
����������
�������

Citation: Ciampi, M.; Sicuranza, M.;

Silvestri, S. A Privacy-Preserving and

Standard-Based Architecture for

Secondary Use of Clinical Data.

Information 2022, 13, 87. https://

doi.org/10.3390/info13020087

Academic Editor: Willy Susilo

Received: 24 December 2021

Accepted: 10 February 2022

Published: 13 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

  information

Article

A Privacy-Preserving and Standard-Based Architecture for
Secondary Use of Clinical Data
Mario Ciampi * , Mario Sicuranza and Stefano Silvestri

Institute for High Performance Computing and Networking, National Research Council of Italy,
Via Pietro Castellino, 111, 80131 Naples, Italy; mario.sicuranza@icar.cnr.it (M.S.); stefano.silvestri@icar.cnr.it (S.S.)
* Correspondence: mario.ciampi@icar.cnr.it

Abstract: The heterogeneity of the formats and standards of clinical data, which includes both
structured, semi-structured, and unstructured data, in addition to the sensitive information contained
in them, require the definition of specific approaches that are able to implement methodologies that
can permit the extraction of valuable information buried under such data. Although many challenges
and issues that have not been fully addressed still exist when this information must be processed
and used for further purposes, the most recent techniques based on machine learning and big data
analytics can support the information extraction process for the secondary use of clinical data. In
particular, these techniques can facilitate the transformation of heterogeneous data into a common
standard format. Moreover, they can also be exploited to define anonymization or pseudonymization
approaches, respecting the privacy requirements stated in the General Data Protection Regulation,
Health Insurance Portability and Accountability Act and other national and regional laws. In fact,
compliance with these laws requires that only de-identified clinical and personal data can be processed
for secondary analyses, in particular when data is shared or exchanged across different institutions.
This work proposes a modular architecture capable of collecting clinical data from heterogeneous
sources and transforming them into useful data for secondary uses, such as research, governance,
and medical education purposes. The proposed architecture is able to exploit appropriate modules
and algorithms, carry out transformations (pseudonymization and standardization) required to use
data for the second purposes, as well as provide efficient tools to facilitate the retrieval and analysis
processes. Preliminary experimental tests show good accuracy in terms of quantitative evaluations.

Keywords: ETL architecture; secondary use of clinical data; HL7 FHIR; information retrieval; privacy
laws; pseudonymization

1. Introduction

The large availability of health data and documents in digital format managed in
Health Information Systems (HISs) facilitate the advancement of clinical research, the
improvement of care services through academic training, and supports the administra-
tive and health processes through control and governance (i.e., clinical audits for quality
enhancement and clinical governance) [1]. Furthermore, health information is often fur-
ther processed and linked with other datasets, such as data produced in clinical trials,
allowing for the extraction of further insights, which are very useful not only for clinical
practices, but also to design and improve information health systems and to contribute to
the implementation or more effective policy making [2].

While the benefits of secondary uses of medical and clinical data are relevant for
improving the quality of care, questions about how this data is accessed, by whom, and
under what circumstances still raise many issues. In addition to the obligation to obtain
informed consent before participating in the research [3], data sharing (especially when
they contain personal and sensitive information and when data is made available outside
the company or geographic area where it is generated) can lead to a loss of privacy for
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individuals, such as patients and health professionals. For this reason, data security and
patient’s privacy are considered crucial issues to face. To guarantee the rights of the
interested parties, a number of international and national laws and rules have been issued,
such as the General Data Protection Regulation (GDPR) in Europe [4,5] and the Health
Insurance Portability and Accountability Act (HIPAA) in the USA [6–8]. To the end of
allowing the use of personal clinical data for secondary uses (i.e., for research and health
planning purposes) in compliance with these laws, only de-identified data can be processed,
in particular when data are shared or exchanged across different institutions. In fact, such
laws, along with the ones of the various countries, establish that the secondary use of
clinical data is allowed only in avoiding future associations with the people they refer to, in
the case they have not provided explicit consent, or when data must be processed outside
the institution/company or country that collected them [9,10].

Another challenge to processing health data for secondary purposes is the non-
uniformity and variety of the information contained in clinical documents and data, due to
the lack of a homogeneous data representation, considering that HISs manage structured
and unstructured documents. Although there still exist many challenges that have not
been fully addressed and that can hinder the use of heterogeneous and, in particular, un-
structured health data, there are clear opportunities arising from their secondary use, by
leveraging tools able to efficiently incorporate structured and unstructured health data into
a common structured format, taking into account at the same time data sensitivity, privacy,
and ethical issues [11]. Thus, with the purpose of guaranteeing the effective use of this
information, unstructured data must be converted according to a homogeneous, standard,
and coded representation, exploiting advanced techniques such as big data analytics [12],
and effective de-identification techniques must be applied.

This paper presents a novel modular architecture capable of collecting clinical data
from heterogeneous sources and transforming them into formats useful for the clinical
secondary use, respecting the aforementioned requirements. The proposed architecture pro-
vides for the implementation of a pseudonymization process to make the data used in the
secondary purpose a secure process, also compliant with law requirements. Furthermore,
the proposed architecture applies an Extract, Transform, and Load (ETL) process to retrieve,
transform, and make this data available and to obtain strictly necessary information from
a set of heterogeneous clinical documents and data. It also leverages the ETL process to
organize information in a standard format, namely HL7 FHIR, which has been adopted for
its peculiarities.

The main contributions of this paper are:

• The definition of an architecture able to provide the integration of heterogeneous
health and clinical data according to the FHIR interoperable standard, which also
includes the capability of automatically selecting and applying the most suitable
pseudonymization algorithms, enabling the secondary use of clinical data;

• The proposal of a solution to perform the analysis of the obtained large collections of
FHIR resources.

After this introduction, the paper is organized as follows. Section 2 provides some
background information and Section 3 describes the most recent related works. Section 4
presents the proposed architecture, highlighting the main components and the techniques
used for data transformation. In Section 5, implementation details are presented. In
Section 6, a use case is described, where preliminary implementation of the proposed
architecture is validated. Finally, Section 7 concludes the paper.

2. Background

This Section provides an overview on the main privacy laws and aspects, standards
and techniques to allow the secondary use of clinical data.
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2.1. International Regulation and Law

In the United States, the HIPAA of 1996 is composed of a set of documents that establish
the Privacy, Security and Patient Safety Rules to be used to protect the confidentiality of
clinical information. The HIPAA privacy policy also provides definitions and standards
for de-identification of clinical data. In fact, the HIPAA “Safe Harbor” defines 18 data items
called Protected Health Information (PHI), which must be removed in such a way that clinical
data is considered to be de-identified.

In Europe, the GDPR addresses challenges for the protection of personal data. It
identifies six main principles for data protection: (i) Lawfulness of processing, transparency,
and fairness; (ii) purpose limitations, according to which the data is collected only for specific
and explicit purposes, legitimized by the functions to be created; (iii) data minimization,
according to which the data must be used only for the explicit primary purposes; (iv) ac-
curacy, according to which the data processed must always be updated or deleted if not
correct, by guaranteeing high accuracy; (v) storage limitations, for which data must be
deleted immediately after it has been used and no longer than necessary; and (vi) integrity
and confidentiality, according to which whoever manages the data must guarantee full data
integrity (data must not be modified in an unauthorized manner) and confidentiality (data
must not be accessed without authorization). Furthermore, article 32 of GDPR provides
information on the security of the personal data processing.

2.2. ETL Process

The ETL process allows the extrapolation of the minimum information of interest from
big and heterogeneous sources, and it is a preparatory operation for the collection and
management of data by means of a homogeneous representation format. The ETL process
consists of three phases:

• Extraction: In this phase, the data is extracted from heterogeneous sources. The
extracted data is managed in a staging area, such as a data lake;

• Transformation: In this phase, the collected data is transformed by applying the
correct format, which is defined through the application of the following rules:

◦ Standardization: Includes the selection of useful data, the methods, and the stan-
dard format;

◦ Deduplication: Identifies useless duplicated data;
◦ Verification: Eliminates incorrect data;
◦ Sorting: Groups and sorts data;
◦ Other activities: Depend on the context and the purposes of the ETL process

(i.e., de-identification).

• Loading: In this phase, the extracted and transformed data are loaded into a new
destination to the end of managing and analyzing the data, such as a data management
system, data lake, or any kind of data repository. The upload of the data can be full
or incremental.

2.3. Data De-Identification

De-identification may be implemented by using anonymization or pseudonymization
techniques. Data are considered anonymous when the data subjects to which they refer to
are no longer identifiable. The privacy norms do not prescribe any particular technique
for anonymization; it is therefore up to the individual data controllers to ensure that any
anonymization process chosen is sufficiently robust. With pseudonymization, data are
processed in a way that it cannot be attributed to a specific individual without the use
of additional information. Therefore, it is necessary to make such additional information
inaccessible and separate. Pseudonymized data still permit identifying a person, while
anonymized data can no longer be associated with specific individuals. Pseudonymization
aims to ensure that an individual is not identified on personal data, which are replaced
by one or more artificial identifiers, or pseudonyms, which cannot be linked directly to
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their corresponding nominative identities, making the data record less identifiable while
remaining suitable for data analysis and data processing [13]. A person is considered
identifiable, directly or indirectly, by using personal data, such as a name, identification
number, location data, or one or more characteristic elements concerning their physical,
physiological, genetic, economic, cultural, or social identity.

Although 100% anonymization is the most desirable objective from the point of view
of protection of personal data, in some cases it is not possible to remove useful data and
therefore a residual risk of re-identification must be taken into account [14]. It is not
always possible to lower the risk of re-identification under a previously defined threshold
by maintaining a useful dataset for a specific processing. For this reason, a robust de-
identification process aims to reduce the risk of re-identification under a certain threshold.
This threshold depends on various factors, such as existing mitigation controls, the impact
on people’s privacy in the event of new identification, and the use of data. It is essential
that de-identified data prove to be useful and therefore the process depends on the purpose
for which such data are managed as well as on the risk of re-identification.

Furthermore, it is unlikely that a fully automated process can be used to identify every
personal data in different contexts or decide how to maximize the usefulness of the data by
applying specific techniques to a number of variables. Therefore, taking into account the
context in the overall evaluation of the process, the intervention of a human expert is often
required, depending on the purpose of data use, in order to provide information on useful
and less useful data.

There are many de-identification techniques designed for the secondary use of clinical
data. The main techniques known in the literature used for the de-identification of personal
information are:

• Character/record masking [15]: Represents an anonymization technique that provides
for the cancellation of main personal identifiers, such as name, date of birth, and more.
This technique is used for example in legal databases.

• Shuffling [16]: Represents an anonymization technique that has the purpose of mod-
ifying the data in order to eliminate the relationship between the data and person
by replacing the sensitive data with a different one belonging to the same type and
extracted from the same corpus. There are numerous methodologies of anonymization
that use this technique at different levels in the information structure [17].

• Pseudonymization [13]: Allows the replacement of an attribute with another value.
Pseudonymization can be defined as the technique with which a unique attribute of
one data is replaced with another. The person could, however, be identified indirectly.

• Generalization [18]: Is an anonymization technique that aims to generalize attributes
associated with people. For example, the information relating to a date of birth can
be generalized using only the year of birth and avoiding the indication of the day
and month.

The most important techniques include [19]:

• K-anonymity [20]: This technique, through aggregation with k different people, tries
to prevent the identification of a person. By sharing the same value with k people, it is
more difficult to identify a specific person. The generalization therefore allows to share
a given value of an attribute for a greater number of people. The main flaw of the
k-anonymity model is that it does not protect against deductive attacks. Furthermore,
with the intersection of different groups represented by different attributes, it can be
even easier to identify the person.

• L-diversity [21]: This technique extends the k-anonymity technique to make attacks
by deterministic deduction ineffective by ensuring that in each equivalence class,
there are at least L different values of L attributes. L-diversity is subject to attack by
probabilistic deduction.

• T-Closeness [20,22]: This technique represents an evolution of L-diversity, as the
goal is to create equivalent classes that are similar to the initial attributes. This is
useful when it is necessary that the values obtained are as close to the starting ones.
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This technique requires that not only must exist at least L different values within
each equivalence class, as indicated by the L-diversity technique, but also that each
value is represented as many times as necessary to reflect the initial distribution of
each attribute.

2.4. HL7 CDA and HL7 FHIR Standards

HL7 is an international Standards Developing Organization (SDO) that defines a
standard structure for the exchange, integration, sharing, and retrieval of electronic health
information. The HL7 Clinical Document Architecture (CDA) [23] standard specifies syntax
rules and provides a basic structure for implementing the entire semantics of a clinical
document. It thus enables the computerized exchange of clinical documents.

HL7 Fast Healthcare Interoperability Resources (FHIR) [24] is the emerging health
information standard that offers a powerful and extensible data model with standardized
semantics and data exchange enabling all systems using FHIR to collaborate. Converting
data to the FHIR format allows quick connection to existing data. An important component
of the FHIR specification is represented by the RESTful APIs, which are a collection of
well-defined interfaces for making different applications able to interoperate.

Although the FHIR specification is a platform specification to implement a FHIR-
based solution for a specific subdomain of healthcare that is able to consider different
regulations, requirements, etc., it requires further adaptations. These ones, typically spec-
ified in Implementation Guides (IGs), include a localization of the particular standard
resource elements that are used, possible additional elements, the APIs and terminologies
to use, and others [25]. FHIR also enables rapid data exchange in modern mobile and web
development implementations.

The data in the HL7 FHIR format can also be easily converted into other standards,
such as the Observational Health Data Sciences and Informatics (OHDSI), Observational
Medical Outcomes Partnership (OMOP), and Common Data Model (CDM) [26,27], lever-
aging available OHDSI open tools, such as FhirToCdm [28], or OMOP on FHIR [29,30].
FHIR resources have been designed with the purpose of improving and easing the in-
teroperability of clinical data, allowing one to easily map them to further formats and
data models, as demonstrated by [31] for the case of i2b2 data [32], or implemented by
FHIR2TranSMART [33] to directly map them to the TransSMART data model [34]. The
conversion of HL7 FHIR to different standards not only supports the interoperability,
but enables the use of already available data warehouse systems and ETL approaches
specifically tailored for different standards, improving the possibility of secondary use
of data.

3. Related Works

The availability of large collections of clinical data and the need for techniques for
information extraction purposes and their further reuse has led in recent years to an active
research area, which has presented different and effective solutions in the literature, as well
as highlighted and discussed the main issues related to those processes.

For example, the authors of [11] presented an analysis of the challenges and oppor-
tunities beyond simple structured data analysis of electronic health records, highlighting
that although there exists in this area many challenges that have not been fully addressed,
there are clear opportunities for the definition and implementation of effective tools that
efficiently incorporate both structured and unstructured data for extracting useful infor-
mation. Moreover, they also showed how the access to clinical data is still very restricted
due to data sensitivity and ethical issues. The main result of their review is that a possible
solution to the aforementioned issues is to allow the accessibility of unstructured data by
developing tailored machine learning methods, and at the same time accelerating further
research on privacy preserving techniques for the de-identification and pseudonymization
of clinical texts.
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In [35], the various challenges and research issues concerning the secondary use of un-
structured clinical data are discussed, analyzing the methodologies to preserve the privacy,
and the sensitive data of the patients. They focused their analysis on ambiguous and vague
terminology and on how different legislation affects the requirements for de-identification.
Moreover, the needs of adopting different approaches in the case of unstructured or struc-
tured data is underlined, also analyzing the impact of the approaches based on the named
entity recognition to replace sensitive data with surrogates. Finally, the re-identification
risks are discussed.

The work described in [36] presents a pseudonymization system to facilitate the
exchange of data for secondary uses, designed and developed in accordance with ISO/EN
13606 [37], which has as its main objective the standardization of EHR transfers, or part
of them, in a semantically operable manner. This approach allows for the total or partial
anonymization of data extracted from the Electronic Health Record (EHR and HIS in
general), eliminating all of the demographic references or some of the them (sex, date of
birth, and place of residence) selected by the user. The elimination happens prior to storage,
with the substitution of these references with identifiers that might be associated with
specific demographic entities. In this way, while the transmitted data is pseudonymized
and the clinical information cannot be associated with a specific entity, the eliminated
demographic information is locally stored and may be recovered by means of consulting the
identifiers that appear in the anonymized extract whenever the rights pertaining to access
to the information are verified. This methodology requires that data have been previously
extracted and structured and cannot be exploited to pseudonymized unstructured text.

The authors of [38] introduced a method for obscuring date information for clinical
events and patient characteristics, preserving temporal relations in clinical data while
maintaining privacy at the same time. This approach, named shift and truncate, first
assigns each patient a random temporal shift value, making all dates in that patient’s record
shifted by that amount. In this way, temporal relations are also preserved, which can be
critical for secondary uses.

The standardization of clinical data is another open issue that is also strictly related to
the secondary use of health data. The Observational Health Data Sciences and Informatics
(OHDSI) [26] is an international collaboration whose goal was to create and apply open-
source data analytics solutions to a large network of health databases. For this purpose, the
Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) [27],
which represents healthcare data from diverse sources in a consistent and standardized
way, was extended and improved, also providing a collection of specifically customized
software tools, not only to facilitate data exploration and evidence generation, but also to
support the standardization process. Among them, it is worth mentioning WhiteRabbit [39],
which helps the preparation for ETL of longitudinal healthcare databases into the OMOP
CDM, by scanning the source data and providing detailed information on the tables, fields,
and values that appear in a field, allowing a user to connect source data structures to the
CDM data structure. Another OHDSI tool useful for the standardization is Usagi [40],
which supports the process of mapping codes from source raw datasets into the standard
terminologies stored in the OMOP CDM format. Although WhiteRabbit and Usagi tools
can facilitate the standardization of raw clinical datasets into an OHDSI standard, they
have some limits. Firstly, they both process only structured data, being not able to extract
relevant information from unstructured natural language texts, which represent a large and
important part of available clinical data. Furthermore, they rely on classic RDBMS or CSV
and Excel formats, which are not suited for the processing of big data collections. Finally,
they do not perform any task related to the anonymization or pseudonymization processes,
requiring additional tools to address privacy and ethical issues related to the processing of
clinical and medical data.

A framework for processing unstructured clinical documents of EHRs and for their
integration within standardized structured data in the OMOP CDM format is presented
in [41]. In detail, the authors described a framework named Staged Optimization of
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Curation, Regularization, and Annotation of clinical Text (SOCRATex), which first extracts
clinical notes for the target population and preprocesses the data. Then, the framework
defines an annotation schema with a hierarchical structure and applies a document-level
hierarchical annotation by means of a machine learning approach. Finally, it indexes the
annotations for a search engine system. The tests performed on real clinical EHRs showed
that the system was able to integrate the annotated documents into the OMOP CDM
database [27].

Big Data Analytics (BDA) approaches have also been leveraged for the analysis of
unstructured clinical data. The authors of [12] described an approach to exploit the health
data from the Italian interoperable EHR platform, allowing for the extraction of useful
data through a combination of BDA techniques and Natural Language Processing (NLP)
methods, supporting in this way the process of secondary use of information.

In [42], a complex framework of BDA systems and tools has been presented, with
the purpose of addressing some of the issues related to the analysis of big biomedical
unstructured data collections.

In summary, as described in the following of this paper, our proposed approach
addresses many of the issues of the methods and systems presented in the literature and
briefly described in this Section and provides many innovative aspects. It provides a single
architecture able to support pseudonymization processes that can automatically select the
most appropriate de-identification approaches. It also supports the standardization of
health data leveraging the recent FHIR format by extracting data from both structured,
semi-structured, and unstructured documents and datasets. Furthermore, it is capable of
dealing with very large structured, semi-structured, or unstructured clinical datasets as
well as integrating ETL and BDA functionalities to facilitate the secondary use.

4. System Architecture

This Section describes the overall architecture of the proposed system. The aim of
this architecture is to facilitate the secondary use of health data by structuring them in a
standardized way and in compliance to the privacy norms.

The proposed architecture uses a pseudonymization action in the transformation phase
of the ETL process. This action allows transforming the data, keeping the information
content of interest for secondary clinical use, and eliminating the direct link between the
data and interested party (that is, the patient).

The architecture uses transformation features that make use of ad-hoc profiles, de-
pending on the purpose of use of the data [43]. Figure 1 shows the system architecture. The
modules of the architecture are described in detail in the following Section.

4.1. Extraction Module

The purpose of this module is to extract all information of interest from heterogeneous
sources. In detail, it analyzes the input in order to identify which extraction rules must
be applied. At that point, it uses the most appropriate extraction algorithm to obtain
this information. The heterogeneous sources of information taken into consideration
are: (i) Documents structured in standard format, such as the HL7 CDA; (ii) documents
structured through proprietary rules and formalisms; (iii) documents in free text, for
which an extraction algorithm obtained by means of a rule-based approach or through
appropriately trained hybrid approaches is envisaged [12]. Finally, this component is also
capable of extrapolating and aggregating information even from single data.
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The extraction module also allows for the association of particular tags with the data
to classify the obtained information and permits to organize the information adequately
during the standardization phase. A possible approach is through NLP techniques, which
enable the extraction of structured data from unstructured documents [44,45], or even
approaches based on deep learning, which have a great ability to analyze different types of
data and extract information with specific characteristics [46]. In detail, the extracted infor-
mation with the same value from different sources can be aggregated with an indication
of whether or not it intersects. The aggregation process can also retrieve information and
aggregate it into report documents, or suggest changes to a specific clinical document, such
as a patient summary.

4.2. Transformation Module

This module performs various elaborations with different purposes, exploiting the
data obtained from the extraction module in the previous phase. The most important
processing steps are pseudonymization and standardization of the obtained data. Through the
pseudonymization phase, personal data are thus not directly attributable to a specific person.
In this phase, some information, such as the patient’s identification, name, surname, genetic
information, etc., is deleted. Other types of information are transformed (pseudonymized),
depending on the use of the data: For instance, the residential address is generalized and
does not include the street and house number, but only the province or the municipality.
Other data will be merged with each other, realizing aggregated data.

The module is able to apply different pseudonymization techniques (previously de-
scribed in Section 2), selecting the most appropriate one depending on the different kinds
of data to process, following the algorithm shown in the flow chart depicted in Figure 2.
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In detail, the algorithm analyzes each attribute of the extracted data and leverages a
rule-based approach to implement an attribute-to-anonymization technique association, in
case that attribute belongs to a known rule. An example of these association rules is shown
in Table 1, where the anonymization (deletion of that value) or the pseudonymization
technique (L-diversity) is associated with different attributes of the extracted data. This
approach is very flexible and can be used in different operational contexts.

Table 1. Example of the rules for the selection of the de-identification techniques.

Attribute De-Identification Technique

Address L-diversity algorithm

Date L-diversity algorithm

Identifier Deletion of the value

The other main task of the transformation module is the standardization phase, which
organizes the obtained data by means of standard structures. The module collects informa-
tion through HL7 FHIR resources. For example, measurements and simple assertions made
about a patient, device, or other subjects is organized as the Observation FHIR resource.

The transformation module aims to create technical mapping that follows a prelim-
inary conceptual mapping from the source document to the FHIR resources. In general,
two types of conceptual mappings in FHIR can be performed on the basis of the necessary
output: (i) A new FHIR document can be created in a semantically equivalent way to the
source document, which in this case, a composition resource can be used; or (ii) some
information of interest is extracted from the source document and entered in the FHIR
resources, which in this case, the data are stored in the correct FHIR resources based on
the meaning of the extracted data (e.g., resources such as observation, condition, etc. can
be used).

The proposed approach is based on the second methodology: Once information has
been extracted using the extraction module, it will be stored in FHIR resources useful for the
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intended purpose. More specifically, in order to formalize the mapping between documents
in the HL7 CDA format and FHIR resources (also with defined profiles but not currently
published in Implementation Guides), the extraction module uses a configuration file that
contains XPath expressions pointing to the sections and fields of the source document
represented in HL7 CDA and the elements and attributes of a target FHIR resource.

The architecture uses specific resource profiles, in order to apply further constraints
and encoding related to the represented data. This phase is facilitated by the tagging carried
out in the extraction module.

4.3. Loader Module

This module implements the storage and management of the FHIR resources obtained
from the transformation module. In detail, the resources built through the transformation
module are sent to a FHIR server used to store and manage the data, in order to make
clinical data available for the second purposes. The use of FHIR services allows to exchange
data through RESTful APIs based on the standard. In this case, various tools can be adopted,
such as the Azure API for FHIR [47] or the HAPI FHIR [48].

The success of the emerging FHIR standard as a next generation standard for clinical
interoperable data is also highlighting the focus of the scientific community on the research
and development of FHIR-based data access approaches [49], which have demonstrated
their feasibility in answering queries [50] or semantic queries [51] on large collections,
allowing for the implementation of advanced Personal Health Record (PHR) systems [52,53],
enabling for both primary and secondary use of the data.

4.4. Data Retrieval Module

This module acts as an interface to the FHIR server, which manages the clinical data
stored for the second purpose, allowing to retrieve the information of interest. The data
retrieval module also allows data retrieval for research purposes in a specific application
domain or field, or to retrieve data for training purposes in specialized courses.

5. Implementation Details

In this Section, a proof of concept of the implemented architecture is illustrated,
providing further implementation details with respect to the modules of the architecture.

The extraction module is implemented using the Apache Spark BDA framework [54],
which acts as a data collector and integrator. The use of a big data approach permits the
processing of the large size of information produced in clinical environments and stored in
the HISs. The implementation follows the principles detailed in [12,55].

The transformation and load modules use specific Spark User Defined Functions
(UDFs) [56] for data normalization and integration and a MongoDB NoSQL database for
data storage [57]. The data extracted and stored in the MongoDB database is accessed
through Spark SQL [58]. These data can be also accessed through the FHIR API and FHIR
Repository, as shown in [25].

Data management, obtained through the load module, allows for information retrieval
in an interoperable and simple way and it is implemented by HAPI FHIR [18]. HAPI FHIR
is a complete implementation of the HL7 FHIR standard for healthcare interoperability in
Java. The FHIR API is based on the JAXB and JAX-WS APIs. Therefore, by means of FHIR
transactions, the proposed architecture is capable of making the resource profiles managed
by the FHIR repository available. More in detail, the RESTFul API FHIR transactions used
in the implemented platform are:

• Read, to get the status of a specific resource. It is used by information retrieval applica-
tions interested in a specific resource profile;

• Search, to search for a specific FHIR resource and obtain information of interest;
• Update and patch, to update an existing resource. It is used to modify some statistical

data or to update specific clinical observations;
• Delete, to remove a specific resource.
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Additional capabilities for second purpose analyses with the proposed platform are
provided by the possibility of applying the dynamic data warehousing approach described
in [12], which could be leveraged to easily create advanced statistics and analytics.

6. Preliminary Tests and Discussion

The implemented system has been tested on about 100 GB of heterogeneous real
clinical data, used within the Italian national her interoperability system, with the pur-
poses of testing the functionalities of the various modules of the architecture, namely the
information extraction capabilities, the pseudonymization methods, and the integration
of the data into HL7 FHIR resources. In detail, this document collection includes EHRs,
patient summaries, admission and discharge notes, diagnostic and medical reports, medical
prescriptions, and treatment plans coming from the EHR systems of Italian hospitals and
clinical facilities. Such kinds of data allow us to test the proposed approach in a real context
and on real-world data.

Moreover, additional tests have been performed on the transformed data after the load
phase, verifying the analytics capabilities on the obtained structured and de-identified data.

The first set of tests analyzed the extraction module of the platform, with the purpose
of demonstrating that the proposed architecture is able to extract and tag the information
required by the transformation module. The experiments proved that it was possible to
obtain information related to diseases from the unstructured parts of EHRs, such as the
disease name, its category, and the corresponding category code, or the ICD-9 CM code
used to classify diagnoses. Moreover, the tests allowed the extraction of the data associated
with the diagnoses and the extraction of the clinical and patient’s data, such as date of birth,
place of birth, gender, etc. In Figure 3, the Entity-Relationship (E-R) diagram of a sample of
the extracted information is depicted.
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This kind of data can be easily transformed into HL7 FHIR resources in the transfor-
mation module, as shown by the further experiments performed, which tested the main
tasks of the second module of the platform. The extraction and transformation process
allows to address the issues related to inconsistent and not informed data items in the
target structured repository.

Furthermore, when the attribute of the extracted data corresponds to a de-identification
rule, the module is also able to successfully apply the required techniques for the de-
identification of the data, following the algorithm and the association rules described in
Section 4.2.

After the transformation phase, the obtained pseudonymized data according to the
standard HL7 FHIR format have been further analyzed, simulating in this way their
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secondary use. The data stored in the final FHIR repository have been processed through
the dynamic data-warehousing approach proposed in [12], producing advanced statistics
and analytics related to the correlation among the available data along the time and space
dimensions. These tests easily demonstrated that the data stored can be leveraged to
monitor and analyze a large set of parameters, such as the incidence of a disease, or the
number and type of hospitalizations in a region, or the number of drugs used in a city in a
specific time slot. Figure 4 shows an example of this kind of analysis, where the statistics of
the hospitalizations in the Campania region of Italy have been produced.
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The six main principles highlighted in Section 2.1 represent the security context in
which the proposal is implemented. Addressing these GDPR principles depends on how
the proposed architecture is used and implemented. More in detail:

1. Lawfulness of processing: It depends on the type of processing performed by an autho-
rized professional, for example, data could be collected through a patient’s consent or
for public interest.

2. Purpose limitations: The proposal is limited to the purpose of secondary use (research
purposes, etc.), and so when the data are then processed, they will be managed
ensuring this principle. In addition, the proposed architecture provides specific
retrieval capabilities depending on the context of the request.

3. Data minimization: The information retrieval functionalities return only the requested
FHIR resources that depend on the purpose of use and type of operation.

4. Accuracy: This principle is reached by making the transformation and loading process
with a high frequency.

5. Storage limitations: The proposed architecture stores only the data necessary for the
type of processing.

6. Integrity and confidentiality: The access to resources can be regulated by access control
mechanisms to avoid unauthorized access and reduce related cybersecurity vulnera-
bilities and risks.
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7. Conclusions

This work presented a modular architecture capable of collecting clinical data from
heterogeneous sources and transforming them into a standard format useful for secondary
use for research, governance, and medical training purposes, as well as applied the neces-
sary de-identification techniques in order to respect privacy and ethics law requirements.
The adequate and efficient use of data from heterogeneous sources was obtained by mak-
ing the representation of the processed information compliant and standard, leveraging
the HL7 FHIR format. Moreover, the national and international laws establish that the
secondary use of clinical data is allowed only if the information exchanged is previously
de-identified, in order to avoid future associations with people and to respect privacy and
ethics requirements. In this work, the GDPR and HIPAA laws have been considered, which
suggest to carry out a pseudonymization processes. Thus, the proposed architecture is also
able to perform the further processing on the data to de-identify, allowing the secondary
analyses in compliance with law requirements.

The proposed architecture leverages a combination of different approaches to imple-
ment the transformation of the data. The main transformation tasks are the pseudonymiza-
tion, obtained with different techniques depending on the data type and secondary use
purposes, and the standardization of the information, implemented through the HL7 FHIR
standard. The architecture exploits BDA techniques, NLP, and deep learning methods
for the analysis of free text, rule-based approaches for the selection of the required de-
identification method, selection of the most appropriate de-identification technique, and
HL7 FHIR standard resources, storage, and retrieval tools.

In this way, the platform is able to carry out the required transformations which
can enable the extraction of data for secondary use in compliance with law requirements.
Moreover, the platform is capable of efficiently using the extracted data and processing the
information to facilitate the retrieval process, through the FHIR server. The experiments
confirmed that the implemented platform is able to effectively integrate data into a standard
HL7 FHIR format, as well as to apply the most appropriate de-identification technique
and, finally, to support and facilitate the retrieval of required information for secondary
analyses. Moreover, the flexibility of the proposed rule-based de-identification approach
allows one to easily define and implement new rules, addressing in this way those cases
where specific classes of data are not correctly transformed.

For future work, we plan to further optimize the architecture modules and test different
implementation approaches in order to improve the performances and functionalities of
the architecture. Moreover, we plan to improve the Spark UDFs for the transformation and
load modules, by implementing configurable parameters that are able to extend and/or
customize their functionalities. Additional tests will also be carried out on heterogeneous
data. Finally, tools for the conversion and/or integration of FHIR resources to other
standards, such as OMOP CMD could be integrated within the architecture.
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