannon entropy, sample entropy,
wavelet entropy, and permutation entropy, are widely applied to extract the features of
ultrasonic signal and identify the different states of biological tissue denaturation [21–29].
Especially, permutation entropy is a nonlinear analysis algorithm for the time series com-
plexity calculation based on phase space reconstruction. It has the advantages of good
robustness and simple algorithm. Multiscale permutation entropy (MPE) is a permutation
entropy algorithm calculated at different multiscale. Due to the multiscale feature extrac-
tion, it can analyze sequence information more effectively. MPE is widely used in bearing
damage diagnosis and other industrial fields [30,31]. In our previous work, MPE and its
variants have been applied to recognition of tissue denaturation in HIFU therapy [32,33].
However, MPE also has a defect due to the coarse-graining process, which results in the
amplitude information loss in the same permutation pattern. For this defect, Fadlalla et al.
proposed an improved method of multiscale weighted permutation entropy (MWPE) [34].
However, Both MPE and MWPE have the defects of stability decay with the increase of
scale factor because of the shortening of time series.

Support vector machine (SVM), deep learning, and other clustering approaches are
widely used for feature recognition [35–37]. Especially, SVM has the advantage of simple
structure, fast learning speed, and wide applicability. It has been also applied in ultrasonic
based biological tissue denaturation recognition [38]. However, it is a gradual process
from the non-denatured state to the denatured state of biological tissue. Thus, the feature
extracted from denatured or non-denatured tissue is fuzzy. Fuzzy clustering algorithm is
a good way to solve this problem. Gustafson–Kessel (GK) algorithm is a fuzzy extension
of distance adaptive dynamic clustering. It obtains the objective function based on the
covariance matrix. GK fuzzy clustering is applied to the clustering of irregular distribution
data sets with the correlation between parameters [39], which is familiar with ultrasonic
scattered echo signals.

Based on the methods mentioned above, an improved multiscale permutation entropy
(IMPE) is proposed in this paper. In this method, MPE is refined and reconstructed. IMPE
can analyze the coarse-grained time series without the loss of amplitude information,
and suppress the fluctuation of entropy. Compared with MPE, IMPE has better stability
and reliability. SVM and GK fuzzy clustering are used to identify denatured and non-
denatured tissues according to the two features of ultrasonic scattered echo extracted
by the MPE and IMPE algorithm, respectively. At the end of the work, the denaturation
recognition clustering results based on different feature extraction and clustering algorithms
are analyzed.
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The main content of this paper is as follows: Section 1 introduces the background of
signal process in HIFU therapy monitoring; Section 2 presents the theories of IMPE and
GK fuzzy clustering; Section 3 presents the results of simulation and experimental signal
analysis by the methods mentioned in Section 2; Section 4 is the conclusion.

2. Theory
2.1. MPE

MPE is a permutation entropy calculated at different multiscale. The MPE calculation
process is as follows:

Processing time series X = {xi, i = 1, 2 · · · , N} to obtain coarse-grained sequence y(s)j .

y(s)j =
1
s ∑js

i=(j−1)s+1 xi, j = 1, 2, · · · , [N/s] (1)

Phase space reconstruction of coarse-grained sequence.

Y(s)
l =

{
y(s)l , y(s)l+τ , · · · , y(s)l+(m−1)τ

}
(2)

where y(s)l is the lth reconstruction component, l = 1, 2, · · · , N − (m− 1)τ, m is the dimen-
sion, and τ is the time delay.

Arranging the reconstruction components in ascending order to obtain a symbolic
sequence S(r) = (j1, j2, · · · , jm), where r = 1, 2, · · · , R, and R ≤ m!; calculating the proba-
bility of each symbolic sequence.

Calculating and normalizing the permutation entropy of each coarse-grained sequence;
obtaining the MPE.

MPE = −∑R
r=1 Pr ln Pr (3)

2.2. IMPE

The value of MPE becomes unstable with the increase of scale factor because of the
amplitude information loss. For this defect, an IMPE algorithm is proposed in this work.
The IMPE calculation process is as follows:

pω

(
πm,τ

l
)

can be defined as

pω

(
πm,τ

l
)
=
‖
{

k
∣∣k = 1, 2, · · · , N − (m− 1)τ; Xm,τ

l has πm,τ
l type

}
‖ωk

{N − (m− 1)τ}ωk
(4)

where ωk can be expressed as

ωk =
1
m

m

∑
q=1

[x(k + (q− 1)τ)− Xm,τ
(k)]

2
(5)

where Xm,τ
(k) = 1

m

m
∑

q=1
x(k + (q− 1)τ). Then the improved permutation entropy IPE(X, m, τ)

can be defined as

IPE(X, m, τ) = −1
s

s

∑
q=1

∑
l:πm,τ

l ∈Π

pω

(
πm,τ

l
)

ln
(

pω

(
πm,τ

l
))

(6)

where pω

(
πm,τ

l
)
= 1

s

s
∑

q=1
pω

(
πm,τ

l
)

ln
(

pω

(
πm,τ

l
))

.

For a time series X = {x(1), x(2), · · · , x(N)}, the coarse-grained time series ys,q(j)
can be expressed as

ys,q(j) =
1
s ∑js+q−1

i=(j−1)s+1 x(i) (7)
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where j = 1, 2, · · · , [(N + 1)/s]− 1, q = 1, 2, · · · , s.
Finally, the IMPE is expressed as

IMPE(X, m, τ, s) = IPE(ys,q, m, τ) (8)

2.3. GK Fuzzy Clustering

GK fuzzy clustering is an adaptive dynamic fuzzy clustering algorithm by using a
covariance matrix. For a given sample of data X = {x1, x2, · · · , xn}, the membership
matrix of GK fuzzy clustering U =

[
uij
]

c×n and cluster center V = (v1, v2, · · · , vc)
T can

be obtained by minimizing the objective function, where c is the cluster number, and
vi (I = 1,2,· · · ,c) is the ith cluster center, n is the sample number, µij indicating the member-
ship degree of the jth element belonging to the ith class, which satisfy the following:

c

∑
i=1

uij = 1, uij ∈ [0, 1] 1 ≤ i ≤ c, 1 ≤ j ≤ n (9)

The objective function is expressed as

J(X, V, U) =
c

∑
i=1

n

∑
j=1

(
uij
)θ D2

ij (10)

where, θ is the fuzzy index, indicating the fuzzy degree of clustering, the larger the value
is, the greater the degree of overlap between clusters is; Dij is the Mahalanobis distance
between the jth sample and the clustering center of the ith class. D2

ij is the square inner
product norm.

D2
ij =

(
xj − vi

)TZi
(
xj − vi

)
(11)

Zi = det(Fi)
1
n F−1

i is the positive definite symmetric matrix, which is determined by the
clustering covariance matrix Fi. The Lagrange multiplication was introduced for optimizing
the objective function, and the necessary conditions for obtaining the minimum value of
the Equations (10) and (11) are obtained as follow:

µij =
1

∑c
z=1
(

Dij
/

Dzj
)2/(θ−1)

(12)

vi =
∑n

j=1
(
uij
)θ xj

∑n
j=1
(
uij
)θ

(13)

The GK fuzzy clustering algorithm is as follows:

(1) Initializing the number of clustering c, fuzzy index θ, and the membership matrix U
to satisfy Formula (12).

(2) Updating the cluster center vi by Formula (13).
(3) Calculating the covariance matrix of the ith cluster center Fi.

Fi =
∑n

j=1
(
µij
)m(xj − vi

)(
xj − vi

)T

∑n
j=1
(
uij
)m (14)

Deriving positive definite symmetric matrix Zi from covariance matrix Fi, then calcu-
lating the square inner product norm D2

ij; updating the membership matrix U according

to Formula (11); stopping the calculation if it satisfies ‖U(L+1) −U(L)‖ < η, otherwise,
increasing iterations until the condition is met. Where, U(L) is the membership matrix of L
iterations, termination error η > 0.
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In this work, the clustering effect of GK fuzzy clustering is evaluated by Xie–Beni
index, which is expressed as

XB = δ/n× dmin (15)

where, δ is the mean variance of classes, and dmin is the shortest fuzzy distance between
classes. As for the evaluation of clustering, the XB is smaller with the better clustering effect.

Pattern recognition is carried out based on the degree of closeness according to the
principle of near selection. The degree of closeness represents the similarity of the two
fuzzy subsets. For the fuzzy subset A of the sample to be identified and the fuzzy subset
B of the standard cluster center, the closeness degree is defined according to Euclidean
closeness in this work. The calculation of Euclidean closeness degree is as follows:

(A, B) = 1− 1√
n

√
n

∑
i=1

[uA(ui)− uB(ui)]
2 (16)

where, n is the number of samples, and uA(ui) and uB(ui) are the membership function of
the sample to fuzzy subset A and B, respectively. According to the principle of proximity,
biological tissue denaturation is distinguished by the Euclidean proximity between the
samples to be identified and the standard clustering center. The sample is identified as
denatured tissue if it has the highest Euclidean proximity to the standard clustering center
of denatured tissue, and the sample is identified as non-denatured tissue if the Euclidean
similarity between the sample and the standard clustering center of non-denatured tissue
is the highest.

3. Results
3.1. Simulation with White Gaussian Noise (WGN)

To study the variation of MPE and IMPE under different conditions, the entropy
distribution of WGN (5000 sampling points) diverted by MPE and IMPE with different
dimensions is analyzed. WGN used in the simulation is shown in Figure 1. According
to the previous work [32], the dimension is set as m = 6, 7, and the time delay is set as
τ = 2. Figure 2 shows the distribution of MPE and IMPE from WGN with scale factors 1–50.
For MPE and IMPE, both entropies have a significant decreasing trend as the scale factor
increase. More importantly, the value of IMPE decreases faster and becomes smoother than
that of MPE. The results show that IMPE, containing the amplitude information lost in MPE,
is more sensitive to the complexity of time series. IMPE can effectively solve the problem
of amplitude information loss between the same permutation pattern in MPE. Thanks to
the processing of averaging probability and entropy value, IMPE has good stability and
reliability, which can suppress the multiscale entropy fluctuation better than MPE.
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Figure 2. Distribution of MPE and IMPE of WGN: (a) m = 6; (b) m = 7.

To further demonstrate the advantages of the IMPE, different WGN with 500, 1000,
3000, and 5000 sampling points were analyzed 100 times. The standard deviation index was
used to evaluate the stability of MPE and IMPE. The embedding dimension and time delay
were set as 7 and 2. Table 1 shows the standard deviations of MPE and IMPE calculated
from WGN signals with the scale factor of 1–50. The standard deviations of IMPE under
different data lengths are all lower than that of MPE, which means that IMPE can improve
the stability of MPE.

Table 1. The standard deviations of MPE and IMPE calculated from WGN.

Entropy
Samplings

500 1000 3000 5000

MPE 0.0917 0.0587 0.0143 0.0119
IMPE 0.0215 0.0103 0.0049 0.0020

3.2. Analysis of Ultrasonic Scattered Echo Signals

Figure 3 shows the ultrasonic scattered echo monitoring system in this work. Fresh
porcine muscle tissue is irradiated by HIFU source with a central frequency of 1.39 Mhz
to simulate the HIFU treatment. In the process of HIFU treatment, B-mode ultrasound
generator is used to generate B-mode ultrasound signal with a central frequency of 3.5 Mhz
for temperature monitoring of irradiated tissues. Fiber optic probe hydrophone is used to
collect the ultrasonic scattered echo signal and convert it into digital signal, which is saved
to PC through oscilloscope. Thermometer is inserted into the irradiated tissue to monitor
temperature synchronously.
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Figure 4 shows the time-domain samples of experimental ultrasonic scattered echo
signals, including (a) non-denatured and (b) denatured tissue. Both kinds of signals have
the feature of echo attenuation obviously and it is difficult to distinguish the feature in
time-domain effectively.
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(a) (b) 

Figure 4. Time-domain samples of experimental ultrasonic scattered echo: (a) non-denatured tissue;
(b) denatured tissue.

Using SVM and GK fuzzy clustering, the 400 × 2 characteristic parameters were ex-
tracted from MPE and IMPE of ultrasonic scattered echo signal for denaturation recognition.

In the denaturing recognition by SVM based on radial basis function, 100 non-
denatured tissue samples and 100 denatured tissue samples were randomly selected for
training. After cross-validation, the kernel function parameter G was set as 16.776, and the
penalty factor C was set as 17.442. The rest 200 ultrasonic scattered echo samples (including
100 non-denatured tissues and 100 denatured tissues) were used for testing. Figure 5 shows
the SVM classification of denatured recognition based on MPE and IMPE characteristic
parameters. The data points marked by the blue arrow in the upper left of the figure are
misidentified non-denatured tissue samples, while the data points marked by the blue
arrow in the lower right are misidentified denatured tissue samples. In the MPE-SVM
recognition mode, the error recognition number of denatured tissue samples is 4, and that
of non-denatured tissue samples is 19, with a total recognition rate of 88.5%. On the other
hand, in the IMPE-SVM recognition mode, the error recognition number of denatured
tissue samples is 2, and that of non-denatured tissue samples is 14, with a total recognition
rate of 92.0%. The recognition error rate based on IMPE feature extraction is less than that
of MPE, proving the superiority of IMPE feature extraction.
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Since it is a gradual process from the non-denatured state to the denatured state of
biological tissue, the characteristic parameters will inevitably overlap between these two
states. GK fuzzy clustering is a kind of classification method which can solve this problem
well. GK fuzzy clustering method was also applied to identify the states of biological tissue
denaturation according to the features extracted by MPE and IMPE. Figure 6 shows the
two-dimensional spatial distribution of biological tissue denaturation recognition based on
GK fuzzy clustering. The ellipses and arcs in the graph represent two-dimensional spatial
distribution contour lines. Both the samples based on MPE and IMPE feature extraction are
distributed around the two clustering centers according to the denatured and normal tissue
samples after clustered by GK fuzzy clustering, and the distinction between two types of
samples is obvious. Compared with MPE-GK fuzzy clustering, IMPE-GK fuzzy clustering
has fewer sample points in the overlapping region of denatured and normal tissue features,
and fewer misidentified sample points in the membership contour line, with closer features
and better classification effect. Xie–Beni index is also used to evaluate the clustering effect
of the two fuzzy clustering methods. The Xie–Beni index obtained based on MPE-GK
and IMPE-GK fuzzy clustering is 7.1361 and 5.4358, respectively, which indicates that the
IMPE-GK fuzzy clustering algorithm has a good classification and identification ability in
biological tissue denaturation recognition.
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Figure 6. Recognition of denatured and normal issue based on Gustafson–Kessel (GK) fuzzy cluster-
ing: (a) MPE-GK; (b) IMPE-GK.

Different denaturation recognition methods were used to classify 100 non-denatured
and 100 denatured tissue samples. Recognition results are shown in Table 2. It is found that
in the recognition of biological tissue denaturation, the clustering effect and recognition
ability based on IMPE feature extraction are better than that of MPE. GK fuzzy clustering has
a higher recognition rate than SVM in the denaturation recognition of gradient characteristic
parameters. Comparing the four methods, IMPE-GK fuzzy clustering has the highest
accuracy with 95.5% in biological tissue denaturation recognition.

Table 2. Recognition results with different methods.

Recognition
Methods Non-Denatured Tissue Denatured

Tissue Recognition Rate (%)

MPE-SVM 81/100 96/100 88.5
IMPE-SVM 86/100 98/100 92.0

MPE-GK 85/100 97/100 91.0
IMPE-GK 92/100 99/100 95.5

3.3. Discussions

MPE has been widely used for feature extraction in biological tissue denaturation
recognition. However, the traditional MPE method has the defect of amplitude information
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loss when analyzing the complexity of the signal. The stability of MPE is poor due to the
coarse-grained process. In this work, the IMPE method is proposed to overcome the defect
of amplitude information loss in the MPE method and suppress entropy fluctuation by
averaging probability and entropy. In the simulation of WGN with different sampling
points, the results (Figure 2 and Table 1) show that the fluctuation of entropy calculated by
IMPE is much weaker than that calculated by MPE. In addition, IMPE has better feature
extraction ability than MPE in the analysis of biological tissue ultrasonic scattered echo
signals. In the classification and recognition based on SVM and GK fuzzy clustering,
the recognition results obtained from IMPE calculation are better than that from MPE
calculation (Table 2). From the results of the combination methods (Figures 4 and 5, and
Table 2), it is found that IMPE-GK fuzzy clustering can better evaluate and identify the
biological tissue denaturation with gradual change. The recognition rate of denatured
biological tissue based on IMPE-GK fuzzy clustering reaches 95.5%. Nevertheless, the
denaturation recognition method still needs to be improved. It is considered that the noise
contained in the ultrasonic scattered echo signal reduced the effectiveness of IMPE. As the
further work, the combination of the IMPE method and advanced signal denoising may be
a good way to improve the identification accuracy and anti-noise ability.

4. Conclusions

For the defect of information loss during the coarse-graining process on MPE, an IMPE
algorithm is proposed. By analyzing the features of MPE and IMPE from WGN, it is found
IMPE can not only evaluate the complexity of time series without the loss of amplitude
information but also improve the stability of entropy. Compared with MPE, IMPE has
better tightness and separability, which means feature extraction based on IMPE can better
identify biological tissue denaturation.

SVM and GK fuzzy clustering algorithms are applied to the recognition of biological
tissue denaturation according to the MPE and IMPE characteristic parameters derived from
the experimental ultrasonic scattered echo signal. The results show that IMPE characteristic
parameters have a better clustering effect and recognition ability than MPE characteristic
parameters. Compared with the linear classifier SVM, the denaturation recognition based
on GK fuzzy clustering algorithm has a higher recognition rate, and GK fuzzy clustering
can better solve the problem of fuzzy denaturation characteristics of biological tissues. The
method based on IMPE-GK fuzzy clustering has the highest recognition rate of 95.5%.

However, besides the problem that the noise in ultrasonic scattered echo signal reduces
the recognition accuracy mentioned in Section 3.3, another limitation is the parameter
setting, which depends on the subjective experience of researchers. These parameters
need to be optimized according to the different conditions of biological tissue samples.
The accuracy of denatured tissue recognition may be affected due to poor parameter
optimization. In future work, it is hoped to further introduce the machine learning to
optimize the parameter setting automatically.
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