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Abstract: EEG-based emotion recognition has become an important part of human–computer inter-
action. To solve the problem that single-modal features are not complete enough, in this paper, we
propose a multimodal emotion recognition method based on the attention recurrent graph convolu-
tional neural network, which is represented by Mul-AT-RGCN. The method explores the relationship
between multiple-modal feature channels of EEG and peripheral physiological signals, converts one-
dimensional sequence features into two-dimensional map features for modeling, and then extracts
spatiotemporal and frequency–space features from the obtained multimodal features. These two
types of features are input into a recurrent graph convolutional network with a convolutional block
attention module for deep semantic feature extraction and sentiment classification. To reduce the
differences between subjects, a domain adaptation module is also introduced to the cross-subject
experimental verification. This proposed method performs feature learning in three dimensions of
time, space, and frequency by excavating the complementary relationship of different modal data so
that the learned deep emotion-related features are more discriminative. The proposed method was
tested on the DEAP, a multimodal dataset, and the average classification accuracies of valence and
arousal within subjects reached 93.19% and 91.82%, respectively, which were improved by 5.1% and
4.69%, respectively, compared with the only EEG modality and were also superior to the most-current
methods. The cross-subject experiment also obtained better classification accuracies, which verifies
the effectiveness of the proposed method in multimodal EEG emotion recognition.

Keywords: emotion recognition; EEG; multimodal; convolutional block attention module; recurrent
graph convolutional network

1. Introduction

With the emergence of artificial intelligence, the concept of affective computing was
first proposed by Professor Picard [1] in 1995. Emotion recognition plays an increasingly
important role in human–computer interaction. It also has high value in social robotics,
medical care, education, etc.

Human emotions involve subjective experiences, physiological responses, and behav-
ioral responses, which are expressed through multiple modalities such as facial expressions,
speech, and body movements [2,3]. The signals used for emotion recognition can be di-
vided into two categories: one type is non-physiological signals, such as facial expressions,
voices, and text; the other type is physiological signals, such as electroencephalogram
(EEG), electrooculogram (EOG), electrocardiogram (ECG), and electromyogram (EMG).
Most of the current research focuses on emotion recognition of explicit factors, such as
voice, text, and facial expression, but most human emotions are not externalized in facial
expressions or sounds. Compared with external behavioral signals, physiological signals
are not easy to camouflage and are more real and reliable. Therefore, it is more objective
and effective to use physiological signals for emotion recognition. In recent years, EEG has
been increasingly used for emotion recognition.
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With the continuous proposal of EEG emotion recognition methods in recent years,
human–computer interaction has been greatly promoted. Early research generally uses
machine learning and feature engineering methods for emotion recognition. In previous
emotion-recognition work, commonly used time-domain features include peak value,
mean, variance, and standard deviation; frequency-domain features include power spectral
density (PSD) and differential entropy (DE); and time-frequency-domain features include
Hilbert–Huang spectral (HHS). Verma et al. [4] extracted PSD features from EEG, used SVM
and KNN to perform sentiment classification, and obtained the average precision of 81.45%
in the binary-emotion-classification experiment on DEAP. In addition, many researchers
use different kinds of wavelet transforms to extract more complex handcrafted features
and use different machine-learning methods for sentiment classification. Tuncer et al. [5]
extracted handcrafted features on the basis of TQWT (tunable Q-factor wavelet transform)
and proposed LEDPatNet19, which achieved 94.58% and 94.44% classification accuracies
for arousal and valance, respectively, on the DREAMER dataset, and the best classification
accuracy of the LEDPatNet19 is 99.29% on the GAMEEMO dataset. They also used the
Tetromino method [6] to generate new features based on the discrete wavelet transform for
emotion recognition, and the method achieved 99.01% and 99.56% classification accuracies
for arousal and valance, respectively, on the DEAP dataset. Dogan et al. [7] proposed the
PrimePatNet87 method, which first uses the TQWT method to extract features from the EEG
signal, then uses the minimum-redundancy–maximum-relevance selector to select half of
the features, and finally uses SVM for emotion classification. The method achieved 99.56%
and 99.67% classification accuracies for arousal and valance, respectively, on the DEAP
dataset and reached over 99% classification accuracy on the DREAMER and GAMEEMO
datasets. Subasi et al. [8] used six different methods to reduce the dimensionality of the
handcrafted features extracted by TQWT and proposed the RFE+SVM method, which
achieved a classification accuracy of more than 93% on the SEED dataset.

Some important feature information may be lost in the process of manual feature
extraction, which limits the model performance and the final emotion-classification accuracy.
Deep-learning methods have made feature extraction more convenient because it can
automatically extract more-correlated features from large-scale data. Yang et al. [9] used
a two-dimensional convolutional neural network for emotion recognition and achieved
an average classification accuracies of 89.45% and 90.24% in valence and arousal emotion
classification, respectively, on the DEAP. With the emergence of RNN and the gradual
emergence of its advantages in sequence, many researchers combine it with CNN for
emotion recognition. Chen et al. [10] proposed a CNN and LSTM cascaded hybrid neural
network for EEG emotion recognition and achieved an average classification accuracy of
93.15% in valence on the DEAP. Du et al. [11] proposed a 1D-CNN-BiLSTM for EEG emotion
recognition and experimented on the DEAP, DREAMER, and DESC datasets, for which the
accuracies of the method reached 94.85%, 98.41%, and 99.27%, respectively, in the valence,
and the accuracies of the arousal achieved 93.40%, 98.23%, and 99.20%, respectively. The
proposal of the GCN provides a new idea for feature learning in non-standard Euclidean
space, and some researchers use it to replace the CNN module for research. Yin et al. [12]
combined a graph convolutional neural network with a long-short-term-memory network
for EEG emotion recognition, which achieved 90.45% and 90.60% average accuracies in
binary valence and arousal emotion classification, respectively, on the DEAP.

The EEG-single-modality-emotion-recognition method has made great progress, but
the single-modality information is easily affected by various noises. It is difficult to fully
reflect on the emotional state, and it also leads to recognition accuracy not being high.
Therefore, it is necessary to use multimodal information for emotion recognition. In re-
cent years, researchers are exploring and experimenting with different modalities’ data.
Dobrišek et al. [13] proposed a multimodal-emotion-recognition method that fuses audio
and video information, using an image-set-matching algorithm and a Gaussian mixture
model for fusion classification at the decision level. The average accuracy is 77.5% in the
six-category emotion classification on the eINTERFACE′05. Zhang et al. [14] fused audio
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and video features at the model level through a deep belief network. The average accuracy
of this method is 85.97% in the six-category emotion classification on the eINTERFACE′05.
Nakisa et al. [15] proposed a convolutional network and LSTM network cascaded model
to capture the emotional correlation of EEG and BVP (blood volume pulse) modalities,
which was experimentally performed on the MAHNOB dataset using feature-level fu-
sion, in which the accuracy of the four categories of emotions is 71.61%. Tang et al. [16]
proposed bimodal LSTM to fuse EEG and peripheral physiological signals at the model
level. The method performs the binary emotion classification on the DEAP, and the average
classification accuracies in the valence and arousal are 83.83% and 83.23%, respectively.
Huang et al. [17] proposed a decision-level-fusion method based on the enumerated weight
rules for the classification of facial expression and EEG. This method is used in MAHNOB-
HCI to conduct binary emotion classification, and the average classification accuracies of
valence and arousal are 75.2% and 74.1%, respectively, which are both significantly im-
proved compared with the single-modality accuracy. Although researchers have proposed
many methods for multimodal emotion recognition in the past few years, there are still
two problems that need to be improved: One is how to capture the correlation of different
modalities and conduct effective modeling. The other is how to build a more-effective deep
model to learn more-discriminative emotion-related features to improve the accuracy of
emotion classification.

To solve the above problems, we propose the Mul-AT-RGCN for multimodal emotion
recognition. Our main contributions of this paper can be summarized as follows:

• In terms of feature selection and feature fusion, we utilize multiple physiological
signals contained in the dataset to make emotion classification. The different kinds
of physiological signals are fused at the data level and transformed from a one-
dimensional time series into a graph structure that contains more temporal and spatial
information related to human emotion.

• In terms of models, we design the Mul-AT-RGCN, which combines the CBAM module
and graph convolution and bidirectional LSTM to capture EEG-based multimodal
physiological signals in time, frequency, and space domains to correlate and effectively
extract emotion-related features of the multimodal signals.

2. Construction of Multimodal Space–Time Graph and Frequency–Space Graph

Since the electrode positions of EEG and other peripheral physiological signals are
not in a natural Euclidean space, standard convolution cannot represent the relationship
between channels well, while graph convolution can solve this problem. At the same
time, in order to better consider the features of time domain, frequency domain, and
spatial domain, this paper constructs a spatiotemporal graph sequence and a frequency–
spatial graph sequence. These graph sequences describe the space of multimodal EEG
signals in the time domain and frequency domain. These graphs can be represented as
G =

(
XF, A

)
, where XF represents the node feature, and A represents the adjacency matrix

of the graph. The adjacency matrix describes the relationship between different channels,
and the graph-sequence construction process is depicted in Figure 1.
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Figure 1. Schematic process of multimodal-graph-sequence construction. A multimodal graph
sequence is a stack of several multimodal graphs. A multimodal graph is composed of node features
and graph structure.
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The construction of the graph sequence needs to calculate the relationship between
different channels in each sample. Specifically, it is to calculate the correlation between
different channels in the sample. The calculation process can be expressed as:

au,v = I(XT
u ; XT

v ) = ∑
m∈XT

u

∑
n∈XT

v

p(m, n) log
p(m, n)

p(m)p(n)
(1)

where T represents the time step, XT
u represents the signal in channel u, and XT

v represents
the signal in channel v. After calculating the correlation between all channels, the adjacency
matrix of the space–time graph and the frequency–space graph of size n× n can be obtained,
denoted by A = (a1,1, . . . au,v, an,n), where n is the number of channels.

The key to constructing a spatiotemporal graph sequence is to calculate the time node
features. We extract the amplitude as its time-domain feature. At each time step, the time-
series feature can be expressed as Xt = (X1, X2, . . . , Xn), where n represents the number of
channels, and the spatiotemporal graph consists of the feature vector of each time step and
adjacency matrix, represented as Gt = (Xt, A), with a dimension of n × n. The space–time
graphs of all time steps are stacked to form a sequence of space–time graphs, represented
as G = (G1, G2, . . . , GT), with a dimension of n × n × T, where T represents the number of
time steps contained in a sequence.

The construction of a frequency–space graph sequence is similar to the process of
building a space–time graph sequence. It is necessary to extract differential-entropy (DE)
features from four frequency bands, θ, α, β, and γ, and convert these DE features and
channel correlations into frequency–space graphs. The eigenvectors of each frequency
band can be represented as X f = (X1, X2, . . . , Xn), where n represents the number of
channels, and the frequency–space graph is composed of the eigenvectors and adjacency
matrices of each frequency band, denoted by G f = (X f , A), with a dimension of n × n.
They were stacked to form a frequency–space graph sequence, specifically represented
as G′ = (Gθ , Gα, Gβ, Gγ), where the dimension is n × n × 4, and 4 is the number of
frequency bands.

3. Attention Recurrent Graph Convolutional Network

In this section, we propose a model-based attention recurrent graph convolutional
network to identify emotion-related EEG and peripheral physiological signals. The model is
represented by Mul-AT-RGCN, and the structure is depicted in Figure 2. After the EEG and
peripheral physiological signals are converted into a spatiotemporal graph sequence and a
frequency–space graph sequence, we input the two sequences into the network composed
of the attention mechanism and the recurrent graph convolution for deep extraction. The
results are fused as the final multimodal features for sentiment classification.
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Figure 2. The schematic process of the Mul-AT-RGCN model. The model consists of two branches,
space–time and frequency–space. Each branch consists of an attention mechanism module and a
recurrent graph convolution module.

3.1. Convolutional Block Attention Module

To improve the feature-extraction capacity of the deep-learning model, Woo et al. [18]
introduced the attention mechanism into deep learning and proposed the convolutional
block attention module (CBAM). The CBAM module performs attention-weight calcula-
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tions from both channel and time dimensions and generates a new feature-matrix map. In
our proposed Mul-AT-RGCN model, the CBAM module is used to selectively emphasize
emotion-related features and suppress the irrelevant features. This module mainly includes
two parts: channel attention mechanism and spatial attention mechanism.

Channel attention can better capture the correlation between different modality chan-
nels. The weight of each channel of the multimodal feature is calculated through the
network, and the size of the weight indicates the importance of each channel. The larger the
weight, the more important the information contained in the channel. The channel-attention
process is depicted in Figure 3.
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channel attention and (b) represents the schematic process of spatial attention.

The channel attention module includes two parts: squeeze and excitation. The squeeze
is used to aggregate the features in the channel dimension to obtain the global distribution of
the channel features, which is achieved by performing global-average and global-maximum
pooling on the input multimodal-feature map. The feature map is compressed into
two 1 × 1 × c channel descriptors, where c represents the number of channels. The
excitation is input into the two channel descriptors into a fully connected layer, used in the
RELU activation function, and then input into another fully connected layer, connected
to the obtained results, and activated with the Sigmoid function to obtain the attention-
weight matrix. Then the result is multiplied with the multimodal-feature matrix to get the
attention-matrix map.

The spatial-attention mechanism is a further supplement to the channel attention. Its
purpose is to decompress the channel to construct information in the spatial domain. The
process of the spatial-attention mechanism is depicted in Figure 3b. It takes the output of the
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channel-attention module as input to perform global-average pooling and global-maximum
pooling, then connects the output results and passes through a 7 × 7 convolution layer, and
then is activated with the Sigmoid activation function to obtain the attention-weight matrix.
The result is then multiplied with the multimodal-feature matrix to get the attention matrix.
Generally speaking, different emotions will activate different regions of the brain, and
this module can locate the position where the emotional features are more obvious, which
makes the input sample features easier to learn.

3.2. Construction of Recurrent Graph Neural Network

The recurrent graph neural network consists of two parts: the graph convolutional
network and the bi-directional-long-short-term-memory (BiLSTM) network, where the
graph convolution is mainly used to extract spatial features, and the BiLSTM is mainly
used to extract the time-domain and frequency-domain features in the two branches.

A graph is composed of several nodes and an edge connecting two nodes, which
describes the relationship between different nodes. It is different from the image in which
the neighbor nodes are fixed. Generally speaking, the neighbor nodes of the graph are
not fixed and cannot use standard-sized convolution kernels to learn its features; graph
convolutions emerged to find learnable convolution kernels suitable for graphs. In this
paper, we regard the channel as the node of the graph and the relationship between
different channels as the edge of the graph. The graph convolutional network [19] captures
spatial-domain features by aggregating surrounding node information, which can capture
the correlation between different nodes in the graph. Different nodes may be located
in different regions, and capturing the spatial-domain relationship between these node
connections can be more effective for emotion recognition. A graph structure is denoted
by its Laplacian matrix as L = D − A, where D denotes the diagonal matrix consisting
of the degrees of the graph nodes and A denotes its adjacency matrix. After regularizing
the Laplacian matrix, the eigendecomposition obtains L = IN − D−

1
2 AD−

1
2 = D−

1
2 ÂD−

1
2 ,

where IN represents the identity matrix. The process of graph convolution is as follows:

Hi = σ(D−
1
2 ÂD−

1
2 xiW) + b (2)

where xi represents the input of the graph convolution; Hi represents the output of the
graph convolution, that is, the node features after the graph convolution; W represents
the weight; b represents the bias; and σ represents the RELU activation function. The
graph convolution is performed parallel on the spatiotemporal feature graph sequence
and the frequency–space feature graph sequence, and the results are stacked to form new
spatiotemporal feature and frequency–spatial feature. Since the operations require a large
number of parameters, in order to reduce the number of parameters, all graph convolution
operations share the same parameters.

BiLSTM is a special recurrent neural network (RNN), and it is suitable for predicting
events with long intervals in the sequence and learning the dependency information
between the data [20]. It solves the problem of vanishing gradients in traditional RNNs
while being able to model long-term dependencies. In order to better learn the relationship
between the context before and after the sequence, we use the BiLSTM network to extract
the features of the time domain or frequency domain after the graph convolutional network.
The structure of BiLSTM is depicted in Figure 4. The model receives both the positive
feedback and the reverse feedback brought by the pre-order and post-order information and
uses more control-gate units to avoid overfitting, and the combination of more information
is also more conducive to improving the precision of the model.
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Figure 4. The schematic process of the BiLSTM module, which contains the forward LSTM and the
backward LSTM.

BiLSTM is used to extract deep correlation features in the time domain or frequency
domain from the graph sequence, and it is located after the graph convolution module.
BiLSTM is used to learn the dependencies between different time or frequency bands. Each
LSTM unit is defined as follows:

ft = σ(W f · [Ht−1, Xt] + b f ) (3)

it = σ(Wi · [Ht−1, Xt] + bi) (4)

c̃t = tanh(WC · [Ht−1, Xt] + bc) (5)

ct = ft ◦ ct−1 + it ◦ c̃t (6)

ot = σ(Wo · [Ht−1, Xt] + bo) (7)

Ht = ot ◦ tanh(ct) (8)

where Xt represents the input; Ht−1 represents the output of the previous moment; ft
represents the output of the forget gate; it represents the output of the memory gate; c̃t
represents the temporary state; ct represents the current state; ct−1 represents the state
of the previous moment; ot represents the output of the output gate; Ht represents the
final output; ◦ represents the product of two matrices on each element; W f , Wi, Wc, and
Wo represent the weight; and b f , bi, bc, and bo represent the bias. Finally, the outputs
are concatenated to obtain the final spatiotemporal feature matrix and frequency–space
feature matrix.

3.3. Multidimensional Feature Fusion and Emotion Recognition

We connect the spatiotemporal features and frequency–space features and input
them into the fully connected layer to form the final multimodal fusion feature. This
feature combines the features of EEG signals and other peripheral physiological signals in
three dimensions: time, space, and frequency. Compared with single-modality or single-
dimensional features, this feature is more comprehensive. Finally, a softmax classification
layer is used to achieve the final emotion recognition.

y = so f tmax(HW + b) (9)

where H represents the input and y represents the final prediction.
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To prevent overfitting, we also added a dropout layer to the model. The model
adopts the Adam optimizer, which can adjust the learning rate automatically according
to the parameters and has better robustness. The loss function of this model adopts the
cross-entropy function, which is calculated as follows:

loss = −∑ y log y′ (10)

where y represents the true value of the label and y′ represents the predicted label.

3.4. Domain Adaptation Module for Model Optimization

In the process of multimodal signal processing and emotion recognition, the multi-
modal signals for training and testing may come from different fields, for example, the
different subjects. Therefore, the parameters obtained by the model based on the training
data may not be adapted to the test data. In transfer learning, the existing knowledge
is called the source domain, and the new knowledge to be learned is called the target
domain. In the experiment, we use the training data as the source domain and the test
data as the target domain. The idea of the deep adaptation network (DAN) [21] is to
reduce the difference between the source domain and the target domain by introducing the
multi-kernel-maximum-mean-discrepancy (MK-MMD) method, so that the source domain
and the target domain are matched to achieve the effect of domain migration. To solve the
problem of large differences between subjects, we introduced the idea of DAN and added
the MK-MMD module to the original model, which is called the Mul-AT-RGCN-DAN,
to learn more features about emotion discrimination and domain invariance. Its specific
structure is depicted in Figure 5.
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This module reduces the difference between the source domain and the target domain
by minimizing the MMD loss. The MMD loss is calculated as follows:

lossMMD =
1
n∑

t
J(yt, yt

′) + λDL(P, Q) (11)

where J represents the cross-entropy function, λ > 0 is the MK-MMD penalty item trade-off
parameter, DL represents the MMD distance between the source domain and the target
domain, P represents the sample distribution of the source domain, and Q represents the
sample distribution of the target domain. By minimizing this loss, domain adaptation
from the source domain to the target domain can be achieved, thereby improving the
performance of the model in emotion-recognition tasks.
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4. Experimental Results and Analysis
4.1. Dataset and Preprocessing

In this section, we verified the effectiveness of the Mul-AT-RGCN model based on the
large public multimodal sentiment dataset DEAP [22]. The DEAP-dataset-recorded physio-
logical signals include EEG, ECG, and EMG evoked by 32 subjects watching
40 music videos for about one minute each with different emotional tendencies. Each
subject evaluated the videos on a continuous scale of 1–9 on the five dimensions of arousal,
valence, liking, dominance, and familiarity. In this experiment, 40-channel data of each
subject were taken as the research object, including 32 EEG channels and two EOG channels,
two EMG channels, one GSR channel, one respiration-belt channel, one plethysmograph
channel, and one temperature channel, in total eight peripheral physiological signal chan-
nels. In addition, according to the affective model proposed by Russell in 1980, emotion
can be described by two dimensions: valence and arousal, in which valence represents
the positive or negative emotion and arousal represents the degree of emotional arousal.
Many researchers conduct valence and arousal emotion-classification experiments on DEAP.
Therefore, to facilitate comparison with these methods and quickly verify the effectiveness
of our proposed model, we also made valence and arousal classifications on DEAP to test
our method.

In DEAP, the original data is represented as 32 (sub)× 40 (trial) × 40 (channel) × 8064
(sample), where 8064 represents 128 (sample) × 63 (s), and the label is represented as
40 (trial) × 4. Then we preprocessed the original data, first removing the baseline data for
the first 3 s, and extracted temporal features of EEG and other peripheral physiological
signals, where the sampling frequency was 128 and the final extracted time-domain feature
format was 2400 × 40 × 128. Then we extracted the DE features as frequency-domain
features, and the final extracted frequency-domain feature format was 2400 × 40 × 4.

We conducted experiments based on the GeForce GTX3090 GPU and the Pytorch1.7
framework. In this section, we first verified the effectiveness of the model Mul-AT-RGCN
on multimodal tasks, and it is better than the current popular model. We also verified the
effectiveness of the proposed model through cross-subject experiments.

4.2. Within-Subject Experiment

The experiment was carried out among 32 subjects, and the five-fold cross-validation
method was used to evaluate the precision of the proposed method in emotion recognition
within subjects. Specifically, the data of each subject were divided into five groups of the
same size to ensure that there was no overlap between the data. One of the data groups
was taken as the test, and the rest of the data groups were used as the train. This process
was repeated five times. The average of the five results was used as the final precision
of the experiment. The parameters, after tuning, in this experiment were set as follows:
epoch was set to 200, batch size was set to 40, learning rate was set to 0.001, and dropout
coefficient was set to 0.2. The prediction precision of 32 subjects is depicted in Figure 6.

Information 2022, 13, x FOR PEER REVIEW 10 of 16 
 

 

We conducted experiments based on the GeForce GTX3090 GPU and the Pytorch1.7 

framework. In this section, we first verified the effectiveness of the model Mul-AT-RGCN 

on multimodal tasks, and it is better than the current popular model. We also verified the 

effectiveness of the proposed model through cross-subject experiments. 

4.2. Within-Subject Experiment 

The experiment was carried out among 32 subjects, and the five-fold 

cross-validation method was used to evaluate the precision of the proposed method in 

emotion recognition within subjects. Specifically, the data of each subject were divided 

into five groups of the same size to ensure that there was no overlap between the data. 

One of the data groups was taken as the test, and the rest of the data groups were used as 

the train. This process was repeated five times. The average of the five results was used as 

the final precision of the experiment. The parameters, after tuning, in this experiment 

were set as follows: epoch was set to 200, batch size was set to 40, learning rate was set to 

0.001, and dropout coefficient was set to 0.2. The prediction precision of 32 subjects is 

depicted in Figure 6. 

 

Figure 6. Statistical chart of Mul-AT-RGCN model’s within-subject accuracy. 

It can be seen from Figure 6 that the Mul-AT-RGCN model’s average classification 

accuracy of the valence and arousal on the test is 93.19% and 91.82%, respectively, and 

the training-process curve is depicted in Figure 7. 

 

Figure 7. The training-process curve in the within-subject experiment. 

It can be seen from Figure 7 that during the training process, with the increase of the 

number of epochs, the training accuracy kept approaching 1 and finally converged 

around 0.99. Although the loss abruptly increased and then decreased a few times, it 

generally declined and constantly approached 0. When the epoch increased from 0 to 200, 

Figure 6. Statistical chart of Mul-AT-RGCN model’s within-subject accuracy.



Information 2022, 13, 550 10 of 15

It can be seen from Figure 6 that the Mul-AT-RGCN model’s average classification
accuracy of the valence and arousal on the test is 93.19% and 91.82%, respectively, and the
training-process curve is depicted in Figure 7.
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It can be seen from Figure 7 that during the training process, with the increase of
the number of epochs, the training accuracy kept approaching 1 and finally converged
around 0.99. Although the loss abruptly increased and then decreased a few times, it
generally declined and constantly approached 0. When the epoch increased from 0 to 200,
the training accuracy rose with a great gradient and then gradually converged to 1; while
the loss decreased with a great gradient and, with the number of iterations, increased and
gradually converged to 0. During the iterative process, the loss constantly converged; it also
oscillated continuously. The loss had three large changes, while accuracy also underwent
large changes. We analyze that the reason for this phenomenon may be the model produces
a local optimal solution during the parameter training process. As the number of iterations
increases, the Adam optimizer continuously corrects the parameters, and the training
data is continuously updated. Finally, the two curves became stable until the fitting
was completed.

To further verify the superiority of the proposed model, we use popular machine-
learning methods, deep-learning methods, and our proposed method to conduct a com-
parison of EEG multimodal emotion classification within subjects, and the accuracies are
shown in Table 1.

Table 1. Comparison of classification performance with other models.

Model Valence Arousal

MLP [23] 74.31% 76.23%
SVM [24] 79.75% 78.90%
KNN [25] 90.39% 89.06%
CNN [26] 85.50% 87.30%
LSTM [16] 83.82% 83.23%
DCCA [27] 85.62% 84.33%
GCN [19] 89.17% 90.33%

DGCNN [28] 90.44% 91.70%
Mul-AT-RGCN 93.19% 91.82%

From Table 1, it can be seen that the average classification accuracy of our proposed
method is improved by 13.94% and 2.8% in the valence compared with the traditional
machine-learning methods SVM and KNN, respectively, and improved by 13.92% and
2.76% in the arousal, respectively. This occurs because our model can automatically learn
and classify emotion-related features, but traditional machine-learning methods focus



Information 2022, 13, 550 11 of 15

more on manually extracting emotion-related features, and the final classification result is
largely determined by the manually extracted features. If we can extract better handcrafted
features, machine learning can achieve better classification accuracy than deep learning.
Compared with the other six deep-learning methods, the accuracy of the valence increased
by 18.88%, 7.69%, 9.37%, 7.57%, 4.2%, and 2.75%, and the accuracy of the arousal increased
by 15.59%, 4.52%, 8.59%, 7.49%, 1.49%, and 0.12%, which also shows that our proposed
method achieves better performance. We believe that the reason for this is that our proposed
model has deeper layers and can learn more parameters, thereby extracting more emotion-
related features, and because our model is a combined model of the graph convolutional
network and Bi-LSTM network, it can extract more comprehensive feature information.

4.3. Cross-Subject Experiment

To enhance the generalization ability of the model, we added a domain adaptation
module to the Mul-AT-RGCN model and adopted the leave-one-subject verification method
to verify the validity of the model. Specifically, a subject was extracted from 32 subjects
in each cycle, these data were used as the test, and the rest of the subjects’ data were used
as the train for the cross-subject experiment. After the tuning, the model parameters were
set as follows: epoch was set to 200, batch size was set to 120, learning rate was set to
0.0005, and dropout coefficient was set to 0.2. Figure 8 shows the accuracy in the valence
and arousal.
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In Figure 8, it can be seen that the Mul-AT-RGCN-DAN model has an average classi-
fication accuracy of 74.13% and 73.47% in valence and arousal, respectively, in the cross-
subject experiment.

To verify the effectiveness of the Mul-AT-RGCN-DAN model, we compare the emotion-
classification accuracy with the method we proposed in this paper and the current popular
machine-learning and deep-learning methods on multimodal-feature cross subjects, as
shown in Table 2.

Table 2. Comparison of classification accuracies of cross subjects of different models.

Model Average ACC

BT [29] 71.00%
SVM [24] 71.06%

ST-SBSSVM [30] 72.00%
InceptionResNetV2 [31] 72.81%

Mul-AT-RGCN 73.80%

It can be seen from Table 2 that the average classification accuracy of the method
proposed in this paper improved compared with those of the existing methods, which
verifies that our proposed model achieves better performance in cross-subject experiments.
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5. Discussion

In this section, we first discuss the improvement of multimodal performance compared
with single-modality and use the three benchmark models RGCN, ATT-RGCN, and AT-
LGCN to discuss the role of each component of our proposed model and the contribution
of each component to the performance improvement. In cross-subject experiments, we
discuss the impact of the presence or absence of the DAN module on performance. In
addition, we also discuss shortcomings of our proposed model and the direction of our
research in the future.

5.1. Within-Subject Ablation Experiment and Model Comparison

To verify the advantages of multimodal fusion features, we input only the time-domain
EEG features with dimensions of 2400 × 32 × 128 and the frequency-domain EEG features
with dimensions of 2400 × 32 × 4 into Mul-AT-RGCN. Compared with the multimodal
features mentioned, the parameter settings of the two are the same, and the average
classification accuracies are shown in Table 3.

Table 3. Comparison of single-modal and multimodal within-subject classification.

Modality Valence Arousal

EEG 88.09% 87.13%
EEG+PPS 93.19% 91.82%

It can be seen from Table 3 that the classification accuracies of multimodal features is
significantly higher than those of single EEG features. Compared with single EEG features,
the classification accuracies of multimodal fusion features are improved by 5.1% and 4.69%
in the valence and arousal, respectively. We found that the multimodal fusion feature can
make the information of different modalities complement each other so as to obtain more
emotion-related information.

To verify the advantages of the proposed structure of the Mul-AT-RGCN model, we
use three variants of the model, named RGCN, ATT-RGCN, and AT-LGCN. Among them,
RGCN does not have the CBAM module, ATT-RGCN only contains the channel attention
but not the spatial attention module, and AT-LGCN only uses a single-layer LSTM in the
recurrent graph convolution layer. The rest of the parameters of the three models are the
same as the model we proposed in this paper, and the accuracies are shown in Table 4.

Table 4. Comparison of classification of ablation experimental models.

Model Valence Arousal

RGCN 87.17% 86.42%
ATT-RGCN 92.33% 91.67%
AT-LGCN 90.75% 90.03%

Mul-AT-RGCN 93.19% 91.82%

It can be seen from Table 4 that compared with RGCN, ATT-RGCN, and AT-LGCN,
the classification accuracies of Mul-AT-RGCN increased by 6.02%, 0.86%, and 2.44% in the
valence, respectively, and the arousal increased by 5.4%, 0.15%, and 1.79%, respectfully.
The experimental results show that our proposed model is better, which also proves the
superiority of the proposed model in structure. In particular, the addition of the atten-
tion mechanism can extract more correlations between different channels and different
modalities so that the multimodal fusion features contain more emotion-related infor-
mation. Spatial attention can complement channel attention, enabling the network to
learn more useful features to optimize emotion classification. The reason why the pro-
posed model works better than the single-layer LSTM model is that BiLSTM can better
learn the dependencies before and after the time series, thereby better optimizing the
model parameters.



Information 2022, 13, 550 13 of 15

5.2. Cross-Subject Ablation Experiment and Model Comparison

To verify the advantages of the Mul-AT-RGCN-DAN model in cross-subject experi-
ments, we input the features containing only EEG signals into the Mul-AT-RGCN-DAN,
compared them with the multimodal input, and compared the model with and without
the domain adaptive module. The experimental parameter settings are the same, and the
experimental average classification accuracies are shown in Table 5.

Table 5. Comparison of cross-subject classification accuracies between single-modal and multi-
modal models.

Model Modality Valence Arousal

Mul-AT-RGCN-DAN EEG 71.46% 70.85%
Mul-AT-RGCN-noDAN EEG+PPS 60.17% 59.45%

Mul-AT-RGCN-DAN EEG+PPS 74.13% 73.47%

It can be seen from Table 5 that the classification accuracies of multimodal fusion
features are improved by 2.67% and 2.62% in valence and arousal, respectively, compared
with those of EEG features, which verifies the effectiveness of multimodal features in
cross-subject experiments. Compared with the model without domain adaptation, the Mul-
AT-RGCN-DAN model improves valence and arousal by 13.96% and 14.02%, respectively,
which verifies the effectiveness of the domain adaptation module in the cross-subject
experimental model.

5.3. Model Limitations and Future Research

Our proposed model converts multimodal features, including peripheral physiological
signals such as EEG, OMG, and EMG, into a graph structure by adding CBAM blocks, the
graph convolutional network, and the BiLSTM network for deep feature extraction. The
proposed method achieved better accuracy in both within-subject and cross-subject binary
emotion classification.

Although our proposed method achieved good results in binary emotion classification,
it still has some limitations. Our exploration of different modal relationships is insufficient.
We use information from different modalities to fuse at the data level in our experiments.
Although this fusion will retain the most original feature information, the fusion process
may produce some emotion-irrelevant noise information, and our method uses only the
simplest join operation to fuse the data and make deep feature extraction and emotion
classification. The latest research [6,7,11] achieved higher classification accuracy than our
experiment. In [11], Du et al. modified the feature extraction and classification-optimization
layer repetitions, successfully reducing the number of samples and, at the same time,
improving the classification accuracy. In addition, three BiLSTM sublayers were used to
improve the model classification sensitivity. In [6], Tuncer et al. used the DWT (discrete
wavelet transform) and Tetromino pattern to generate features in both low- and high-level
features. The feature selector is also used to select the feature with the largest amount of
information from each channel. Compared with some deep-learning models, this method
has smaller parameters and simpler models under the premise of ensuring accuracy. In [7],
Dogan et al. used the TQWT (tunable Q-factor wavelet transform) method to extract manual
features, where the classification method and feature selector were similar to [6]. The above
also provides a new idea for our future experiments. The other limitation of our proposed
method is that its cross-subject learning ability is limited. Although our model can achieve
a decent classification accuracy, compared with the latest research methods, there is still a
large space for improvement in cross-subject experimental accuracy. Although using DAN
can reduce the differences between subjects, it is still difficult to learn the common deep
multimodal features among subjects.

In the future, we will keep mining the relationship between deeper features between
different modalities and study better fusion methods between different modal data to
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further improve the performance of multimodal emotion recognition. In addition, we will
also optimize our proposed model from model structure and features. We will extract better
manual features, optimize model structure, reduce model complexity, and improve model
classification accuracy. We will also keep researching the transfer learning and domain
adaptation method to further reduce the differences between subjects and improve the
accuracy of cross-subject EEG emotion recognition. In addition, we will also carry out more
research on emotion multi-classification in different dimensions in the DEAP dataset.

6. Conclusions

In this paper, we propose a multimodal-emotion-recognition method based on the
attention recurrent graph convolutional neural network, which can obtain multimodal
features with richer emotional information by mining the relationship between different
channels at the data level. On this basis, two different features of spatiotemporal and
frequency–space are extracted and input into the graph convolutional network and BiLSTM
network for deep feature extraction, and we use this result as the final multimodal fusion
feature for emotion classification. In the cross-subject experiment, a domain adaptation
module was added to reduce the differences among different subjects. We conducted a
binary emotion classification experiment on the multimodal public dataset DEAP and used
32 subjects for cross-validation with multimodal data. The results showed that the average
classification accuracy of the valence can reach 93.19%, and the average classification
accuracy of the arousal can reach 91.82%, which is a great improvement compared with
the EEG modality. This shows that the method we propose in this paper can make full
use of the multimodal complementary information to improve the accuracy of emotion
recognition compared with the current popular deep-learning methods, which verifies the
superiority of the model. At the same time, cross-subject experiments were carried out to
supplement the experimental results, which again verified the validity of the model. This
model provides an effective way for the development of multimodal-emotion-recognition
applications of the brain–computer interface.
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