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Abstract: Insights and analysis are only as good as the available data. Data cleaning is one of the
most important steps to create quality data decision making. Machine learning (ML) helps deal
with data quickly, and to create error-free or limited-error datasets. One of the quality standards for
cleaning the data includes handling the missing data, also known as data imputation. This research
focuses on the use of machine learning methods to deal with missing data. In particular, we propose
a generative adversarial network (GAN) based model called DEGAIN to estimate the missing values
in the dataset. We evaluate the performance of the presented method and compare the results with
some of the existing methods on publicly available Letter Recognition and SPAM datasets. The
Letter dataset consists of 20,000 samples and 16 input features and the SPAM dataset consists of
4601 samples and 57 input features. The results show that the proposed DEGAIN outperforms the
existing ones in terms of root mean square error and Frechet inception distance metrics.

Keywords: machine learning; data cleaning; missing data; data imputation; generative networks

1. Introduction

Data cleaning is the process of fixing or removing incorrect, corrupted, incorrectly
formatted, duplicate, or incomplete data within a dataset. There are many factors for data
to be duplicated or mislabeled, especially when multiple data sources are combined. If
data are incorrect, outcomes and algorithms are unreliable, or even the results are incorrect.
The exact steps in the data cleaning process is highly dependent on the dataset; however, it
is possible to establish a generalized conceptual data cleaning process [1,2] as described in
the following:

1. Removing duplicate or irrelevant data: When datasets from multiple sources, clients,
etc., are combined, the chance of duplicate data creation increases. Additionally, in
some analyses, the irrelevant data could also be removed. Any information that does
not pertain to the issue that we are attempting to solve is considered irrelevant.

2. Fixing structural errors: Structural errors occur when conventions, typos, or incorrect
capitalization is observed due to the measurement or data transfer. For instance, if “N/A”
and “Not Applicable” both appear, they should be analyzed as the same category.

3. Filtering unwanted outliers: If an outlier proves to be irrelevant for analysis or is a
mistake, it needs to be removed. Some outliers represent natural variations in the
population, and they should be left as is.

4. Handling missing data: Many data analytic algorithms cannot accept missing values.
There are a few methods to deal with missing data. In general, missing data rows
are removed or the missing values are estimated according to the existing data in the
dataset. These methods are also known as data imputation.

5. Data validation and quality assurance: After completing the previous steps, it is
needed to validate the data and to make sure that the data have sufficient quality for
the considered analytics.
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In this paper, we study the algorithms that are capable of handling the missing data as
an important step of data cleaning. Different reasons can lead to missing values during the
data collection phase, including, but not limited to, the faulty clinical data registration of
patients [3], and sensor damages [4]. One basic method to handle this problem is to remove
incomplete data. However, removing the data can diminish the number of samples when
the dataset contains many samples with missing values [5]. Therefore, many researchers
have tried to employ efficient and effective algorithms to handle the missing values. The
effect of the missing data handling methods mainly depends on the missing mechanism.
The missing data are categorized as follows [6]:

• Missing completely at random (MCAR): It means that the probability of missing
data does not depend on any value of attributes.

• Missing at random (MAR): Meaning that the probability of missing data does not
depend on its own particular value, but on the values of other attributes.

• Not missing at random (NMAR): Meaning that the missing data depend on the
missed values.

In general, the missing data handling methods could be categorized as data deletion,
statistical methods, and machine learning (ML) based approaches. Among the ML based
algorithms, generative adversarial networks (GANs) have attracted many researchers in
recent years. The GAN has many applications, mostly with a focus on generating synthetic
data. The missing value estimation could be considered synthetic data generation. There-
fore, it is possible to use such networks in handling the missing data problem. However,
the performance of the algorithms is dependent on many variables, such as data type, for
instance, if the data belong to the category of an image, clinical dataset, energy dataset, etc.
Accordingly, many variations of the GAN are introduced in the literature.

In this study, we conduct a literature review on missing data handling. We present
the fundamentals of GAIN [7], a GAN-based algorithm and propose an improved version
of GAIN called DEGAIN. In our method, we improve the GAIN by applying the idea of
network deconvolution [8]. Convolutional kernels usually re-learn redundant data because
of the strong correlations in many image-based datasets. The deconvolution strategy is
proven to be effective on images; however, it has not been applied to the GAIN algorithm.
DEGAIN is capable of removing the data correlations. We evaluate the performance of the
proposed DEGAIN with the publicly available Letter Recognition dataset (Letter dataset,
for short) and SPAM dataset. In particular, we use root mean square error (RMSE) and
Frechet inception distance (FID) metrics and compare the performance of the proposed
DEGAIN with the GAIN, the auto-encoder [9] and the MICE [10] algorithms.

The remainder of this paper is organized as follows: In Section 2, we shortly review
the related works. In Section 3, we introduce the system model with mathematical relations
and describe the proposed DEGAIN algorithm. The performance evaluation is presented
in Section 4. Finally, Section 5 concludes the paper.

2. Related Works

In this section we start with a brief overview of incomplete information management
perspectives. Next, we focus our attention on the techniques that replace missing values
with the concrete ones and provide a brief review of the existing literature on the missing
data handling problem.

2.1. Incomplete Information

Incomplete information arises naturally in many database applications, such as data in-
tegration, data exchange, inconsistency management, data cleaning, ontological reasoning,
and many others [11].

In some applications, it is natural to allow the presence of incomplete data in the
database and to support this circumstance using the proper approaches. The use of null
values is the commonly accepted approach for handling incomplete data, and the databases
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containing null values are usually called incomplete database. Some recent proposals in this
direction can be found in [11–16].

Intuitively, whenever the database has a structure defined a priori (as in the case of
relational databases), some data (for instance, a fax number for a person) to be inserted
could be missing. This situation occurs according to the following situations:

1. We are sure that the value exists but it is unknown for us;
2. We are sure that this value does not exist;
3. We do not know anything.

In the relational databases, the unique value, Null, is used in all three situation
described before. However, in different applications null values are interpreted as unknown
values. In cases like this, we will consider the null values as missing values.

The recent study of [17] that analyzed the use of null values in widely used relational
database management systems evidenced that null values are ubiquitous and relevant in
real-life scenarios; however, the SQL features designed to deal with them cause multiple
problems. While most users accept the SQL behavior for simple queries (positive fragments
of relational algebra), many are dissatisfied with SQL answers for more complex queries
involving aggregation or negation.

For instance, in some circumscriptions, SQL can miss some tuples that should be
considered answers (false negatives); in other cases, SQL can return some tuples that
should not be considered answers (false positives). The first situation can be considered an
under-approximation of the results and is acceptable in different scenarios. The second one
is more critical, as the result might contain incorrect answers. The experimental analysis
in [18] showed that false positive are a real problem for queries involving negation. In the
observed situations, they were always present and sometimes they constituted almost 100%
of the answers.

Theoretical frameworks allow multiple null values in incomplete databases, and the
use of labeled nulls provides a more accurate depiction of unknown data. Certain answers,
i.e., query answers that can be found from all the complete databases represented by an
incomplete database, are a commonly accepted semantics in this paradigm. Unfortunately,
the computation of certain answers is a coNP-hard problem [19], which restricts the practical
usefulness. A possible solution is to use polynomial time evaluation algorithms computing
a sound but possibly an incomplete set of certain answers [11,18,20]. The corresponding
prototypes are described in [21,22].

In different applications, missing values cannot be tolerated and must be replaced by
the concrete values. It should be noted that in some research works, the authors use the
missing data as a feature for other decision makings such as error estimation. For instance
the authors in [23] estimate the physical-layer transmission errors in cable broadband
networks by considering the missing values. In one of the recent research studies, the
authors proposed a new multiple imputation MB (MimMB) framework for causal feature
selection with missing data [24]. However, in this paper, we assume that the missing
value needs to be handled for further processing activities. The available strategies for
handling missing data can be divided into traditional methods and ML-based algorithms,
summarized in Figure 1 and described below.
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Figure 1. The categorization of traditional and machine learning based algorithms used for missing
data handling.

2.2. Traditional Methods

Some of known traditional methods on missing data handling, including the case
deletion, mean, median, mode, principal component analysis (PCA) and also singular value
decomposition (SVD) are described in the following:

• Case deletion (CD): In CD, missing data instances are omitted. The method has two
main disadvantages [25]:

1. Decreasing the dataset size;
2. Since the data are not always MCAR, bias occurs on data distribution and corre-

sponding statistical analysis.

• Mean, median and mode: In these methods, the missing data are replaced with
the mean (numeric attribute) of all observed cases. Median is also used to reduce
the influence of exceptional data. The characteristic of the original dataset will be
changed by using constants to replace missing data, ignoring the relationship among
attributes. As an alternative similar solution, we may use the mode of all known
values of that attributes to replace the missing data [25]. Mode is usually preferred for
categorical data.

• Principal component analysis (PCA): This method is well-known in statistical data
analysis and can be used to estimate the data structure level. Traditional PCA cannot
deal with the missing data. Upon the measure of variance within the dataset, data will
be scored by how well they fit into a principal component (PC). Since the data points
will have a PC (the one that best fits), PCA can be considered a clustering analysis.
Missing scores are estimated by projecting known scores back into the principal space.
More details can be found in [26].
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• Singular value decomposition (SVD): In this method, data are projected into another
space where the attributes have different values. In the projected space, it is possible
to re-construct the missing data.

One of the main differences of the traditional methods and the machine learning
based methods to handle the missing data is the capability of the optimization in ML. The
ML-based methods follow an optimization process. ML-based methods can also extract the
relation between data points, and therefore more precise estimation on the missing values.

2.3. Machine Learning Methods

Machine learning algorithms are categorized into supervised, semi-supervised and
unsupervised [27]. Some of the main ML-based methods are clustering algorithms [28],
k-nearest neighbors (KNN) [29], Gaussian process regression (GPR) [30], support vector
machine (SVM) [31], long short-term memory (LSTM) [32], decision trees (DT) [33], random
forests (RF) [34], auto-encoder (AE) [35], expectation maximization (EM) [36] and generative
adversarial networks (GAN) [7].

• Clustering: These unsupervised learning algorithms group the samples with similar
characters. To replace the missing value, the distance between the centroid of clusters
with the sample is calculated, and the missing value of chosen cluster is replaced with
the obtained value [28]. The minimum distance could be calculated by a variety of
distance functions. One common function is l2-norm [37]. The l2-norm calculates the
distance of the vector coordinate from the origin of the vector space.

• k-nearest neighbors (KNN): This supervised algorithm replaces the missing value
by the mean (or weighted mean) of the k nearest samples. These neighbor samples
are identified by calculating the distance of the missing value with the available sam-
ples [28]. Currently, many variations of the original KNN have been proposed in the
literature, including the SKNN, IKNN, CKNN, and ICKNN. KNN-based algorithms
require heavy calculations to find the nearest neighbors [29]. Some of the common dis-
tance functions used in KNN are the Euclidean-overlap metric [38], Value Difference
Metric [38] and mean Euclidean distance [38].

• Gaussian process regression (GPR): GPR algorithms predict the output’s variance
based on non-linear probabilistic techniques. GPR-based algorithms estimate a prob-
abilistic region for the missing values instead of point estimation. The performance
of GRP-based algorithms is dependent on the used kernel function. This kernel is
chosen according to the data type and the effective algorithms might use a combina-
tion of different kernels. Similar to KNN, the GRP-based algorithms also need heavy
calculations, which is not the ideal case for large-scale datasets [30].

• Support vector machine (SVM): SVM has applications in both classification and
regression. SVM-based algorithms are non-linear and map the input to a high-
dimensional feature space. SVM-based algorithms also use different kernels such as
GPR [30].

• Long short-term memory (LSTM): LSTM is a deep learning (DL) algorithm. As a
subcategory of recurrent neural networks, DL shows improvement for time series
compared with conventional ML algorithms. The training phase of the LSTM might
be complex due to the vanishing gradient problem [32].

• Decision tree (DT): DT-based algorithms partition the dataset into groups of samples,
forming a tree. The missing data are estimated by the samples associated with the
same leaves of the tree. Different variations of DT algorithms have been proposed by
researchers, including the ID3, C4.5, CRAT, CHAILD and QUEST [39]. DT algorithms
do not require prior information on the data distribution [33].

• Random forest (RF): RF consists of multiple DTs in which the average value of the
DT estimation is considered the missing value [34].

• Auto-encoder (AE): As a class of unsupervised DL algorithms, AE learns a coded
vector from the input space. The AE generally consists of three layers, including the
input, hidden, and output. The objective in AE is to map the input layer to the hidden
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layer and then reconstruct the input samples through the hidden vector. The elements
of input attributes can be missed randomly in the training phase. Therefore, it is
expected that the vectors in the input space consist of randomly missing vectors, and
the output layer has the complete set of vectors. Performing this task, the AE will learn
how to complete the missing data. Different versions of AEs have been introduced,
such as VAE, DAE, SAE, and SDAE [35].

• Expectation maximization (EM): EM algorithms are capable of obtaining the local
maximum likelihood of a statistical model. These models entail latent variables besides
the observed data and unknown parameters. These latent variables can be missing
values among the data. The EM-based algorithms guarantee that the likelihood will
increase. However, the price is slow convergence rate [36].

Generative Adversarial Networks

The supervised algorithms need labeled data for the optimization process. However,
the data collection for these algorithms is complex. Generative adversarial networks
(GANs) can produce synthetic data samples based on a limited set of the collected data.
GANs are semi-supervised learning algorithms and generate synthetic data with a small set
of collected data. The generated data are not the same as the collected data; however, they
are very similar. GANs are among the foremost essential research topic within different
research fields, including image-to-image translation, fingerprint localization, classification,
speech and language processing, malware detection and video generation [27].

In this section, we introduce the main structure of the GAN, firstly proposed by
Goodfellow et al. in 2014 [7]. The GAN consists of two components, the generator (G) and
the discriminator (D) as shown in Figure 2. In the training phase, the noise and real data are
the input and output of the G component. The dominant goal of the G is to alter the noise
to the realistic data. The D component learns to discriminate the real and generated data.

DG

Real Data

Noise

Real/Fake

Fake 

Data

Figure 2. The general structure of GAN proposed by Goodfellow.

The training process of these two components are based on the pre-defined cost
function as presented in Equation (1).

min
G

max
D

L(D, G) = Ex∼pr(x)[log D(x)] + Ez∼pz(z)[log(1− D(G(z))] (1)

The G and D are two functions and can be denoted by a multi-layer perceptron (MLP).
The G learns to alter the noise z ∼ pz(z) to the real data. It can be represented by G(z;θg)
as a function, whose inputs are noise and outputs are generated synthetic data, in which
θg indicates the parameters of the G component. The D component learns to discern the
real and fake data. This component can be represented by D(x;θd), whose inputs are
real and synthetic data and outputs are class labels, in which θd indicates the parameters
of the D component. The cost function of the D and G components are presented in
Equations (2) and (3), respectively:

L(θd) = Ex∼pr(x)[log D(x;θd)] + Ez∼pz(z)
[
log(1− D(G(z;θg))

]
(2)



Information 2022, 13, 575 7 of 13

L(θg) = Ez∼pz(z)
[
log(1− D(G(z;θg))

]
(3)

where (θd and θg) are updated until convergence is reached. When the real and synthetic
data cannot be recognized by the D, the system has reached convergence. Mathematically
specking, the convergence occurs when D(x;θd) = 0.5. After the training phase, the G is
ready to be utilized for producing the synthetic samples.

3. Proposed Method
3.1. System Model

A GAN-based data imputing method, called generative adversarial imputation nets
(GAIN), was introduced in [7]. In GAIN, the generator component G takes real data
vectors, imputes the missing values conditioned on the really observed data, and gives a
completed vector. Then, the discriminator component D obtains a completed vector and
tries to determine which element is really observed and which one is synthesized. To learn
the desired distribution in the G component, some additional information is deployed
for the discriminator D in the form of a hint vector. The hint vector shows the pieces
of information about the missing quality of the real data to the D component, and D
concentrates its heed on the quality of imputation for particular missing values. In other
words, the hint vector assures the G component to be learned for generating data based on
the actual data distribution [7].

Convolution, which applies a kernel to overlapping sections shifted across the data,
is a crucial operation in many convolutional neural networks. Although utilizing CNN
to synthesize images is not required in GANs, it is frequently done in order to learn
the distribution of images [40]. The generator architecture is typically composed of the
following layers:

• Linear layer: The noise vector is fed into a fully connected layer, and its output is
reshaped into a tensor.

• Batch normalization layer: Stabilizes learning by normalizing inputs to zero mean
and unit variance, avoiding training issues, such as vanishing or exploding gradients,
and allowing the gradient to flow through the network.

• Up sample layer: Instead of using a convolutional transpose layer to up sample, it
mentions using upsampling and then applying a simple convolutional layer on top of
it. Convolutional transpose is sometimes used instead.

• Convolutional layer: To learn from up-sampled data, the matrix is passed through a
convolutional layer with a stride of 1 and the same padding as it is up sampled.

• ReLU layer: For the generator because it allows the model to quickly saturate and
cover the training distribution space.

• TanH Activation: TanH enables the model to converge more quickly.

Convolutional kernels are in fact relearning duplicate data because of the high correla-
tions in real-world data. The convolution makes the neural network training difficult. In
the following, we review the mathematical presentation of GAIN.

3.2. Problem Formulation

In a d-dimensional spaceX = X1× · · · ×Xd the X = (X1, . . . , Xd) is a random variable
taking values in X with distribution P(X). M = (M1, . . . , Md) is a random variable in
{0, 1}d. The X is called the data vector, and M is called the mask vector.

A new space X̃i = Xi ∪ {∗} is defined for i ∈ {1, . . . , d} where the start, ∗ does not
belong to any Xi, and represents an unobserved value. Defining X̃ = X̃1 × · · · × X̃d The
variable X̃ = (X̃1, . . . , X̃d) ∈ X̃ is presented in Equation (4):

X̃i =

{
Xi, if Mi = 1
∗, otherwise

(4)
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where M indicates which components of X are observed. The M could be recovered from
X̃. In missing data re-construction, n independent and identically distributed copies of X̃
are realized, denoted by x̃1, . . . , x̃n and defined in the dataset D = {(x̃i, mi)}n

i=1, where mi

is simply the recovered realization of M corresponding to x̃i. The goal is to estimate the
unobserved values in each x̃i. The samples are generated according to P(X|X̃ = x̃i), that is,
the conditional distribution of X given X̃ = x̃i for each i to fill in the missing data points
in D.

The generator, G, takes as input X̃, M and a noise variable Z, and outputs X̄, where
X̄ is a vector of synthetic data. Let G : X̃ × {0, 1}d × [0, 1]d → X be a function, and
Z = (Z1, . . . , Zd) be d-dimensional noise (independent of all other variables) [7]. The
random variables X̄, X̂ ∈ X are defined by Equations (5) and (6).

X̄ = G(X̃, M, (1−M)� Z) (5)

X̂ = M� X̃ + (1−M)� X̄ (6)

where � denotes element-wise multiplication. X̄ corresponds to the vector of estimated
values and X̂ corresponds to the completed data vector.

The discriminator, D will be used to train G. However, unlike the standard GAN where
the output of the generator is either real or synthetic, the output of GAIN is comprised of
some components that are real and some that are synthetic. Rather than identifying that an
entire vector is real or synthetic, the discriminator attempts to distinguish which are real
(observed) or synthetic. The mask vector M is pre-determined by the dataset. Formally, the
discriminator is a function D : X → [0, 1]d with the i-th component of D(x̂) corresponding
to the probability that the i-th component of x̂ was observed. The D is trained to maximize
the probability of correctly predicting M and G is trained to minimize the probability of D
predicting M. The quantity V(D, G) is defined as presented in Equation (7).

V(D, G) = EX̂,M,H

[
MT log D(X̂, H) + (1−M)T log

(
1− D(X̂, H)

)]
, (7)

where log is an element-wise logarithm and dependence on G is through X̂. The goal of
GAIN is presented in Equation (8):

min
G

max
D

V(D, G). (8)

where the loss function L : {0, 1}d × [0, 1]d → R is defined as presented in Equation (9):

L(a, b) =
d

∑
i=1

[
ai log(bi) + (1− ai) log(1− bi)

]
. (9)

3.3. Proposed Algorithm: DEGAIN

The proposed DEGAIN is originated from GAIN [7]. The main idea behind the
DEGAIN is to use deconvolution in the generator and discriminator. Convolution applies
a kernel to overlapping regions shifted across the data. However, because of the strong
correlations in real-world data, convolutional kernels are in effect re-learning redundant
data. This redundancy makes the neural network training challenging. The deconvolution
can remove the correlations before the data are fed into each layer. It has been shown in [8]
that the deconvolution can be efficiently calculated at a fraction of the computational cost
of a convolution layer. The deconvolution strategy has proven to be effective on images;
however, it has not been applied to GANs, including the GAIN.

Given a data matrix XN×F, where N is the number of samples and F is the number of
features, the covariance matrix is calculated as Cov = 1

N (X− µ)T(X− µ).
An approximated inverse square root of the covariance matrix could be calculated as

D = Cov−
1
2 multiplied with the centered vectors (X− µ) · D. Accordingly, the correlation
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effects could be removed. If computed perfectly, the transformed data have the identity
matrix as covariance: DT(X− µ)T(X− µ)D = Cov−0.5 · Cov · Cov−0.5 = I.

The process to construct X and D ≈ (Cov + ε · I)−
1
2 is presented in Algorithm 1,

where ε · I improves the stability. The deconvolution operation is further applied via matrix
multiplication to remove the correlation between neighboring pixels. The deconvolved data
are then multiplied with w. The architecture of proposed method is depicted in Figure 3.
When the training phase is completed, the G component is able to impute the dataset. There
are two main loops for updating the parameters of the G and D components in Algorithm 1.
First, batch samples from the noise and samples of real data are presented to the inner loop
for updating the parameters of the D component. The cost function of the D component is
then calculated by the given samples. Then, the D component’s parameters are updated
based on the initiated rate.

G D
random noise matrix

1

0

1

hint generator

real data with

missing values

real data matrix

mask matrix

imputed matrix 

by generator

hint matrix

estimated probabilites

Figure 3. The general structure of DEGAIN.

Algorithm 1 (The DEGAIN algorithm: deconvolution and then training).

1: Input: N channels of input features [x1, x2, . . . , xN ], Number of epochs e;
Number of Iteration of inner loop n; Updating rates (αg and αd);

2: for i ∈ {1, . . . , N} do
3: Xi = im2col(xi)
4: X = [X1, . . . , XN ]
5: X = Reshape(X)
6: Cov = 1

M XtX %[xi] has M rows

7: D ≈ (Cov + ε · I)− 1
2

Training of G and D
8: for (i = 0; i < e; i++) do
9: for j = 0; j < n; j++ do

10: batch samples from noise Z ∈ RB×L ∼ pz(z);
11: batch samples from noise X ∈ RB×M;
12: L(θd) =

1
B ΣB

b=1logD(Xb, θd) + log(1− D(G(2Zb), θg));
13: ξd = δ

δθd
L(θd);

14: θ
j+1
d = θt

d + αdξd
15: batch samples from noise Z ∈ RB×L ∼ pz(z);
16: L(θd) =

1
B ΣB

b=1log(1− D(G(Zb, θg)))

17: ξd = δ
δθd

L(θd);

18: θi+1
g = θt

g − αgξg;

4. Performance Evaluation

We evaluate the performance of the DEGAIN and compare the results with MICE [10],
GAIN [7] and AE [9]. Multivariate imputation by chained equations (MICE) has emerged in
addressing missing data. The chained equations approach can handle variables of varying
types, for instance, the continuous or binary as well as complexities such as bounds. MICE
is also a software package presented in R [10]. In multiple imputation algorithms such as
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AE, multiple copies of the dataset are replaced by slightly different imputed values in each
copy. In this method, the variability is modeled into the imputed values [9].

We perform each experiment 10 times, and within each experiment, we use 5-cross
validations in terms of RMSE, which directly measures the error distance, and FID, which
takes the distribution of imputed values into account. We use the Letter and SPAM datasets
for comparing algorithms, and samples are missed with the rate of 20%.

4.1. Evaluation Metrics

In our experiments we consider the root-mean-square error (RMSE) and Frechet
inception distance (FID) metrics to evaluate the performance of the proposed DEGAIN
on handling the missing data. It should be noted that besides RMSE and FID, several
other metrics are introduced in the literature including, but not limited to, mean absolute
error (MAE), area under ROC curve or AUC score and F1-score. These metrics perform
in different datasets or operations. For example, the F1-score is mostly used for binary
classification. MAE is similar to RMSE; however, RMSE is more common in the literature.
Comparing our method with GAIN, AE and MICE, we chose the related RMSE and FID
metrics. Remember that RMSE is used for continuous values and measures the error
between real values and imputed values for an incomplete dataset. FID converts a group
of imputed samples to a feature space using a particular inception net layer. Assuming
the converted layer as a continuous multivariate Gaussian distribution, the mean and
covariance are predicted for both the imputed and real samples.

The mathematical presentation is shown in Table 1, where N̂ is the number of missing
values, yi is the real missing value, and ŷi is the imputed value. Additionally, the m1 and
m2 denote the mean of the real and imputed data, respectively. C1 and C2 indicate the
covariance of real and imputed data, respectively.

Table 1. Evaluation metrics used to assess the proposed algorithm’s performance.

Metric Formula

RMSE RMSE =

√
1
N̂

N̂
∑

i=1
(yi − ŷi)

2

FID d2((m1, C1)(m2, C2)) = ‖m1 −m2‖2
2 + Tr(C1 + C2 − 2(C1C2)

1
2 )

4.2. Dataset

Here we use the Letter and SPAM datasets. Letter is publicly available in the UC Irvine
Machine Learning Repository and can be accessed through https://archive.ics.uci.edu/
(accessed on 20 July 2022). In this dataset, the objective is to identify each of a large number
of black-and-white rectangular pixel displays as one of the 26 capital letters in the English
alphabet. The character images are based on 20 different fonts and each letter within these
20 fonts is randomly distorted to produce a file of 20,000 unique stimuli. Typically, the first
16,000 items are used for training and then the resulting model is capable of predicting the
letter category for the remaining 4000. The SPAM dataset consists of 4601 samples and 57
input features. In this dataset, the goal is to predict spam emails based on input features.
SPAM is also publicly available at http://archive.ics.uci.edu/ml/datasets/Spambase/
(accessed on 10 August 2022). These datasets have no missing values and therefore, we use
a 20% rate of missed samples.

4.3. Results

The evaluation are performed in Google Colab, on Python 3 with 12 GB of RAM. We
used the base codes of GAIN [7] publicly accessible in https://github.com/jsyoon0823/
GAIN (accessed on 10 July 2022). We modified the code and added the deconvolution to the
Generator and Discriminator. The results are presented in Table 2 and illustrated in Figure 4.
As can be seen in Table 2 and Figure 4, the performance of GAN-based algorithms, both

https://archive.ics.uci.edu/
http://archive.ics.uci.edu/ml/datasets/Spambase/
https://github.com/jsyoon0823/GAIN
https://github.com/jsyoon0823/GAIN
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GAIN and DEGAIN perform much better than the auto-encoder (AE) [9] and MICE [10].
The DEGAIN is slightly better compared with the GAIN. The main advantage of the
DEGAIN could be explored running on correlated large datasets of images. Therefore, as
expected, the GAIN and proposed DEGAIN can be the most profitable in image datasets.

Table 2. Performance evaluations of proposed DEGAIN, GAIN [7], AE [9], MICE [10] in terms of
RMSE and FID metrics.

Proposed DEGAIN GAIN [7] AE [9] MICE [10]

RMSE (Letter dataset) 0.096 0.101 0.142 0.166

Normalized FID
(Letter dataset) 0.492 0.513 0.826 1

RMSE (SPAM dataset) 0.047 0.050 0.064 0.068

Normalized FID
(SPAM dataset) 0.898 0.946 0.973 1

Figure 4. Illustration of evaluation results on RMSE and FID metrics for proposed DEGAIN, GAIN [7],
AE [9] and MICE [10] on Letter dataset.

5. Conclusions

In this paper, we studied the traditional and machine learning based algorithms
that could handle the missing data problem in data cleaning process. We reviewed the
architecture of generative adversarial network (GAN) based models and their performance
on missing data handling. We proposed an algorithm called DEGAIN to estimate the
missing values in the dataset. The DEGAIN is based on the known GAIN algorithm
that is already used in missing data imputation. We added deconvolution to remove
the correlation between data. The evaluated performance of the presented method was
performed on publicly available datasets, called Letter and SPAM. The RMSE and FID
metrics on the results confirmed that the GANs are effective on re-constructing the missing
values compared with the earlier auto-encoder or MICE algorithms. Additionally, the
proposed DEGAIN performed well and improved the performance of GAIN. We believe
that the main advantages of DEGAIN could be explored running on large image datasets,
although it showed improvement even on our chosen datasets. This paper addresses one of
many aspects of data quality: missing information. Inconsistent information, which could
be handled using methods such as arbitration [41], is still an open issue that GAN-based
methods and the proposed DEGAIN need to address in future works.
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The following abbreviations are used in this manuscript:

AE Auto-Encoder
CD Case Deletion
DT Decision Tree
DL Deep Learning
EM Expectation Maximization
FID Frechet Inception Distance
GRP Gaussian Process Regression
GAN Generative Adversarial Network
KNN k-Nearest Neighbors
LSTM Long Short-Term Memory
ML Machine Learning
MAE Mean Absolute Error
MAR Missing At Random
MCAR Missing Completely At Random
MLP Multi-Layer Perceptron
NMAR Not Missing At Random
PCA Principal Component Analysis
RF Random Forest
RMSE Root Mean Square Error
SVD Singular Value Decomposition
SVM Support Vector Machine
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