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Abstract: Intelligent video surveillance (IVS) technology is widely used in various security systems.
However, quality degradation in surveillance images (SIs) may affect its performance on vision-based
tasks, leading to the difficulties in the IVS system extracting valid information from SIs. In this paper,
we propose a hybrid no-reference image quality assessment (NR IQA) model for SIs that can help
to identify undesired distortions and provide useful guidelines for IVS technology. Specifically, we
first extract two main types of quality-aware features: the low-level visual features related to various
distortions, and the high-level semantic information, which is extracted by a state-of-the-art (SOTA)
vision transformer backbone. Then, we fuse these two kinds of features into the final quality-aware
feature vector, which is mapped into the quality index through the feature regression module. Our
experimental results on two surveillance content quality databases demonstrate that the proposed
model achieves the best performance compared to the SOTA on NR IQA metrics.

Keywords: surveillance image (SI); no-reference image quality assessment (NR IQA); quality-aware
features

1. Introduction

With the increasing demand for public security and the rapid development of com-
puter vision technologies and digital products, intelligent video surveillance (IVS) tech-
nology has become a hot topic [1]. IVS technology mainly adopts algorithms related to
computer vision tasks such as recognition, detection, and tracking in order to understand
the content of surveillance videos and automatically perform the task of monitoring or
control, which can greatly reduce the burden of human attention [2–5]. Hence, IVS tech-
nology has been widely applied in security systems and distributed in various scenarios.
However, surveillance images (SIs) usually suffer from different types and degrees of qual-
ity degradation in the SI acquisition and transmission process. Specifically, poor physical
conditions (smoke, fog, insufficient illumination, etc.), in-capture distortions (noise, blur,
etc.), and compression distortions are the main reasons for quality degradations of SIs [6–9].
Distortions in SIs may affect the performance of subsequent high-level tasks, making it
difficult for IVS technology to extract valid information from the SIs. As shown in Figure 1,
SIs may suffer from uneven illumination or motion blur distortion, leading to difficulties in
recognizing objects for both observers and computers. Therefore, it is necessary to consider
SI quality assessment (SIQA) in the design of IVS technology. On the one hand, IVS systems
can adopt the SIQA method to predict the quality level of the SIs and filter low-quality
SIs. On the other hand, IVS systems can employ the SIQA method to detect and identify
different types of degradation and apply appropriate quality enhancement processing to
improve the quality of the SIs [10]. Both of the two strategies mentioned above can help to
improve the performance of IVS systems on vision-based tasks.
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(a) Uneven illumination (b) Motion blur

Figure 1. Examples of quality degradations in SIs: (a) the SI suffers from uneven illumination
distortion; (b) the SI suffers from motion blur distortion.

In the past two decades, IQA has gained popularity in the field of image processing [11].
Depending on whether a human is involved or not, IQA can be divided into subjective
IQA and objective IQA [12–14]. Because human eyes are generally the final receiver of the
images, subjective IQA is the most reliable way to assess the quality of images. In recent
years, many popular IQA databases have been proposed, such as LIVE [15], TID2008 [16],
TID2013 [17], CSIQ [18], etc., which are used to train and validate objective IQA methods.
Despite having high reliability, subjective IQA methods require lots of time and labour,
and as a result are not suitable for real applications. Therefore, objective IQA methods
which can automatically predict the quality of images have attracted much attention from
researchers and been widely used in various real-world applications [19]. According to the
available the reference information, objective IQA can be divided into full-reference IQA
(FR IQA), reduced-reference IQA (RR IQA), and no-reference IQA (NR IQA) [20]. FR IQA
utilizes whole reference information, while RR IQA adopts partial reference information.
The reference signal is not used in NR IQA metrics. In reality, reference images are not
available to an IVS systems. Therefore, in this paper we mainly discuss NR IQA methods,
as these are more suitable for real applications; however, the absence of a reference image
makes them more challenging.

1.1. Related Work
1.1.1. IQA Databases

IQA databases are divided into traditional and emerging databases based on the image
content type and underlying application [11]. Traditional databases are generally composed
of a few high-quality pristine images and many distorted images, which are corrupted by
such typical distortion types as JPEG and JPEG 2000 compression, white noise, blur, etc.
LIVE [15] contains 29 reference images and 779 distorted images generated by five common
types of distortion. TID2013 [17] consists of 25 pristine images and 3000 distorted images
corrupted by 24 distortion types and five distortion levels. CSIQ [18] includes 30 refer-
ence images and 866 distorted images generated by six distortion types. These traditional
databases sometimes cannot cover the content types and distortion types of certain specific
IQA problems. Hence, emerging databases [21–23] have been proposed for specific IQA
applications such as 3D images, screen content image, and virtual reality image databases.
Because SIs have more complicated content and distortion compared to traditional im-
ages, Zhu et al. [7] constructed a surveillance image quality database (SIQD) including
500 in-the-wild SIs with various scenarios, resolutions, and illumination conditions, then
performed a study on the subjective quality assessment of these SIs with different degrees
of quality. For the surveillance video quality assessment, Beghdadi et al. [8] established the
Video Surveillance Quality Assessment Dataset (VSQuAD), which includes 36 reference
surveillance videos and 1576 distorted videos generated by nine distortion types.
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1.1.2. NR IQA Metrics

Based on the goal of predicting the perception of human vision without any infor-
mation from the original reference image, many NR IQA metrics have been proposed
in recent years [24]. According to distortion type, NR IQA metrics can be divided into
general-purpose algorithms and distortion-specific algorithms [11]. General-purpose met-
rics usually have general quality features designed to describe all types of distortions,
while distortion-specific metrics use relevant features designed for a specific IQA problem.
General-purpose NR IQA methods can be categorized into three types, namely, natural
scene statistics (NSS)-based metrics, learning-based metrics, and human visual system
(HVS)-based metrics [25].

The motivation behind NSS-based methods is that high-quality natural scene pictures
tend to follow certain statistical properties, and quality degradation can be identified where
there is a departure from these statistics. NSS-based methods usually contain three common
stages, namely, feature extraction, NSS modeling, and feature regression. Saad et al. [26]
designed the BLIINDS (blind image integrity notator using DCT statistics) index based on
the NSS of the discrete cosine transformation (DCT) domain. BLIINDS-II [27] adopts the
generalized Gaussian distribution (GGD) to model the NSS of the DCT coefficients and
then obtains the quality-aware features through the GGD model parameters. BRISQUE [28]
(blind image spatial quality evaluator) and DIIVINE [29] apply NSS in the spatial domain
to develop their algorithms. GMLF [30] was developed based on the joint statistics of the
gradient magnitude (GM) map and the Laplacian of Gaussian (LOG) response.

With the rapid development of machine learning techniques, a large number of
learning-based NR IQA metrics have been developed in the last few years [31–33]. COR-
NIA [34] is based on an unsupervised feature learning framework that uses raw image
patches as local descriptors and uses soft-assignment for encoding. Xu et al. [35] developed
a NR IQA method based on high-order statistics aggregation (HOSA). Zhang et al. [36]
designed a deep bilinear convolutional neural network (CNN)-based NR IQA model for
both synthetic and authentic distortions by conceptually modeling them as two-factor varia-
tions followed by bilinear pooling. HyperIQA [37] was developed based on a self-adaptive
hypernetwork architecture, and introduces a multi-scale local distortion-aware module to
capture complex distortions.

The working mechanism of HVS is a high degree of prior knowledge in the design of
quality-aware features [38–40]. Zhai et al. [41] developed a psychovisual quality measure
based on the free energy principle. Gu et al. [42] designed an NR free energy-based robust
metric (NFERM) combining spatial NSS features, free energy-based features, and HVS-
inspired features such as structural information and gradient magnitude. Gu et al. [35]
proposed a six-step blind metric (SISBLIM) for quality assessment of both singly and
multiply distorted images by systematically incorporating the single quality prediction of
each emerging distortion type and joint effects of different distortion sources.

If the distortion process is known in advance, distortion-specific NR IQA methods
are preferred due to their higher robustness and accuracy [43–45]. JPEG compression,
JPEG2000 compression, and blur/noise are the most widely studied distortion types. Based
on the observation that pixel values change abruptly across the boundary while remaining
unchanged along the whole boundary, Lee et al. [46] designed an NR IQA metric for JPEG
images by measuring the strength of blocking artifacts. Sheikh et al. [47] developed an NSS-
based metric for JPEG 2000 compression based on the assumption that the compression
process can disturb nonlinear dependencies in the natural scenes. Narvekar and Karam [48]
adopted a probabilistic model to predict the probability of detecting blur at the image edges,
then obtained the blur estimation by pooling the cumulative probability of blur detection
(CPBD). To the best of our knowledge, there are few studies on the quality assessment of SIs,
and existing general-purpose metrics encounter difficulty when handling the complicated
content and distortion types present in SIs. Therefore, there is an urgent need to design an
effective NR IQA metric for SIs.
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1.2. Contributions

In order to address the SIQA problem, we propose a novel NR IQA model for SIs
which is able to predict the quality level or distortion type and level of SIs, helping to
improve performance of IVS systems on high-level tasks. The proposed model is composed
of three modules, namely, a feature extraction module, feature fusion module, and feature
regression module. First, based on the assumption that the human perception of SIs is
influenced by both the low-level visual properties and the high-level semantic information,
we mainly extract the following two types of quality-aware features: low-level visual
features related to various distortion types (noise, blur, and structure damage), and high-
level semantic features extracted by the transformer backbone. Second, the feature fusion
module concatenates the distortion features and semantic features into a final quality-
aware feature representation. Finally, the quality-aware feature representation is mapped
into a final quality score or distortion type and level assessment in the feature regression
module. Our experimental results show that the proposed NR IQA model outperforms the
compared state-of-the-art NR IQA metrics on two surveillance content quality databases.

1.3. Structure

The rest of this study is organized as follows. Section 2 introduces the proposed
NR IQA model for SIs in detail. Section 3 mainly presents the experimental results and
discussion, including the benchmark databases, experimental setup, IQA competitors,
evaluation criteria, performance discussion, statistical tests, and ablation study. Finally, our
conclusions are presented in Section 4.

2. Proposed Method

The framework of the proposed method is clearly shown in Figure 2, which includes
the feature extraction module, the feature fusion module, and the feature regression module.

Semantic Features

Distortion Features

Blur

Noise

Structure Damage

Feature Regression

CA &
Swin-T tiny
Stage 0,1,2,3

𝐷𝐷𝐹𝐹

𝑆𝑆𝐹𝐹

C

Feature Fusion

SIs

Average PoolingA

ConcatenationC

𝑄𝑄Quality Value

Feature 
Extraction

Figure 2. The framework of the proposed method.

2.1. Feature Extraction

SIs can contain various types of distortion, such as noise, blur, structure damage, etc.,
which inevitably harm the perceived quality. Moreover, the semantic information can
influence on human judgment as well [49]. Therefore, in order to fully investigate the
information that affects human perception of SIs, we propose to extract features from both
the distortion and semantic elements. The distortion features are extracted using the classic
image quality descriptors, while the semantic information is collected with the assistance
of the high-performance backbone Swin Transformer (ST) [50].
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2.1.1. Preliminaries

To better analyze the distortions of SIs, we conduct the local normalization process in
advance, which is a common practice in IQA research. Given an SI I, the illumination map
can be computed using the maximum of RGB channels

L(i, j) = max
c∈{r,g,b}

I(i, j), (1)

where L denotes the illumination map and i and j represent the pixel indexes of SI. Then,
the local mean and variance maps can be derived as follows:

µL(i, j) = ∑
k,l

wk,l L(i + k, j + l),

σL(i, j) =
√

∑
k,l

wk,l [L(i + k, j + l)− µ(i, j)]2,
(2)

where w is a local Gaussian weighting window, µL represents the local mean map, and σL
represents the local variance map.

2.1.2. Distortion Feature

Noise Estimation: Due to the limitations of camera devices and the insufficient
amount of light in dark environments, SIs can be severely degraded by noise distortions.
Thus, estimating the level of noise is significant for predicting the quality levels of SIs.
Inspired by the task of assessing quality in low-light conditions, we propose using the
noise descriptors in [51] to evaluate the level of noise in SIs. Specifically, the noise level is
measured in this way by calculating two traditional noise estimation maps through the
Gaussian filter and the median filter in order to eliminate the Gaussian noise [52] and
salt-and-pepper noise [53], respectively. Then, the noise level can be described by the
difference in the images before and after denoising. An example is exhibited in Figure 3.
Given a single SI illumination map L, the denoised maps can be derived as follows:

Mn = Fn(L)− L, (3)

where Mn indicates the noise difference maps, n ∈ {gaussian, median}, and Fn represents
the denoising function for Gaussian filters (with kernel size 7 × 7) and median filters (with
kernel size 3 × 3). In common situations, the low-light and flat regions are more easily
affected by noise; thus, we compute the final noise level by pooling the noise difference
maps in the low-light and flat regions:

Dn =
1

TR
∑

(i,j)∈R
Mn(i, j),

R = {(i, j) | µL(i, j) < E(µL), σL < E(σL)},
(4)

where Dn indicates the estimated noise levels for Gaussian noise and salt-and-pepper
noise, E(·) indicates the average operation, TR denotes the number of pixels in the flat and
low-light regions set R, and set R contains all pixels of SIs witgh local mean and variance
values smaller than the average local mean and variance.

Blur Description: Blur is a significant factor in the quality assessment of SIs. Limited
by the resolution of camera devices and influenced by the compression of the transmission
systems, the texture and details in the SIs may be lost. However, the texture and details are
usually vital for identifying the objects and understanding the content of the SIs. Therefore,
we propose including the blur features as distortion features. As shown in Figure 4,
the gradient features are employed, as they are highly correlated with high-frequency
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information and have previously been used to describe sharpness [54,55]. Given a single SI
illumination map L, we use the Sobel gradient operator to obtain the gradient maps:

GL =
√
(L⊗ Sx)

2 +
(

L⊗ Sy
)2, (5)

where GL indicates the gradient magnitude map of the SI illumination map, the operator ⊗
represents the convolution operation, and and Sx and Sy are the horizontal and vertical
Sobel operators, respectively, which can be described as follows:

Sx =

 − 1
4 0 − 1

4
− 1

2 0 − 1
2

− 1
4 0 − 1

4

, Sy =

 − 1
4 − 1

2 − 1
4

0 0 0
− 1

4 − 1
2 − 1

4

. (6)

With the computed gradient magnitude maps, the blur measurement can be obtained
via average pooling:

Db = E(GL), (7)

where Db is the blur measurement level.

(a) Noisy SI. (b) After Gaussian filtering. (c) After median filtering.

Figure 3. Examples of noisy images and denoised gray images. The noise in the low-light and flat
regions is reduced after Gaussian and median filtering.

(a) Original SI. (b) After Sobel operation.

Figure 4. Illustration of an example of original SI and Sobel-operated SI.

Structure Damage: The structure is the outline of the main object in an SI. In this sense,
structure damage is caused by low visibility of the major content objects [56]. To quantify
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the extent of structure damage, we utilize the piecewise smooth image approximation
(PSIA) proposed in [57] to generate structure maps:

Minimize τ (8)

τ=
1
2

∫
Ω
(I − SM)2dP+β

∫
Ω\K
|∇SM|2dP+α

∫
K

dσ (9)

where SM represents the structure map, Ω is the image domain, K denotes the edge set,∫
K dσ represents the total edge length, P indicates the pixel, and the coefficients α and β

are positive regularization constants. Figure 5 presents an example of the PSIA results.
Similarly, with the computed structure map we can obtain the structure damage descriptor
using average pooling:

Ds = E(SM), (10)

where Ds is the structure damage descriptor.
Summing Up: The process described above results in two noise features

Dn (n ∈ {gaussian, median}), one blur description feature Db, and one structure dam-
age feature Ds, which are obtained as the distortion feature vector DF ∈ R1×4.

(a) Original SI. (b) Edge map. (c) Structure Map.

Figure 5. Exhibition of piecewise smooth image approximation.

2.1.3. Semantic Feature Extraction

In previous works, it has been proven that the semantic features are highly correlated
with quality assessment. Different semantic contents have diverse impacts on human
tolerance for different types of distortion [58,59]. For example, humans find blur distortions
on flat and texture-free targets such as plain ocean and smooth walls more acceptable. How-
ever, blur distortions on objects that are rich in texture, such as rough rocks and complex
plants, can be hard to endure. Considering the huge success of the Swin Transformer [50],
we use the Swin Transformer-tiny (ST-t) here as the semantic feature extraction backbone.
In addition, as visual information is normally perceived hierarchically from low-level to
high-level [55], we employ the hierarchical ST-t for feature extraction:

SF(x) = γ0(x)⊕ γ1(x)⊕ γ2(x)⊕ γ3(x),

γj(x) = AP(Fj(x)), j ∈ {0, 1, 2, 3},
(11)

where Fj(x) denotes the features from the k-th stage, AP(·) stands for the average pooling
operation, γk(x) denotes the pooled results from the k-th stage, and⊕ indicates the concate-
nation operation. Then, we can obtain the semantic features SF ∈ R1×NST−t , where NST−t
represents the number of output channels of the hierarchical ST-t backbone. Specifically,
the dimensions for the feature maps of ST-t’s four stages are 784 × 192, 196 × 384, 49 × 768,
49 × 768. After average pooling, the dimensions turn into 784 × 1, 196 × 1, 49 × 1, and
49 × 1. After concatenation, the number of the output channels NST−t of the hierarchical
ST-t is 784 + 196 + 49 + 49 = 1078.
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2.2. Feature Fusion

In order to actively relate the quality-aware information between the distortion features
and semantic features, we first concatenate the features to form one feature vector:

F̃ = DF⊕ SF, (12)

where F̃ represents the final quality-aware feature vector and ⊕ indicates the concatena-
tion operation.

2.3. Feature Regression

There are several tasks in the quality assessment of SIs, including detection of distor-
tion types, identification of the severity level of each detected distortion, and prediction
of the overall quality score. In this paper, we design a corresponding feature regression
module for each task.

2.3.1. Classification of Distortion Types and Levels

Supposing that the number of distortion types is Dtype and the number of levels
(including the distortion-free level) of each distortion type is Dlevel , we can adopt Dtype
detection branches (DBs) to detect one specific distortion type and estimate the severity
level of the corresponding distortion type. Specifically, each DB consists of fully-connected
layers containing 128 and Dlevel neurons, respectively. Then, the final quality-aware feature
vector F̃ is run through different DBs to obtain the severity level of each distortion type,
as follows:

Pi = DBi(F̃), i ∈ {1, 2, ..., Dtype}, (13)

where the dimension of the predicted vector Pi is Dlevel , which corresponds to the probabil-
ity of each severity level for the i-th distortion type. We employ the Cross-Entropy Loss as
the loss function for the identification task of each distortion type:

Li = CE(Gi, Pi), (14)

where CE(·) refers to the Cross Entropy Loss function and Gi is the ground-truth label of
the severity level for the i-th distortion type. Then, we sum the loss functions of all the
distortion types to obtain the final loss function:

Loss =
Dtype

∑
i=1

Li (15)

2.3.2. Regression of the Quality Score

With the obtained final quality-aware feature vector F̃, a two-stage fully-connected
layer is applied to regress the features into quality scores:

Q = FC(F̃), (16)

where FC(·) stands for the fully connected layers and Q represents the regressed quality
scores. For the quality assessment tasks, it is necessary to pay attention to the accuracy of
the predicted quality levels. Furthermore, the focus should be on the correctness of the
quality rankings [49]. Therefore, the loss function employed in this paper includes two
parts: the Mean Squared Error (MSE) and the rank error. The MSE loss is employed in order
to force the predicted quality values to be close to the quality labels, and can be computed
as follows:

LMSE =
1
n

n

∑
i=1

(Qi −Q′i), (17)
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where Qi represents the predicted quality values, Q′i is the quality label of the SI, and n is
the size of the mini-batch. The rank loss has better ability to help the model distinguish the
tiny quality difference when the SIs have quite similar quality labels. For this purpose, we
employ the differentiable rank function described in [60] to approximate the rank loss:

Lij
rank =max

(
0,
∣∣Qi −Qj

∣∣−e
(
Qi, Qj

)
·
(

Q′i −Q′j
))

,

e
(
Qi, Qj

)
=

{
1, Qi ≥ Qj,
−1, Qi < Qj,

(18)

where i and j are the corresponding indexes for two SIs in a mini-batch. The rank loss can
be derived as follows:

Lrank =
1
n2

n

∑
i=1

n

∑
j=1

Lij
rank, (19)

Then the loss function can be calculated as the weighted sum of MSE loss and rank loss:

Loss = λ1LMSE + λ2Lrank (20)

where λ1 and λ2 are used to define the weight of the MSE loss and the rank loss, respectively.

3. Experiment
3.1. Benchmark Databases

We mainly validated our methods on the SI Quality Database (SIQD) [7] and Video
Surveillance Quality Assessment Database (VSQuAD) [8]. The SIQD database contains
500 in-the-wild SIs that are diverse in termss of both content and distortions. The main
objects in the SIs in the SIQD database include humans and vehicles, and the database
covers a wide resolution range, from 352 × 288 to 1920 × 1080. The VSQuAD database
contains 964 single-distortion-affected and 612 multiple-distortion-affected surveillance
videos (SVs) generated from 36 reference SVs. The distortions include defocus blur, haze,
low-light conditions, motion blur, rain, smoke, uneven illumination, and compression
artifacts. Each SV lasts for 10 s. Because we propose an IQA method for SIs, we extract ten
frames of each SV (one frame for each second) as the representative SIs for each SV. Thus,
the extracted SIs have the same distortion types and levels labels as the source SV.

Additionally, we conducted a subjective experiment to gather the quality labels using
the SIQD database. Several human participants were invited to judge the quality of the
SIs in a well-controlled environment, and their mean opinion scores were recorded as the
ground truth for the SIs. For the VSQuAD database, distortions were manually introduced
to the surveillance videos, and the type and strength levels of the added distortions were
recorded for use as the ground truth.

3.2. Experimental Setup

The employed hierarchical ST-t [50] backbone was initialized with the weights pre-
trained on the ImageNet database [61] for semantic feature extraction. The SIs were first
resized to the resolution of 256 × 256 and then randomly cropped into patches with the
resolution of 224 × 224 as the inputs. The Adam optimizer [62] was utilized, with the
initial learning rate set as 1 × 10−4 . The learning rate decays with a ratio of 0.95 every five
epochs. The default number of the training epochs was set as 50. If the training loss did
not decrease for ten epochs, the training process was ended. Furthermore, we employed
the five-fold cross validation strategy. We split the SIQD database into five groups, with
each group containing 100 SIs. For each unique group, we trained the model on the left
four groups and used the unique group as testing sets. This process was repeated five
times to ensure that each group was taken as the testing set only once. Then, the average
performance was recorded as the final performance for the model. A similar five-fold cross
validation strategy was conducted on the VSQuAD database.
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IQA Competitors

To fully validate the effectiveness of the proposed method, several mainstream IQA
methods are selected for comparison, be categorized into two types:

• Hand-crafted methods: BLIINDS-II [27], BRISQUE [28], CORNIA [34], DIIVINE [29],
GMLF [30], HOSA [35], SISBLIM [35], and NFERM [42].

• Deep learning-based methods: SFA [63], DBCNN [36], and HyperIQA [37].

It is worth mentioning here that the compared methods were all retrained using the
default experimental setup.

3.3. Evaluation Criteria
3.3.1. Classification of the Distortion Types and Levels

To assess the detection of distortion types and identification of the severity level of
each detected distortion, we utilize the Accuracy and F1 score to evaluate the predictive per-
formance of different quality assessment metrics. Specifically, the following four evaluation
metrics are used:

• Accutype: The ratio of correctly predicted observations to the total observations for
distortion detection.

• F1type: The weighted average of Precision and Recall for distortion detection.
• Accuboth: The ratio of correctly predicted observations to total observations for distor-

tion detection with severity level identification.
• F1both: The weighted average of Precision and Recall for the distortion detection with

severity level identification.

3.3.2. Regression of the Quality Score

Here, four criteria are used to evaluate the performance of the quality assessment
models: the Spearman Rank Order Correlation Coefficient (SRCC), the Pearson Linear
Correlation Coefficient (PLCC), the Kendall Rank Correlation Coefficient (KRCC), and the
Root Mean Squared Error (RMSE). These four statistical indexes describe different aspects
for evaluating the performance of IQA models. To be more specific, SRCC and KRCC both
reflect the prediction monotonicity, while PLCC and RMSE reflect the prediction linearity
and prediction accuracy, respectively. The calculation equations are as follows:

• Spearman rank order correlation coefficient (SRCC):

SRCC = 1−
6 ∑N

i=1 d2
i

N(N2 − 1)
, (21)

where di represents the difference between the i-th images’s ranks in subjective evalu-
ations and predicted scores, while N is the number of testing images. SRCC is used
to measure the prediction monotonicity. The value of SRCC is between 0 and 1. The
larger the value, the better the result predicted by the model.

• Pearson linear correlation coefficient (PLCC):

PLCC =
∑N

i=1(pi − p)(si − s)√
∑N

i=1(pi − p)2(si − s)2
, (22)

where si and pi represent the i-th image’s subjective score and predicted score, while
s and p are the mean of all si and pi. PLCC can be used to estimate the linearity and
consistency of prediction. The value of PLCC is between 0 and 1, with larger values
being better.

• Kendall rank order correlation coefficient (KRCC):

KRCC =
Nc − Nd

0.5(N − 1)N
, (23)
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where Nc and Nd represent the numbers of concordant and discordant pairs in the
testing data. Similar to SRCC, KRCC can be used to measure the monotonicity. The
value of KRCC is between 0 and 1, with larger values being better.

• Root mean square error (RMSE):

RMSE =

√√√√ 1
N

N

∑
i=1

(pi − si)2, (24)

RMSE is used to evaluate prediction accuracy. The RMSE value is a positive number;
a smaller the value indicates higher accuracy of the model.

Before computing the criteria values, we utilize a five-parameter logistic regression
function to fit the predicted scores to the scale of the quality labels:

ŷ = β1

(
0.5− 1

1 + eβ2(y−β3)

)
+ β4y + β5 (25)

where {βi | i = 1, 2, . . . , 5} are the parameters to be fitted, y represents the predicted scores,
and ŷ represents the mapped scores.

3.4. Performance Discussion

The experimental performance results on the SIQD and the VSQuAD databases are
clearly shown in Tables 1 and 2, from which we can draw several interesting conclusions:
(a) the deep-learning based methods achieve much better performance than the hand-
crafted based methods, indicating that the semantic information extracted by the CNN or
vision transformer backbone is very important for the quality prediction of the SIs; (b) the
proposed NR IQA method performs the best on both the SIQA database and VSQuAD
dataset compared with other NR IQA metrics, which demonstrates the effectiveness of
the proposed NR IQA method for the SIs; (c) the proposed model outperforms all the
compared deep-learning based methods, indicating that the low-level visual features related
to distortions in the SIs serve as a vital complement to the deep features for the quality
assessment of SIs, from which it can be concluded that it is necessary to specifically design
relevant features for specific IQA problems; (d) the task of identifying the severity level of
each distortion is relatively difficult compared to the task of detecting the distortion type,
which demonstrates that quality assessment models are less sensitive to the distortion level.

Table 1. Performance results on the SIQD database.

Type Method SRCC PLCC KRCC RMSE

Hand-crafted

BLIINDS-II 0.1584 0.2059 0.0946 0.9030
BRISQUE 0.3051 0.3256 0.2497 0.8726
CORNIA 0.5476 0.5641 0.4732 0.7619
DIIVINE 0.0223 0.2178 0.0132 0.9007

GMLF 0.0740 0.2058 0.0533 0.9030
HOSA 0.2871 0.3273 0.2064 0.8720

SISBLIM 0.4206 0.5488 0.3612 0.7714
NFERM 0.2576 0.3925 0.2167 0.8488

Deep-learning

SFA 0.8702 0.8741 0.7123 0.4153
DBCNN 0.8727 0.8785 0.7196 0.4033

HyperIQA 0.8631 0.8687 0.6946 0.4478
Proposed 0.8986 0.9103 0.7276 0.3864



Information 2022, 13, 588 12 of 16

Table 2. Performance results on the VSQuAD database.

Type Method Accutype F1both Accuboth F1both

Hand-crafted

BLIINDS-II 0.311 0.569 0.051 0.088
BRISQUE 0.368 0.603 0.076 0.127
CORNIA 0.540 0.642 0.371 0.422
DIIVINE 0.270 0.432 0.041 0.067

GMLF 0.289 0.411 0.048 0.077
HOSA 0.378 0.615 0.086 0.167

SISBLIM 0.524 0.634 0.343 0.396
NFERM 0.603 0.723 0.413 0.487

Deep-learning

SFA 0.762 0.892 0.622 0.672
DBCNN 0.778 0.903 0.638 0.690

HyperIQA 0.794 0.911 0.654 0.716
Proposed 0.852 0.946 0.708 0.817

3.5. Statistical Test

To further validate the effectiveness of the proposed method, we carried out statistical
significance tests following the procedure suggested in [64]. In this subsection, these
statistical tests are used to compare the relations between the predicted results and the
subjective labels. The null hypothesis of the t-test is that the residuals of two quality metrics
derived from the same distribution are statistically indistinguishable with a 95% confidence.
The statistical significance test results are shown in Figure 6. From the figure, it can be
seen that the proposed method is significantly superior to nine compared methods on the
SIQD database and eleven compared methods on the VSQuAD database, indicating that
the proposed method has better ability to detect and evaluate distortions in SIs.

A B C D E F G H I J K L
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Figure 6. Statistical test results of the proposed method and compared methods on the SIQD and
VSQuAD databases: (a) statistical test results on the SIQD database and (b) results on the VSQuAD
database. Black/white blocks mean that the method in that row is statistically worse/better than one in
the corresponding column. A gray block means that the method in the row and that in the column are
statistically indistinguishable. The methods denoted by A-L are in the same order as in Tables 1 and 2.

3.6. Ablation Study

To further investigate the respective contributions of different types of features, we
performed an ablation experiment to compare the distortion features, semantic features
and hybrid (distortion and semantic) features.

The results of the ablation experiment are listed in Tables 3 and 4. First, it can be seen
that the hybrid features perform better than either the distortion features or the semantic
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features alone. Second, the contribution of the distortion features is inferior to that of
the semantic features, meaning that the semantic features are more important in quality
assessment of SIs. Finally, the semantic features perform worse than all the compared deep
learning NR IQA metrics, which may be explained by the resize operation resulting in the
loss of texture information, which could in turn affect the performance.

Table 3. Ablation study results on the SIQD database; DF represents distortion features and SF
indicates semantic features. The default experimental setup and quality regression mechanism
are maintained.

Feature SRCC PLCC KRCC RMSE

DF 0.6143 0.6268 0.5293 0.6923
SF 0.7738 0.7910 0.6104 0.5312

DF+SF 0.8986 0.9103 0.7276 0.3864

Table 4. Ablation study results on the VSQuAD database; DF represents distortion features and
SF indicates semantic features. The default experimental setup and quality regression mechanism
are maintained.

Feature Accutype F1both Accuboth F1both

DF 0.625 0.697 0.441 0.501
SF 0.667 0.757 0.473 0.564

DF+SF 0.852 0.946 0.708 0.817

4. Conclusions

To tackle the challenge of SIQA and provide more useful guidelines for surveillance
systems, in this paper we propose a hybrid no-reference image quality assessment method.
The features are mainly extracted from the distortion and semantic aspects. Specifically,
the distortion features are extracted using the noise, blur, and structure hand-crafted
descriptors. We employ Swin Transformer-tiny as the backbone for semantic feature
extraction, in light of its great success as a vision transformer. Afterwards, the hybrid
features are concatenated and regressed into quality values with the assistance of fully-
connected layers. The proposed method is validated on the SI Quality Database (SIQD)
and the Video Surveillance Quality Assessment Database (VSQuAD). Finally, we evaluate
several similar methods and compare them to our proposed method by assessing the
correlation between their predicted scores and quality labels and by measuring their
accuracy when predicting distortion types and levels. From the experimental results, we
find that the proposed method outperforms all the compared methods, revealing its strong
ability to solve the SIQA problem.
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Abbreviations
The following abbreviations are used in this manuscript:

IVS Intelligent Video Surveillance
IQA Image Quality Assessment
FR IQA Full-reference IQA
RR IQA Reduced-reference IQA
NR IQA No-reference IQA
SI Surveillance Image
SIQA Surveillance Image Quality Assessment
SV Surveillance Video
SIQD Surveillance Image Quality Database
VSQuAD Video Surveillance Quality Assessment Database
ST Swin Transformer
ST-t Swin Transformer-tiny
DF Distortion Features
SF Semantic Features
MSE Mean Squared Error
SRCC Spearman Rank Order Correlation Coefficient
PLCC Pearson Linear Correlation Coefficient
KRCC Kendall Rank Correlation Coefficient
RMSE Root Mean Squared Error
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