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Abstract: Hemiplegia affects a significant portion of the human population. It is a condition that
causes motor impairment and severely reduces the patient’s quality of life. This paper presents an
automatic system for identifying the hemiplegia type (right or left part of the body is affected). The
proposed system utilizes the data taken from patients and healthy subjects using the accelerometer
sensor from the RehaGait mobile gait analysis system. The collected data undergo a pre-processing
procedure followed by a feature extraction stage. The extracted features are then sent to a neural
network trained by the Levenberg-Marquardt backpropagation (LM-BP) algorithm. The experimental
part of this research involved creating a custom-created dataset containing entries taken from ten
healthy and twenty non-healthy subjects. The data were taken from seven different sensors placed
in specific areas of the subjects” bodies. These sensors can capture a three-dimensional (3D) signal
using the accelerometer, magnetometer, and gyroscope device types. The proposed system used
the signals taken from the accelerometers, which were split into 2-sec windows. The proposed
system achieved a classification accuracy of 95.12% and was compared with fourteen commonly used
machine learning approaches.

Keywords: accelerometer; feature extraction; hemiplegia; Levenberg-Marquardt backpropagation;
neural network

1. Introduction

Hemiplegia is a disease that causes the patient to lose motor control in one part of
the body. The hemiplegia symptoms include the patient’s inability to move its right or
left body parts (arm and leg) and the creation of spastic mass patterns. The paralysis in
half of the patient’s body is usually caused by a stroke and has severe consequences on
their health and quality of life. It is an effect caused by damage in one of the two cerebral
hemispheres. The problems caused by a brain lesion in one area are spread to other areas
since the human brain is an extensive network of interconnected neurons participating in
two different types of communication (feed-forward and feedback). The unaffected areas
of the brain face problems due to the lack of information or misinformation created from
the affected areas. The stroke patient will have to deal with severe problems in both body
sides, with side effects spreading to all brain functions causing motor impairment in the
whole body. These impairments will affect sensory perception, memory, and behavior,
causing a challenging situation to the patient’s rehabilitation process. Hemiplegia types
can be right or left, as seen in Figure 1. In the former type, the left body side is paralyzed,
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while in the latter type, the right body side is paralyzed. An example causing either type is
an incomplete spinal cord injury [1,2].

Figure 1. Hemiplegia types. The left picture depicts brain damage in the left part of the brain (all the
affected body parts are marked with red color), which causes paralysis to the right part of the body.
The right picture depicts brain damage in the right part of the brain, which causes paralysis to the
right part of the body.

The novelty behind the proposed system is creating a tool capable of detecting the
hemiplegia category (right or left) between patients and healthy individuals using a low-
cost system that doesn’t require the use of an expensive three-dimensional (3D) camera.
The proposed method can be used as a supplementary tool for diagnosing the hemiplegia
types mentioned above amongst patients and healthy subjects. The system works by
using seven sensors to the subject’s body which record Spatio-temporal specific parameters
during walking. One sensor is placed on the hip, and one is placed at each patient’s foot,
shank, and thigh. All the sensors are provided from the RehaGait mobile gait analysis
system [3-5].

The mobile gait analysis system offers significant advantages, including monitoring
the user’s status using a built-in video capture feature. It can recognize the damaged areas,
estimate the gait pattern and find asymmetries in the patient’s lower limbs. The rest of its
advantages include movement freedom, mobility since it does not require a gait lab, and
the ability to represent the captured data graphically [5,6].

The sensors can capture 3-dimensional (3D) signals using an accelerometer that records
the linear acceleration, a magnetometer that records the earth’s magnetic, and a gyroscope
for recording the angular velocity [4]. The proposed method used the captured accelerome-
ter data, divided into widows with a 2-s length. Then, they underwent a pre-processing
and feature extraction stage before being sent to a single-layer neural network trained by
the Levenberg-Marquardt backpropagation (LM-BP) algorithm. The training procedure
of the neural network involved using a custom dataset that contained data taken from
thirty participants (twenty non-healthy individuals having right or left hemiplegia and ten
healthy individuals).

The article is structured in seven sections. It begins with the “Introduction” section,
which includes the problem’s description and the motivation, followed by the “Related
Work” section. “The LM-BP Algorithm” section describes the architecture of the Levenberg-
Marquardt backpropagation variant utilized for the classification task of the proposed
method. The “System Architecture” section describes an analysis of the system. The
“Experimental Results” section contains the outcome from comparing the proposed ap-
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proach with fourteen machine learning algorithms. Finally, the last two sections contain
the “Discussion” and “Conclusion.”

2. Related Work

The existing bibliography includes methods targeted to different hemiplegia aspects,
including gait. Lee et al. [6] created a classification method based on the random forests
(RFs) algorithm for distinguishing between hemiplegic and non-hemiplegic gait. The sys-
tem utilizes the acceleration signal captured from a wearable device. Ji et al. [7] studied the
efficiency of various mother wavelets and wavelet selection criteria in gait event detection
using hemiplegic and non-hemiplegic patients. Pauk and Minta-Bielecka [8] proposed a
biclustering algorithm for classifying gait patterns in hemiplegia patients. Their method is
based on the study of clustering and biclustering approaches. Patil et al. [9] used deep learn-
ing and CNNss for the analysis of human gait with the purpose of identifying hemiplegic
gait Padilla [10] created a fuzzy modeling of the hemiplegic indicators in patients” knees to
classify hemiplegic gait. Manca et al. [11] utilized a hierarchical cluster analysis method to
classify the gait patterns from 49 hemiplegic individuals having equinous foot deformity.
Kim et al. [12] utilized the Vicon® 512 motion analysis system to compare the gait of hemi-
plegic elderly individuals and healthy subjects of similar age. LeMoyne et al. [13] utilized
logistic regression for distinguishing between an affected and unaffected hemiplegic leg
pair using the features taken from force plate data. The analysis revealed five groups with
homogenous gait dysfunction levels. Jung et al. [14] created a gait rehabilitation system
controlled by a deep neural network (DNN) to offer functional electric stimulation to
individuals suffering from hemiplegia. This study showed that the performance of the
proposed gait event detection method based on continuous wavelet transform was affected
by the use of different mother wavelet functions. Yardimci [15] utilized fuzzy logic with
the Tsukamato-type inference method to classify hemiplegic and healthy individuals. Luo
and Luo [16] used kinematic data from 8 hemiplegic patients to estimate the intra-limb
coordination of the lower limb. Wong et al. [17] explored the possibility of using a foot
contact pattern for neurologic recovery prediction and how ambulation training affects in-
dividuals suffering from hemiplegia. LeMoyne and Mastroianni [18] utilized a multi-layer
perceptron neural network to classify an affected and unaffected leg in hemiplegic gait. The
system uses a smartphone as a wearable device and utilizes its gyroscope sensor signal data
which undergo a feature extraction stage before being sent as input to the neural network.

Many studies utilized data taken from hemiplegic children. Aguilera and Subero [19]
studied kinematic, kinetic, and electromyographic (EMG) data from children having spastic
hemiplegia. The purpose of their work was to find meaningful patterns in gait. Morbidoni
et al. [20] proposed a machine learning method for binary classification of gait and heel-
strike (HS), and toe-off (TO) timing prediction from surface electromyographic (SEMG)
signals in cerebral palsy hemiplegic children. Agostini and Nascimberi [21] explored muscle
activity and various foot-floor contact patterns during gait in hemiplegia children. Utilizing
statistical gait analysis, they received the foot-floor contact patterns end estimated the
gait phases duration. They also used a user-independent method for receiving the muscle
activation timing for every foot-floor contact sequence and muscle activation pattern. Di
Nardo et al. [22] quantified the asymmetric behavior of 16 children with mild hemiplegia
during walking by using surface-EMG and foot-floor contact features. McAloon et al. [23]
validated the activPAL activity monitor in children with hemiplegic gait. Krzak et al. [24]
studied the effect in gait patterns of fine wire insertion into the posterior tibialis muscle in
children with hemiplegic cerebral palsy. Wang and Wang [25] performed a gait analysis in
healthy children and children having spastic hemiplegic cerebral palsy. Aguilera et al. [26]
studied various data mining methods in gait data taken from children having spastic
hemiplegia. Abaid et al. [27] proposed a hidden Markov model-based gait phase detection
algorithm using data taken from single-axis wearable gyroscopes. The algorithm can
differentiate between typically developing and hemiplegic children and estimates the gait
ability level in non-healthy subjects.
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Some studies were focused on creating an evaluation system. Watanabe and Miyazawa [28]
developed a stride length measurement-based gait evaluation system that utilizes inertial sensors.
The proposed system was tested with healthy and hemiplegic patients with and without
functional electrical stimulation-assisted foot drop correction. Granat et al. [29] proposed a
hemiplegic gait evaluation system that utilizes shoe insoles equipped with sensors. The system
can monitor the patient’s gait for 10 min and is usable on any surface. Ohnishi et al. [30] created
an automatic evaluation system for stroke impairment analysis set (SIAS) utilizing depth sensors.
SIAS is a collection of evaluation methods for hemiplegic patients who suffered a stroke.

Many studies proposed classification systems aimed to recognize two or more neurode-
generative diseases. Kumari et al. [31] created a wearable human activity tracking device
used in patients with spastic hemiplegia and diplegia. Li et al. [32] utilized a 3D human
skeleton and a Kinect sensor to capture the joints’ trajectories with the purpose of recogniz-
ing Parkinson’s disease and hemiplegia. Pandit et al. [33] captured the data from four body
adhering modules and converted them into images which were introduced to an Inception
v3 convolutional neural network (CNN). The network was responsible for classifying those
images into four gait categories (normal, hemiplegic, diplegic, and Parkinsonian).

Other hemiplegia-based approaches include the hand gesture recognition system by
Azlan et al. [34] for rehabilitating people suffering from hemiplegia by stimulating motor
function. Cai et al. [35] utilized a pressure distribution mattress to create a compensatory
movement pattern detection system in stroke patients with hemiplegia. For the partici-
pants’ classification task of the posture, the following four machine methods were utilized:
linear discriminant analysis (LDA), k-nearest neighbors, naive Bayes, and support vector
machine (SVM).

The methods described above showed very good results, but they were not focused
on the hemiplegia type detection (right or left), which motivated the proposed work. One
exception is the work from Christou et al. [36], which utilizes a neural network trained
with the scaled conjugate gradient backpropagation (SCG-BP) training algorithm. The
neural network can detect the hemiplegia category (right or left) between patients and
healthy subjects. Although this method manages to get a high classification accuracy, the
LM-BP-based method proposed in this article gets a higher classification accuracy than the
SCG-BP approach.

Other works include the feature extraction method by Priya et al. [37], which aims to
recognize Parkinsonian gait. The proposed symmetrically weighted local neighbor gradient
pattern (SWLNGP) method analyzes signals taken from human gait using local binary
pattern (LBP) techniques during the feature extraction stage. Then, it classifies them with
the help of an artificial neural network (ANN).

The data classification task is a critical part of the LM-BP-based system presented in
this article. A few typical BP-based machine learning methods for this task are described
below. The SCG-BP training algorithm by Meller [38] is a variation of the original backprop-
agation (BP) algorithm which utilizes a Levenberg-Marquardt approach for the elimination
of the computationally-intensive line search [39,40]. Fletcher-Powell conjugate gradient BP
(FPCG-BP) is a conjugate gradient-based approach that utilizes the Fletcher-Reeves updates
to update the weights and thresholds [41]. The Broyden, Fletcher, Goldfarb, and Shanno
backpropagation (BFGS-BP) method is a quasi-Newton approach for unconstrained opti-
mization problems which utilizes updating formulas for the Hessian approximation [42].
The one-step secant backpropagation (OSS-BP) algorithm fills the gap between the con-
jugate gradient approaches and the quasi-Newton algorithms. One-step secant assumes
that the previous Hessian is the identity matrix at each epoch. This assumption has the
advantage that the new search direction can be calculated without the help of the matrix
inverse, which makes it require less storage space and is faster than the BFGS method [43].
Gradient descent (GD) is an iterative optimization algorithm that utilizes first-order deriva-
tives to find a local minimum of a differentiable function [44]. A major issue with gradient
descent, when used to train a multi-layer network with a sigmoid transfer function, is that
the gradient has a very small magnitude that causes small changes in the weights and
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thresholds, which slows down the training process. Resilient propagation (RPROP) was
developed to solve the above problem and works by using a local adaptation of the weight
updates following the error function’s behavior [45]. The Bayesian regularization back-
propagation (BR-BP) algorithm modifies and minimizes a linear combination of squared
errors and weights. The purpose of the resulting network is to achieve good generalization
performance [46,47]. Root mean squared propagation (RMSProp) [48] extends gradient
descent and the AdaGrad version of gradient descent. It utilizes a decaying average of
partial gradients to adapt the step size in each parameter. The Adam optimizer [49] is a
first-order gradient-based optimization method for stochastic objective functions which
utilizes adaptive estimates of lower-order moments. The AdaMax [49] algorithm is an
extension of Adam based on the infinity norm. The adaptive gradient (AdaGrad) algo-
rithm [50] scales the learning rate parameter for each dimension in an adaptive manner to
certify that the training process is not too slow and not too volatile and imprecise.

Other non-BP approaches include the extreme learning machine (ELM) proposed by
Huang et al. [51], which can train a single-layer neural network (SLNN) without the use
of an iterative training method like traditional learning algorithms. ELM training process
involves randomizing the hidden layer weight and thresholds followed by an analytical
determination of the output weights. Optimally pruned ELM (OP-ELM) proposed by
Miche et al. [52] is an ELM-based approach that creates a large SLNN and evaluates each
hidden layer node using the multi-response sparse regression algorithm. Then, it selects the
best neurons, which will form the final network. Finally, the SVM algorithm creates optimal
separating hyperplanes in a high or infinite-dimensional space utilized for classification or
regression tasks of unknown data [53].

3. The LM-BP Algorithm

This section represents a detailed explanation of the LM algorithm. The LM algo-
rithm was initially developed by Kenneth Levenberg [39] and reinvented by Donald
Marquardt [40] to minimize a non-linear function.

The LM Algorithm has O(N?) complexity and is illustrated in Algorithm 1 [54]. The
algorithm trains a neural network by adapting the network’s weights and thresholds
according to the weight update function depicted in (1).

Wit = W — (]kT]k + Pl1> 71]k€k 1)

The first five lines of the algorithm initialize its parameters. These initializations include:

Randomizing weights and thresholds.
Setting the maximum number of steps, the initial value of the learning coefficient, and
the maximum allowed sum of squares network error.

Line 6 declares the neural network inputs. Line 7 starts the algorithm’s epochs, and
line 8 resets the current step number iterator for each epoch. The next step calculates the
neural network output, while the formula in line 10 defines the sum of squares error for the
whole network. The next line involves calculating the Jacobian matrix J, used in the weight
and threshold update function (line 12). Line 13 calculates the neural network output
using the updated weights and thresholds. The next step calculates the updated sum of
squares error for the whole network, used as a stopping criterion for the algorithm. If the
error is larger than the previous error, the LM method checks if m < 1,4y (lines 15, 16). If
the latter condition is satisfied, then m is increased by one, and the learning coefficient is
multiplied by a factor of 10 (lines 17, 18). Then, the previous weight and threshold updates
are retracted, and a new update is calculated considering the new learning coefficient
(line 19). On the other hand, if the maximum allowed number of steps has been exceeded
(m > my,y) the weight and threshold update procedure is accepted, and a new training
epoch begins (line 21). If the error is smaller than the previous error, y is reduced by a
factor of 10, the weight and threshold update procedure is accepted, and a new training
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epoch begins (lines 24, 25). Finally, the training epochs continue until the stopping criterion
is satisfied (line 27) and the neural network output (y) is returned (line 28).

Algorithm 1: The Levenberg-Marquardt Algorithm

lwy...wy € R, N e N*

2:by...by € R, N € N*

3: Mgy € N*

4y e R*

5: Epax € R*
X11 o Xp

6:x = eR, ne N NeN*
XN1 0 XNn dnxp

7: do

8&m=1

9: y = net(wby, x)
10: By = Tfy (4 — i)

Bem 381'1 . 361,1 861'1 q
ow ow Jw ab,
861,12 38132 . 321{\2] aL’]I,\g
owq Jw; Jwy dbn
dem  dem . depm  deym
ow, dw; Jwy dbn
11: | = PeN* MecN*

a€p,1 a€p,1 . anJ aep,l
ow ow, ow ob
owq dw; Jwn dbny
depm  depm . depm  9depm

L BZIJ1 awz BwN abN J

12: whyeyq = why — (J{ Ji + i) e
13: y = net(wbhy, 1, x)

14: By = X0y (t— ;)

15: if Ek+l > Ek

16: if m < mygy

172m=m+1

18: p = 10u

19: whyyq = why — (JF Ji + uI) ™ Jxex
20: else

21: wbk = wka

22: end if

23: else

24:p =45

25: why = wbyyq

26: end if

27: while Ei 1 > Epax

28: return y

4. System Architecture

The architectural structure of the system utilizes the RehaGait mobile gait analysis sys-
tem [3,4], containing seven sensors that can be placed at various patient body parts. Every
sensor contains an accelerometer, a magnetometer, and a gyroscope. The proposed system
utilizes the accelerometer signals, which are windowed into 2-s windows and undergo a
pre-processing and feature extraction stage. The signals are transmitted wirelessly from the
RehaGait mobile gait analysis system to a laptop, responsible for the pre-processing, feature
extraction, and classification tasks. The pre-processing stage involves using a low-pass
filter to smooth the signal.
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The feature extraction stage involves using four time-domain features and two frequency-
domain features. The first from the time-domain features is the mean () seen below where
N denotes the number of scalar observations and A is a random variable vector.

Ly
=) A )
N=

The second feature was the standard deviation shown in Formula (3), where N is the
number of scalar observations, A is a random variable vector, and y is the mean of A.

S= |y @)
T\ N—aEETH

1

The third feature is the kurtosis of a distribution depicted in Equation (4) where E(t)
denotes the expected value of quantity ¢, u is the mean of x and ¢ is the standard deviation
of x.

E(x—p)*
k = 4
7 )
The fourth feature is the peak-magnitude-to-RMS ratio depicted in Equation (5).

|A]l
2
v u Zi A

Regarding the frequency-domain features, the acceleration energy and the acceleration
signal energy are selected. The first one is described in Equation (6) with A; defining the i*"
spectral line of the acceleration signal and N the total lines.

RMS = (5)

Ll A7

Eng = N

(6)
The last feature is the acceleration signal entropy seen below with p; defining the
probability of the A; value occurring in the amplitude spectrum.

N
Ent = — Z pilog, p; 7)
i=1

1

The above six features formed the feature vector sent as input to a neural network
trained with the LM-BP algorithm. The motivation behind selecting those features was the
reduction of the initial large dataset to a smaller dataset that can be easily transferred and
processed with a low-cost credit card type computer like Raspberry Pi Zero W. Moreover,
the above feature combination achieved the highest classification accuracy over alternative
ones containing different feature sets. The neural network classified the input data into
three classes (healthy, left, or right hemiplegia). The data were taken from a custom-created
dataset divided into training, validation, and a separate test set. The k-fold cross-validation
method was utilized in the training and validation sets. A visualization of the proposed
system can be seen in Figure 2.



Information 2022, 13, 101

8 of 16

User/Patient

£ ter . Feature
\CCB_I Lo L —— Pre-Processing :
Signal 5 Extraction

Classification

Left Right
Hemiplegia Hemiplegia

Figure 2. The system architecture. The system receives the accelerometer signals from seven sensors

placed in various body parts, which undergo a pre-processing and feature extraction procedure.
Then, the extracted features are sent as input to a neural network trained with the LM-BP algorithm
responsible for their classification into three classes (healthy, left, or right hemiplegia).

5. Experimental Results

The proposed LM-BP-based system was tested using data from ten healthy, eight
non-healthy subjects having left hemiplegia and twelve non-healthy subjects having right
hemiplegia. The study was conducted according to the guidelines of the Declaration of
Helsinki and approved by the Ethics Committee of the University of Ioannina. Informed
consent was obtained from all subjects involved in the study, and written informed con-
sent was obtained from the patients to publish this paper. The signals from the seven
accelerometers were sent wirelessly to a laptop and were divided into 2-s windows. The
windowed signals underwent a pre-processing phase using a low pass filter and a feature
extraction process according to the procedure described in the previous section. These
features were sent to a neural network trained with the LM-BP algorithm. The architecture

of the neural network involved the creation of one hidden layer with 30 neurons having the

_1
I4e*

(y = x) transfer function with each input vector containing 126 values (6 features x 7
accelerometers x 3 dimensions).
The proposed system was tested with the following fourteen machine learning approaches:

SCG-BP
FPCG-BP
BFGS-BP
OSS-BP
GD-BP
RPROP
BR-BP
RMSProp
Adam
AdaMax
AMSGrad
ELM
OP-ELM
SVM

The motivation behind comparing the LM-BP algorithm with other BP variants was to
evaluate its accuracy compared to other alternative BP-based solutions. The accuracy level
achieved by LM-BP was also higher compared to other non-BP-based solutions like SVM,

sigmoid (y = ) transfer function and three output layer neurons with the identity
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ELM, and OP-ELM. ELM and OP-ELM are relatively new SLNN training methods that can
train SLNNSs faster than other iterative-based methods.

The experiments were run ten times for all neural network-based approaches to avoid
any bias due to the random initialization of the hidden weights and thresholds. In the
RMSProp, Adam, AdaMax, AMSGrad, ELM-based, and SVM methods, 20% of the dataset
was kept as a test set, and the rest was used as a training set. In the other approaches,
20% of the dataset was kept as a test set, and the rest was further divided into training
and validation sets using 10-fold cross-validation. The RMSProp, Adam, AdaMax, and
AMSGrad approaches were run for 500 epochs. The dataset contained 2036 entries, with
1630 rows forming the training/validation sets and 406 entries the test set. All neural
networks had one hidden layer with thirty nodes. The parameters for all the experiments
are summarized below. The heterogenous OP-ELM algorithm was used with three different
types of kernels (linear, Gaussian, and sigmoid). The parameters for the execution of the
experiments can be seen in Table 1.

Table 1. Parameter Values.

Parameter Name Value

Experiment Repeats 10
Hidden Layer Nodes No 30
Output Layer Nodes No 3

Input Vector Size 126

Test Set Size 20%

RMSProp, Adam, AdaMax and AMSGrad Epochs No 500

Heterogenous OP-ELM Kernel Types Linear, Gaussian, Sigmoid

The proposed LM-BP-based method achieved the highest average accuracy over all
experiment runs compared to the other fourteen machine learning methods. The results
are visualized in Figure 3 and summarized in Table 2.

100% —

90% [~

80% —

T0% —

60% [~

50% —

Accuracy

40% —

30% [~

20% [~

10% —

0%
G G S ] 0 © & 2 «
O O Lc) oo <) ) ® P o
) @ of q?q‘ QL\!‘% o

I RNC

P‘éa P‘\h =

O?
Neural Network Training Algorithms

Figure 3. Experimental results plot. The proposed LM-BP-based system achieved the highest accuracy
compared to fourteen existing machine learning algorithms.
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Table 2. Comparison Results.

Parameter Name Value
SCG-BP 86.21
FPCG-BP 88.55
BFGS-BP 89.61
OSS-BP 90.10
GD-BP 69.85
RPROP 93.28
RMSProp 90.59
Adam 90.54
AdaMax 78.47
AMSGrad 91.01
BR-BP 89.09
ELM 77.12
OP-ELM 78.74
SVM 92.36
LM-BP 95.12

Two statistical tests were conducted to investigate the proposed method’s significance
compared to the other fourteen methods. The first test involved creating an 80% confidence
interval (CI) in each approach presented in Table 2, while the second test involved the
creation of a 95% ClI for each method. Then, the confidence intervals of the compared
approaches were checked for overlaps with the CI from the LP-BP algorithm. If they
do not overlap, it is a strong indication that the results from the LM-BP are statistically
significant. The creation of the CI followed formula (8) where X is the samples average, Z
is the standardized score (Z = 1.282 for an 80% CI while Z = 1.96 for a 95% CI), s is the
sample’s standard deviation and smp is the sample size.

Cl=%+Z— (8)
smp

The results from the first statistical test can be seen in Figure 4, where it is shown that
there is no overlap between the CI from the LM-BP algorithm and the other compared meth-
ods, which is interpreted as a strong indication that the results are statistically significant.

—— Standard Error Spread
—e— Accuracy

o0
(]
T

Accuracy
oo
=
L

’ .
75 F
70- L L 1 1 + 1 1 1 1 1 1 1 L 1 ]
> O P R0 R RS F DD DA
S F Ty e
R Yoy %
OQ

Network Comparison

Figure 4. Statistical analysis of the results using an 80% CI. It can be seen from this figure that there is
no overlap between the LM-BP algorithm and the other approaches, which is a strong indication that
the results from the proposed method are statistically significant.
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The results from the second statistical test can be seen in Figure 5. It is shown that there
is no overlap between the Cls from the LM-BP algorithm and the other compared methods,
which is interpreted as a strong indication that the results are statistically significant. One
exception is the RPROP method which contains an overlap with the LM-BP algorithm. This
overlap doesn’t allow any conclusion on whether the results between these methods are
statistically significant or not.
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Figure 5. Statistical analysis of the results using a 95% CI. It can be seen from this figure that there
is no overlap between the LM-BP algorithm and the other approaches, which is a strong indication
that the results from the proposed method are statistically significant. One exception is the RPROP
method, which overlaps with the LM-BP algorithm, which doesn’t allow any conclusion regarding
the statistical significance between the two methods.

6. Discussion

This article presents a system for automatically classifying the hemiplegia type be-
tween patients and healthy individuals. The system receives data from RehaGait’s mobile
gait analysis system accelerometer, which underwent a pre-processing and feature extrac-
tion procedure. Then, the extracted features create the input vector to an LM-BP-based
classification algorithm, classifying them into three classes (healthy, left, or right hemiple-
gia). The experimental results from comparing the LM-BP-based method with fourteen
different machine learning methods experimentally verified the proposed method’s advan-
tage over existing ones in terms of classification accuracy.

The proposed method was run one additional time. The results from this run were
used to create the confusion matrix shown in Figure 6.

The LM-BP algorithm achieved a very high accuracy (95.8%). The number of test
samples introduced to the network was 406 (132 for left hemiplegia, 219 for right hemiple-
gia, and 55 for non-patients). Each row defined the classification output of the network
where the green boxes corresponded to correctly classified samples while the red boxes
corresponded to incorrectly classified ones. The white box at the end of each row defined
the percentage of all the samples predicted to belong to each class that was correctly (green
color) and incorrectly (red color) classified. Each column defined the target class where the
green boxes corresponded to correctly classified samples while the red boxes corresponded
to incorrectly classified ones. At the end of each column, the white box defined the per-
centage of all the samples that belonged to each class and was correctly (green color) or
incorrectly (red color) classified.

The true positive (TP), true negative (TN), false positive (FP), and false negative (FN)
metrics can be calculated using the data from the confusion matrix. TP is the number
of correctly classified positive class samples as positive. TN is the number of correctly
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classified negative class samples as negative. FP is the number of incorrectly classified
negative class samples as positive and FN is the number of incorrectly classified positive
class samples.as negative. The TP, TN, FP, and FN are calculated for each class in a multi-
class classification problem.

K
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Target Class

Figure 6. The confusion matrix. The green boxes show the correctly classified samples in this figure,
while the red boxes show the misclassified ones. The vertical white boxes depict the percentages of
all the samples predicted to belong to each class that is correctly (green color) and incorrectly (red
color) classified. The horizontal white boxes depict the percentages of all the examples belonging to
each class correctly (green color) and incorrectly (red color) classified. Finally, the grey box depicts
the overall accuracy.

The above metrics were used to calculate the precision, recall, specificity, and F-
score performance metrics. Precision shows what fraction of predictions as a positive
class were actually positive and is calculated using the formula % Recall shows what
fraction of all positive samples were correctly predicted as positive by the classifier and is
defined using the equation TP&% Specificity shows what fraction of all negative samples
are correctly predicted as negative by the classifier and is calculated using the formula
#ﬁm. Finally, F-score is a measure of a test’s accuracy and combines the precision and

—9 precision x recall
" “precision-recall

performance metrics are summarized in Table 3. They show that the proposed method
managed to get high scores in each class for all metrics.

recall metrics (Fscore ) The precision, recall, specificity, and F-score

Table 3. Performance Metrics.

Precision Recall Specificity F-Score

Left Hemiplegia 0.9771 0.9697 0.9891 0.9734
Right Hemiplegia 0.972 0.9498 0.9679 0.9607
Normal 0.8689 0.9636 0.9772 0.9138

The next figure depicts each class’s receiver operating characteristic (ROC) curve. A
ROC curve is a graphical plot describing the trade-off between true positive rate (sensitivity)
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and false positive rate (1-specificity). If the curve is very close to the top left corner, it is an
indication that the classifier has very good performance. On the other hand, if the curve
is very close to the 45-degree diagonal of the ROC space, it indicates poor classification
performance. All the curves in Figure 7 are very close to the upper left corner, and they have
the area under the curve (AUC) values 0.9851 (left hemiplegia), 0.9772 (right hemiplegia),
and 0.9919 (normal). Both observations show that the classifier has excellent classification
performance (AUC values between 0.9 and 1 indicate an excellent performing classifier).

1—f_=.
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0.5

04

True Positive Rate

0.3

0.2

Left Hemiplegia
01 Right Hemiplegia
Normal

O 1 Il
0 0.2 0.4 0.6 0.8 1
False Positive Rate

Figure 7. The ROC curves for each class. This figure depicts the ROC curves for left hemiplegic (blue
color), right hemiplegic (green color), and normal subjects. All three curves are near the top left
corner of the plot, which indicates a good-performing classifier.

The proposed system’s main characteristic is its ability to distinguish between the
two hemiplegic types (left or right) and achieve a high classification accuracy (95.12%).
It utilizes the gait data from only ten healthy and twenty hemiplegic individuals. One
limitation of the proposed method is the small number of participants, resulting in small
dataset size. Another restriction of the proposed system is the limitation in one type of
motor disability.

7. Conclusions

This study proposed an automated tool for classifying hemiplegic from non-hemiplegic
patients and can also diagnose the hemiplegia type (right or left). The proposed automatic
classification method achieved a high accuracy classification rate using the LM-BP algo-
rithm. The obtained accuracy results were tested for their significance using 80% and 95%
CIs. In the first test, they were found statistically significant compared to fourteen other
popular machine learning methods. At the same time, it was statistically significant in
thirteen out of fourteen cases in the second test. The CI of the LM-BP algorithm had an
overlap with the CI of the RPROP algorithm, which didn’t allow any conclusion on whether
the results between these two algorithms are statistically significant.

Further plans for this project involve using a larger dataset containing more data
from healthy and hemiplegic individuals. Including additional data would make the
LM-BP classification algorithm more accurate and achieve an even higher classification
accuracy. Future work involves expanding the dataset with more motor disability diseases
like diplegia and Parkinson’s disease. The addition of more diseases will allow the system
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to recognize more motor disabilities, resulting in a complete system. This system can be
used as a supplementary diagnostic tool by physiotherapists, allowing them to adapt their
patient treatments automatically.
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