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Abstract: The mixture Rasch model is a popular mixture model for analyzing multivariate binary
data. The drawback of this model is that the number of estimated parameters substantially increases
with an increasing number of latent classes, which, in turn, hinders the interpretability of model
parameters. This article proposes regularized estimation of the mixture Rasch model that imposes
some sparsity structure on class-specific item difficulties. We illustrate the feasibility of the proposed
modeling approach by means of one simulation study and two simulated case studies.
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1. Introduction

In education and psychological science, multivariate data of cognitive test items such
as intelligence tests are frequently analyzed. The Rasch model (RM; [1–4]) is likely the most
popular statistical model in applied research for analyzing a vector of random variables
X = (X1, . . . , XI) of I dichotomous item responses (i.e., Xi ∈ {0, 1} for i = 1, . . . , I). The
multivariate probability distribution P(X = x) in the RM is given as

P(X = x) =
∫ I

∏
i=1

Pi(xi, θ; bi)φ(θ; µ, σ)dθ for x = (x1, . . . , xI) ∈ {0, 1}I , (1)

where Pi(1, θ; bi) = Ψ(θ − bi) (which is also referred to as the item response function),
Pi(0, θ; bi) = 1− Pi(1, θ; bi) and Ψ denotes the logistic distribution function. Moreover, φ is
the density function of the normal distribution with mean µ and standard deviation σ. The
latent variable θ can be thought of as an underlying unidimensional factor that represents
multivariate dependencies of the discrete vector X. Notably, the normal distribution as-
sumption in the RM could be weakened [5]. The item difficulties bi represent a nonlinear
transformation of proportion correct values of items Xi. Note that an identification con-
straint in (1) in the estimation of the RM must be imposed. Frequently, the mean µ is set to
zero, or one fixes the mean of item difficulties to zero (i.e., ∑I

i=1 bi = 0).
The mixture Rasch model (MRM; [6–8]) models a heterogeneous distribution for X. In

a nutshell, it is assumed that the RM in each of C latent classes and the marginal distribution
can be interpreted as a mixture distribution [9]. The distribution of the MRM with C latent
classes is given by

P(X = x) =
C

∑
c=1

pc

∫ I

∏
i=1

Pi(xi, θ; bic)φ(θ; µc, σc)dθ , (2)

where the non-negative mixture probabilities pc (c = 1, . . . , C) add to one. The class-specific
item difficulties bic in (2) indicate the difficulty (i.e., some nonlinear transformation of
proportion correct values) of item Xi in latent class c. The distributional differences of latent
classes are captured in the mean µc and standard deviation σc. The MRM can be interpreted
as a model in which subjects are allocated into one of the C latent classes. The multivariate
relationships in the vector X of items can differ across latent classes.
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Like in the RM defined in Equation (1), identification constraints in the MRM defined
in Equation (2) are required [10]. One can fix all class means µc to zero or set the mean of
item difficulties within each of the classes to zero (i.e., ∑I

i=1 bic = 0 for all c = 1, . . . , C). The
latter constraint has the advantage that differences between item parameters across latent
classes can be interpreted.

After applying a standardization of class-specific item difficulties such as the above-
mentioned mean centering, differences between class-specific item difficulties can be com-
puted. The so-called latent differential item functioning (DIF; [11–13]) effects qualitatively
describe the distinctive behavior of latent classes at the level of items [14]. Studying
these latent DIF effects is an important exploratory step in understanding the differential
performance of test takers on items [15].

The MRM has been extended to polytomous item responses [16,17] and more complex
item response functions Pi [18–24]. A disadvantage of the MRM in (2) is that all item
difficulties are allowed to differ across classes. In empirical data, some parameters are likely
to equal each other. This is the motivation for proposing a regularized mixture Rasch model
(RMRM) that presupposes that only a subset of DIF effects differs from zero. Alternatively,
to put it differently, subsets of class-specific item parameters are set to be equal to each
other in model estimation. This property substantially eases the model interpretation in
exploratory research.

The rest of the article is structured as follows. In Section 2, we present the estimation
approach for the RMRM. In Section 3, we present a simulation study for two latent classes.
In Sections 4 and 5, we present two simulated case studies that involve two or three latent
classes with a particular structure of DIF effects, respectively. Finally, the paper closes with
a discussion in Section 6.

2. Regularized Mixture Models

In this section, we present the estimation of the RMRM. Regularized estimation re-
cently became popular in psychometrics, such as item response modeling [25,26], structural
equation modeling [27,28], and structured latent class analysis [29–31]. The MRM involves
C latent classes. The allocation of persons (or subjects) to latent classes is unknown. If it
were known, a multiple group RM with known (i.e., manifest) group allocation would re-
sult. The investigation of known demographic groups, such as gender or language groups,
is an important topic in educational measurement. Moreover, regularization techniques
were recently discussed for manifest DIF detection in the RM [32–38].

The main idea of using regularization techniques (see [39] for an overview) for the
MRM is that by subtracting an appropriate penalty term from the log-likelihood function,
some simplified structure on DIF effects is imposed. Let X = (xpi)pi denote the matrix of
dichotomous item responses. The marginal log-likelihood function in the MRM is given by

l(b, γ; X) =
N

∑
p=1

log

(
C

∑
c=1

pc

∫ I

∏
i=1

Pi(xpi, θ; bic)φ(θ; µc, σc)dθ

)
. (3)

In practice, the integration in (3) can be substituted by a summation and evaluating θ
at a finite grid θt for t = 1, . . . , T:

l(b, γ; X) =
N

∑
p=1

log

(
C

∑
c=1

pc

T

∑
t=1

I

∏
i=1

Pi(xpi, θt; bic)ω(θt; µc, σc)

)
, (4)

where ω is a discrete analog of the normal density. The latent class probabilities pc can be
represented by logistically transformed parameters qc:

pc =
exp(qc)

C

∑
d=1

exp(qd)

for c = 1, . . . , C , (5)
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and one sets q1 = 0.
Regularization techniques use penalty functions to control the variability in subsets of

model parameters. For a scalar parameter x, the lasso penalty is defined as

PLasso(x, λ) = λ|x| , (6)

where λ is a non-negative regularization parameter. It is known that the lasso penalty
induces bias in estimated parameters. To circumvent this issue, the smoothly clipped
absolute deviation (SCAD; [40]) penalty has been proposed. It is defined by

PSCAD(x, λ) =


λ|x| if |x| < λ

−(x2 − 2aλ|x|2 + λ2)(2(a− 1))−1 if λ ≤ |x| ≤ aλ
(a + 1)λ2 if |x| > aλ

(7)

with a = 3.7.

2.1. Two Alternative Approaches to Regularizing the Mixture Rasch Model

We can estimate the RMRM in two variants of applying regularization. In the first
approach, we use overidentified item parameters bic and the fused regularization tech-
nique [41,42]. Let b denote the vector of all class-specific item parameters and γ the vector
of all distribution parameters. The following estimation function H (i.e., the negative of a
regularized likelihood function) is minimized

H(b, γ; X) = −l(b, γ; X) + N
I

∑
i=1

C−1

∑
c=1

C

∑
c′=c+1

PSCAD(bic − bic′ , λ) . (8)

Note that fused regularization (8) penalizes the presence of many nonvanishing item
parameter differences bic − bic′ . With a regularization parameter λ = 0, differences bic − bic′

in item difficulties are unpenalized. With increasing values of λ, the penalty contribution
in the estimation function H becomes larger. Eventually, with sufficiently large λ values,
item difficulties bic and bic′ are fused; that is, they receive the same estimate.

Moreover, note that sample size N is multiplied with the penalty function in (8). We
prefer this choice because optimal values of the regularization parameter λ are less sample
size dependent in this case. Moreover, optimal λ values can be more easily compared
across different sample sizes.

It should be noted that in model estimation, the regularization parameter λ in (8) has
to be fixed. In practice, the regularization parameter λ also has to be estimated. Hence,
the minimization is performed on a grid of λ values (e.g., λ = 0.01, 0.02, . . . , 0.50), and the
model that is selected is optimal with respect to some criterion. Typical criteria are the
cross-validated log-likelihood, the Akaike information criterion (AIC), and the Bayesian
information criterion (BIC) [39]. See [43] for model selection for the (nonregularized) MRM.

The second estimation approach relies on the ordinary regularization of latent DIF
effects. The latent DIF effects are included by using an overidentified model with common
item parameters bi0 and latent DIF effects eic by relying on the decomposition

bic = bi0 + eic . (9)

Note that the difference in item difficulties for classes c and c′ are given as

bic − bic′ = eic − eic′ (10)

Hence, latent DIF effects quantify differences between item difficulties across latent
classes after introducing an implicit identification constraint for determining means µc of
latent classes c = 1, . . . , C (while fixing µ1 = 0). Using latent DIF effects in the second
approach (9) instead of considering the regularization of differences in item difficulties
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in (8) possesses advantages if the focus of the analysis lies in the detection and assessment
of latent DIF effects.

The estimation function based on the decomposition (9) is defined by

H(b0, e, γ; X) = −l(b0, e, γ; X) + N
I

∑
i=1

C

∑
c=1
PSCAD(eic, λ) , (11)

where b0 denotes the vector of all common item parameters bi0.
The special case of two latent classes in the MRM requires further attention. In this

case, only one DIF effect ei must be included in the model by relying on the decomposition

bi1 = bi0 − ei/2
bi2 = bi0 + ei/2

. (12)

In general, fused regularization will impose a bit more structured solutions for more
than three latent classes if there are clusters of latent classes with the same DIF effect at
the level of each item. In contrast, SCAD regularization (11) only presupposes one item-
specific cluster of latent classes with zero DIF effects, and all other DIF effects differ from
zero but do not potentially merge into another cluster of latent classes with the same DIF
effect. Whether the more general structure of fused regularization is advantageous in Rasch
mixture with at least four classes is an empirical question in concrete applications.

2.2. Estimation

The regularized likelihood functions can be optimized using marginal maximum
likelihood estimation and the expectation maximization (EM) algorithm [26,31,44]. The EM
algorithm alternates between the E-step and the M-step. The E-step computation is identical
to the estimation in nonregularized item response models. In the M-step, the maximization
of the regularized expected log-likelihood function involving expected counts is carried
out. The difference in regularized estimation is that the optimization function becomes
nondifferentiable because the SCAD penalty is nondifferentiable. The optimization of
nondifferentiable optimization can be performed using gradient descent [39] approaches
or by replacing the nondifferentiable optimization functions with differentiable approxi-
mating functions [31,42,45,46]. In our experience, the latter approach is quite satisfactory
in applications.

As usually encountered in mixture models, the maximum likelihood optimization
function is often prone to local optima. Hence, it is recommended to estimate the RMRM
with a sufficiently large number of random starting values to ensure that the estimated
solution corresponds to the global optimum of the likelihood function (see [47]).

The sketched EM algorithm can be practically implemented in the general estimation
function xxirt() in the R package sirt [48]. This function is used in the simulation study
and the two case studies in this paper.

2.3. Computation of Standard Errors

The computation of standard errors in regularized ML estimation is an active area
of research [39]. In the simulation and case studies in this article, standard errors are
computed based on nonparametric bootstrap [49]. The estimated model parameter of
interest γ depends on a data-driven determined regularization parameter λ̂opt that is
determined by the AIC or the BIC criterion.

The bootstrap can either determine the optimal regularization parameter or one ap-
plies regularized ML using the optimal λ̂opt parameter obtained from the original sample.
Typically, the former introduces additional variability. In a preliminary analysis in Simu-
lated Case Study 2, it turned out that the average chosen λ parameter in bootstrap samples
was substantially larger than the regularization parameter λ̂opt from the original sample.
For this reason, we only report results of standard errors in bootstrap samples that use the
fixed regularization parameter λ̂opt.
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Furthermore, it is vital to implement a test of statistical significance for regularized
latent DIF effects ei or differences in class-specific item difficulties. It has been suggested
to report the proportion of bootstrap samples pboot in which a regularized DIF effect was
estimated equal to zero [39]. Values of pboot that are sufficiently close to zero indicate latent
DIF effects ei that significantly differ from zero.

3. Simulation Study 1: Simulation Study Involving Two Latent Classes

In this section, results from a simulation study of an RMRM with two latent classes
are presented.

3.1. Method

The simulated datasets consisted of I = 20 items with two latent classes that followed
an MRM. The class-specific item difficulties bic were decomposed into common item
difficulties bi0 and DIF effects ei according to Equation (12). The common item difficulties
of the 20 items had equidistant values between −2.0 and 2.0.

Four out of twenty items had DIF effects that differed from zero. Items 6, 8, and 17
had a positive DIF effect δ, while item 11 had a negative DIF effect −δ. In the simulation
study, the size of the DIF effect δ was either 0.5 or 1.0.

For identification, the mean µ1 of the first latent class was set to zero. The standard
deviation σ1 of the first latent class was set to 1.0. For the second latent class, µ2 = 0.5
and σ2 = 0.8 were chosen throughout the simulation. The class probabilities were fixed to
p1 = 0.7 and p2 = 0.3.

Moreover, we varied the sample size N in the simulation. We chose sample sizes of
1000, 2500, and 5000 to cover a range of moderate to large sample sizes.

To avoid label switching issues in estimating the RMRM, we utilized a weak prior
distribution on the logistically transformed the second latent class probability q2 (i.e.,
p2 = Ψ(q2)). The prior π(q2) was chosen as the normal distribution N(−0.7, 0.4), meaning
that the second class was the smaller one to avoid label switching issues when estimating
the mixture Rasch model. The model parameters b0 (i.e., common item difficulties bi0 for
i = 1, . . . , I), e (i.e., all DIF effects ei for i = 1, . . . , I), and γ (i.e., σ1, µ2, σ2, and q2) were
obtained by minimizing the penalized likelihood function:

H(b0, e, γ; X) = −l(b0, e, γ; X) + N
I

∑
i=1
PSCAD(ei, λ)− π(q2) . (13)

In total, 5000 replications were simulated in the 2 (DIF effects) × 3 (sample size)
= 6 conditions.

The following values of the regularization parameter λ were chosen in a decreasing
order while using the obtained estimates from the previous estimation as starting values:
1.00, 0.95, 0.90, 0.85, 0.80, 0.75, 0.70, 0.65, 0.60, 0.55, 0.50, 0.48, 0.46, 0.44, 0.42, 0.40, 0.38, 0.36,
0.34, 0.32, 0.30, 0.29, 0.28, 0.27, 0.26, 0.25, 0.24, 0.23, 0.22, 0.21, 0.20, 0.19, 0.18, 0.17, 0.16, 0.15,
0.14, 0.13, 0.12, 0.11, 0.10, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01, 0.009, 0.008, 0.007,
0.006, and 0.005. DIF effect estimates ei were considered as zero if their absolute values did
not exceed 0.02. In the Results Section 3.2, we report model estimates for fixed λ values of
0.05, 0.10, and 0.15, as well as parameter estimates resulting from models with minimum
AIC or BIC values. The performance of parameter estimates was assessed by bias and root
mean square error (RMSE).

The whole simulation was conducted in the R software [50] using the xxirt() function
in the R package sirt [48]. The code for the data simulation and model estimation can be
found at https://osf.io/wrs5k/ (accessed on 30 September 2022).

3.2. Results

In Table 1, the average number of detected DIF effects (i.e., estimated to be different
from zero) is presented. Four out of twenty items had DIF effects different from zero.

https://osf.io/wrs5k/
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Interestingly, the number of detected DIF effects was substantially underestimated if the
BIC was used as the regularization parameter selection criterion, except in the condition of
large DIF effects of 1 (i.e., |DIF| = 1) and a large sample size of N = 5000 with an average of
3.9 detected DIF effects. In particular, model selection based on BIC had worse performance
in the case of a small DIF effect of |DIF| = 0.5. In contrast, the model estimated with the
AIC selection criterion had, on average, 5 to 7 detected DIF effects, which was slightly
higher than the number of true DIF effects.

Table 1. Simulation Study 1: Average number of detected DIF effects ei.

Choice of λ

|DIF| N AIC BIC 0.05 0.1 0.15

0.5
1000 6.4 0.4 12.5 9.1 5.3
2500 5.3 0.2 8.6 5.7 3.4
5000 5.1 0.3 7.7 4.4 2.0

1
1000 6.9 0.9 13.0 9.4 5.6
2500 6.7 2.5 9.8 6.4 4.4
5000 6.3 3.9 7.9 4.9 4.0

Note. |DIF| = absolute value of DIF effects ei ; N = sample size; λ = regularization parameter. Note that 4 out of
20 items had DIF effects different from zero.

If the RMRM is estimated with a fixed regularization parameter λ, the average number
of detected DIF effects decreases with increasing sample sizes. Overall, model selection
based on AIC might be preferred over BIC if it is more critical not to detect true DIF effects.

Table 2 presents type I error for non-DIF effects ei (i.e., ei was zero in the simulated
data) and power rates for DIF effects ei (i.e., ei had values different from zero). It turned
out that type I error rates were relatively high if the AIC was used as the model selection
criterion (Min = 14.6, Max = 30.7). Type I error rates for the model selection based on
BIC ranged between 0.4 and 1.7. These low type I error rates for the BIC criterion come
at the price that BIC has very low power for detecting DIF effects if the true DIF effect is
small (i.e., |DIF| = 0.5) or in not too large sample sizes (i.e., N = 1000). Interestingly, for
the smallest sample size of N = 1000 and small DIF effects, type I error rates and power
rates were very close to each other (i.e., based on AIC: type I error rate was 30.7 and the
power rate was 38.3), but power rates improve in large sample sizes or for large DIF effects.

Table 2. Simulation Study 1: Average type I error rates for items with no DIF effects and average
power rates for items with DIF effects.

Type I Error Rate for Non-DIF Effects ei Power Rate for DIF Effects ei

Choice of λ Choice of λ

|DIF| N AIC BIC 0.05 0.1 0.15 AIC BIC 0.05 0.1 0.15

0.5
1000 30.7 1.6 61.1 44.1 25.3 38.3 2.7 69.0 52.3 31.1
2500 21.3 0.5 37.1 23.2 13.3 46.8 2.7 67.4 48.6 31.2
5000 17.5 0.4 29.6 14.8 5.9 58.5 5.4 74.4 52.0 27.1

1
1000 25.6 1.7 58.5 38.4 19.7 70.0 16.5 90.1 80.5 61.6
2500 17.6 1.0 36.4 16.1 5.8 95.9 58.0 98.9 95.3 87.5
5000 14.6 0.6 24.5 5.5 0.8 99.9 95.4 100.0 99.6 96.0

Note. |DIF| = absolute value of DIF effects ei ; N = sample size; λ = regularization parameter.

Figure 1 displays the optimal regularization parameter λopt as a function of sample
size, the size of DIF effects, and the chosen information criterion AIC or BIC. It can be seen
that λopt values were generally smaller when based on AIC instead of BIC. Moreover, the
optimal regularization parameter decreases with a larger sample size. It is evident that
there is substantial variability in the estimated λopt values in repeated samples. It can be
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seen that the largest λopt value was frequently obtained for BIC (i.e., for a small DIF effect
of |DIF| = 0.5 or N = 1000). In this case, all latent DIF effects were regularized.
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Figure 1. Simulation Study 1: Empirical histograms of optimal regularization parameters λopt as a
function of sample size N, size of DIF effects and the chosen information criterion (i.e., AIC or BIC).
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Table 3 displays average absolute biases and RMSE for different parameters or av-
eraged across groups of parameters. In general, bias and RMSE were reduced in larger
samples and were smaller in the presence of large DIF effects than for small DIF effects.
Interestingly, and in coherence with a statement in [51], bias and RMSE for model parame-
ters can be smaller for a fixed regularization parameter (i.e., for λ = 0.10) compared with
model selection based on AIC or BIC. The property of thresholding parameter estimates to
zero is helpful in parameter selection (i.e., detecting DIF effects) but has disadvantages for
statistical frequentist properties of bias and RMSE. It remains to be investigated whether a
noticeable increase in type I error rates for a fixed regularization parameter λ is of concern
in applications of the RMRM. Overall, bias and RMSE were smaller if the model selection
was carried out based on AIC instead of BIC.

Table 3. Simulation Study 1: Average absolute bias (bias) and root mean square error of model
parameters.

Bias RMSE

Choice of λ Choice of λ

Par |DIF| N AIC BIC 0.05 0.1 0.15 AIC BIC 0.05 0.1 0.15

bi

0.5
1000 0.04 0.05 0.03 0.03 0.04 0.17 0.17 0.16 0.16 0.17
2500 0.02 0.02 0.02 0.02 0.02 0.13 0.13 0.13 0.13 0.13
5000 0.03 0.03 0.03 0.03 0.03 0.10 0.10 0.10 0.10 0.10

1
1000 0.04 0.04 0.04 0.04 0.04 0.16 0.17 0.16 0.16 0.17
2500 0.04 0.05 0.04 0.04 0.04 0.10 0.11 0.10 0.10 0.10
5000 0.04 0.04 0.04 0.04 0.04 0.08 0.07 0.08 0.08 0.07

µ2

0.5
1000 0.15 0.19 0.12 0.13 0.16 0.34 0.37 0.30 0.31 0.34
2500 0.09 0.11 0.08 0.09 0.10 0.28 0.29 0.27 0.27 0.28
5000 0.05 0.07 0.05 0.05 0.07 0.22 0.23 0.21 0.21 0.22

1
1000 0.09 0.13 0.07 0.08 0.10 0.29 0.33 0.26 0.27 0.30
2500 0.02 0.03 0.02 0.02 0.02 0.17 0.18 0.16 0.17 0.17
5000 0.01 0.01 0.01 0.01 0.01 0.11 0.11 0.11 0.11 0.11

σ1

0.5
1000 0.00 0.01 0.00 0.00 0.01 0.10 0.10 0.09 0.09 0.10
2500 0.00 0.01 0.00 0.00 0.01 0.07 0.07 0.07 0.07 0.07
5000 0.00 0.00 0.00 0.00 0.00 0.05 0.05 0.05 0.05 0.05

1
1000 0.01 0.02 0.00 0.00 0.01 0.09 0.10 0.09 0.09 0.09
2500 0.00 0.00 0.00 0.00 0.00 0.05 0.06 0.05 0.05 0.05
5000 0.01 0.01 0.01 0.01 0.00 0.04 0.04 0.04 0.04 0.04

σ2

0.5
1000 0.06 0.05 0.06 0.06 0.06 0.16 0.16 0.15 0.15 0.16
2500 0.05 0.03 0.05 0.05 0.05 0.11 0.11 0.11 0.11 0.11
5000 0.03 0.03 0.04 0.04 0.03 0.08 0.08 0.08 0.08 0.08

1
1000 0.04 0.03 0.04 0.04 0.04 0.14 0.15 0.14 0.14 0.14
2500 0.03 0.02 0.03 0.03 0.03 0.08 0.09 0.08 0.08 0.08
5000 0.03 0.02 0.03 0.03 0.02 0.06 0.06 0.06 0.06 0.06

p2

0.5
1000 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.04 0.04 0.04
2500 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.04 0.04 0.04
5000 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04

1
1000 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.05 0.05 0.04
2500 0.02 0.02 0.02 0.02 0.02 0.04 0.04 0.04 0.04 0.04
5000 0.01 0.01 0.01 0.01 0.01 0.04 0.03 0.03 0.03 0.03
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Table 3. Cont.

Bias RMSE

Choice of λ Choice of λ

Par |DIF| N AIC BIC 0.05 0.1 0.15 AIC BIC 0.05 0.1 0.15

ei (no DIF)

0.5
1000 0.04 0.01 0.03 0.04 0.05 0.57 0.20 0.60 0.59 0.56
2500 0.03 0.00 0.02 0.03 0.03 0.36 0.10 0.38 0.37 0.34
5000 0.02 0.00 0.02 0.02 0.02 0.25 0.07 0.27 0.25 0.21

1
1000 0.05 0.01 0.04 0.04 0.05 0.46 0.19 0.50 0.48 0.45
2500 0.01 0.00 0.01 0.02 0.01 0.23 0.09 0.26 0.23 0.18
5000 0.01 0.00 0.01 0.01 0.00 0.15 0.05 0.17 0.11 0.05

ei (DIF)

0.5
1000 0.22 0.46 0.14 0.17 0.25 0.62 0.54 0.59 0.60 0.63
2500 0.15 0.47 0.09 0.14 0.22 0.47 0.51 0.42 0.47 0.51
5000 0.13 0.45 0.09 0.15 0.27 0.40 0.50 0.35 0.41 0.48

1
1000 0.26 0.77 0.19 0.22 0.31 0.67 0.95 0.56 0.61 0.72
2500 0.08 0.37 0.07 0.09 0.12 0.37 0.68 0.34 0.37 0.44
5000 0.06 0.08 0.06 0.06 0.07 0.23 0.29 0.23 0.23 0.28

Note. Par = parameter group; |DIF| = absolute value of DIF effects ei ; N = sample size; λ = regularization
parameter.

Table 3 only contains a number of selected values of the regularization parameter λ.
In Figure 2, the RMSE of parameters µ2, σ2, and p2 are displayed and compared with the
RMSE based on the optimal regularization parameter obtained from AIC or BIC. It can be
seen that small fixed λ values were competitive with optimal regularization parameters in
terms of RMSE. The situation slightly differs for the p2 parameter. For moderate sample
sizes N = 1000 or N = 2500, very large λ values near to one led to the lowest RMSE values.

Finally, Figure 3 presents the RMSE for parameter groups bi (parameters “b”), latent
DIF effects ei with a true value of zero (i.e., non-DIF effects; parameters “e_nodif”), and
latent DIF effects ei with a true value different from zero (parameters “e_dif”) for selected
values of the regularization parameter λ. It can be beneficial for item difficulties bi in
terms of RMSE if small fixed λ values are chosen. Obviously, using a large λ value for
non-DIF effects is advantageous because these parameters would be correctly regularized.
However, a large fixed λ value comes at the price of not detecting true DIF effects. To
sum up, these findings illustrate that choosing a fixed λ value could outperform AIC- or
BIC-based regularized estimation if RMSE were the statistical criterion that would drive
the estimator choice.
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Figure 2. Simulation Study 1: RMSE for parameters µ2 (mu2), σ2 (sig2), and p2 (prob2) as a function
of a fixed regularization parameter λ and optimal regularization parameters obtained from AIC
or BIC.
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Figure 3. Simulation Study 1: Average RMSE for parameter groups of item difficulties bi (b), DIF
effects ei with true values of zero (e_nodif), DIF effects ei with true values different from zero (e_dif)
as a function of a fixed regularization parameter λ and optimal regularization parameters obtained
from AIC or BIC.

4. Simulated Case Study 2: Illustrative Example with a Nonspeeded and a Speeded
Latent Class

In a linear fixed administered test, there is a fixed order of test items. Frequently, items
at later test positions are prone to position effects; that is, they are difficultly compared
with the situation if they were administered at earlier test positions. Similarly, test takers
can show a performance decline [52–54]. This means that persons show lower performance
at the end of the test compared with the beginning of the test. Importantly, the extent of
performance decline can vary across persons [55,56].

Performance decline can occur if the test is speeded; that is, not all test takers reach
the end of the test due to low item processing, limited testing time, or a lack of motivation.
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MRMs have been proposed for handling speededness effects [57]. Bolt [57] proposed to
use a MRM with two latent classes. The first class refers to the nonspeeded class of test
takers, while the second class refers to the speeded class of test takers. The speeded class is
typically characterized by increased item difficulties for items at the end of the test [57]. In
this simulated case study, we assume two latent classes in the MRM, where the class-specific
item difficulties are modeled as

bi1 = bi0
bi2 = bi0 + ei

. (14)

In the simulated dataset, we used item parameters adapted from [57]. The item difficulties
are shown in Figure 4 and numerically presented in Table 4. In total, there are 26 test items.
Only items 19 to 26 were prone to speeededness effects and had DIF effects ei larger than
zero, while items 1 to 18 had equal item difficulties in the two latent classes (i.e., they had
no DIF effects). The nonspeeded class had a class probability of p1 = 0.75, and the speeded
class had a probability p2 = 0.25. The means of the two classes in the MRM were µ1 = 0
and µ2 = −0.4, respectively. Hence, the speeded class had a lower ability on average.
Moreover, the standard deviations were set to σ1 = 1.1 and σ2 = 1.4, respectively.
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Figure 4. Simulated Case Study 2: True item difficulties bic.
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Table 4. Simulated Case Study 2: True and estimated item parameters.

bi ei

Item True Est SE True Est pboot

1 −1.4 −1.31 0.16 0.0 0.00 0.74
2 −0.9 −0.85 0.15 0.0 0.00 0.81
3 −1.6 −1.59 0.16 0.0 0.00 0.82
4 −1.1 −1.02 0.17 0.0 0.00 0.77
5 0.3 0.32 0.20 0.0 0.00 0.59
6 0.4 0.44 0.17 0.0 0.00 0.77
7 0.4 0.50 0.15 0.0 0.00 0.86
8 0.9 0.95 0.15 0.0 0.00 0.83
9 0.5 0.56 0.21 0.0 0.00 0.63

10 0.5 0.58 0.18 0.0 0.00 0.81
11 0.9 0.94 0.15 0.0 0.00 0.84
12 0.4 0.56 0.29 0.0 −0.34 0.18
13 −1.6 −1.68 0.17 0.0 0.25 0.65
14 −0.6 −0.75 0.27 0.0 0.49 0.20
15 −0.6 −0.54 0.17 0.0 0.00 0.85
16 0.9 1.01 0.20 0.0 0.00 0.60
17 0.4 0.53 0.20 0.0 −0.27 0.72
18 0.9 1.04 0.22 0.0 −0.24 0.36
19 0.5 0.59 0.16 0.1 0.00 0.65
20 −0.1 0.03 0.15 0.3 0.00 0.87
21 −1.9 −1.75 0.18 0.5 0.00 0.85
22 0.3 0.22 0.18 0.4 0.43 0.67
23 −0.9 −0.80 0.25 0.8 0.40 0.35
24 0.0 0.01 0.22 0.7 0.29 0.23
25 −1.2 −1.42 0.27 0.8 1.03 0.23
26 −0.2 −0.22 0.23 0.6 0.57 0.31

Note. bi = item difficulty; ei = DIF effect; True = true item parameters; Est = estimated item parameters;
SE = standard error estimated by nonparametric bootstrap; pboot = bootstrap probability of obtaining an
estimate equal to zero.

A dataset of a sample size N = 6000 was generated. We estimated an RMRM using
the parameterization (14). We used the identification constraint µ̂1 = 0. The regularization
parameter λ was specified on an equidistant grid of values between 0.50 and 0.01 with
decrements of 0.01. Replication material and the dataset can be found at https://osf.io/
wrs5k/ (accessed on 30 September 2022).

For illustrating standard error computation, we used a nonparametric bootstrap with
500 bootstrap samples. We determined the standard error by using the robust scale param-
eter median absolute deviation (MAD implemented with the R function stats::mad(); [58])
of bootstrap parameter estimates to diminish the potential effect of outliers.

Figure 5 displays the AIC as a function of increasing values of the regularization
parameter λ. It turned out that λ = 0.06 provided the least AIC value. Therefore, we report
results based on this regularization parameter.

The regularization paths for DIF effects ei are displayed in Figure 6. With increasing
values of λ, fewer DIF effects were estimated as nonzero. For example, for λ = 0.20, only
one estimated DIF effect differed from zero.

https://osf.io/wrs5k/
https://osf.io/wrs5k/
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Figure 5. Simulated Case Study 2: AIC as a function of the regularization parameter λ. The red
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The standard deviation of the first class was estimated as σ̂1 = 0.94 (SE = 0.10), which
somehow differed from the true value σ1 = 1.1. The second speeded latent class had the
following estimated parameters, which closely resembled the data-generating parameters:
p̂2 = 0.36 (SE = 0.16, true: p2 = 0.25), µ̂2 = −0.15 (SE = 0.33, true: µ2 = −0.4), and
σ̂2 = 1.38 (SE = 0.18, true: σ2 = 1.40).

The estimated item parameters are shown in Table 4. It can be seen that for the 8 DIF
items, 5 DIF effects ei were correctly estimated as different from zero, while 3 DIF items had
estimated DIF effects of 0. Notably, 5 non-DIF items (i.e., items 12, 13, 14, 17, and 18) had
estimated DIF effects different from zero. Overall, the estimated common item difficulties
b̂0i were close to the data-generating values. In accordance with findings in Simulation
Study 1, the detection of DIF effects based on the BIC was less satisfactory than based on
the AIC. Based on this illustrative study, it turned out that bootstrap probabilities pboot
(see Section 2.3) were substantially larger than 0.05 for true latent DIF effects that were
estimated as different from zero.

5. Simulated Case Study 3: Illustrative Example Involving Three Latent Classes

In Simulated Case Study 3, we simulate data from an MRM with three latent classes.
Bolt [59] presented an application in which sparse DIF effects occur. Figure 7 shows the
data-generating item difficulties for the simulated dataset in this Simulated Case Study 3
that were adapted from [59]. It can be seen that many of the class-specific item difficulties
were equal to each other. RMRM can be used to effectively estimate Rasch mixtures under
some sparsity assumptions of DIF effects.
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Figure 7. Simulated Case Study 3: True item difficulties bic.

The simulated dataset had a sample size N = 5000 and I = 19 items. The data-
generating item parameters can be found in Table 5. The class-specific distribution param-
eters were µ1 = 0, σ1 = 1, p1 = 0.45 for Class 1, µ2 = 0.8, σ2 = 0.7, p2 = 0.35 for Class 2,
and µ3 = −0.5, σ3 = 1.2, p3 = 0.2 for Class 3.
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Table 5. Simulated Case Study 3: True and estimated item parameters.

True Est Fused Reg bic Est Reg eic

Item bi1 bi2 bi3 bi1 bi2 bi3 bi1 bi2 bi3

1 −0.7 1.4 −0.7 −0.74 1.47 −0.74 −0.72 1.44 −0.72
2 −0.7 1.4 −0.7 −0.70 1.44 −0.70 −0.68 1.41 −0.68
3 −2.5 1.1 −2.5 −2.62 1.13 −2.19 −2.61 1.10 −2.18
4 −1.3 1.3 −1.3 −1.29 1.33 −1.29 −1.27 1.30 −1.27
5 −1.3 1.0 −1.3 −1.32 1.07 −1.32 −1.30 1.05 −1.30
6 1.1 1.1 −0.6 1.17 1.17 −0.57 1.17 1.17 −0.56
7 1.0 −1.1 −0.6 1.03 −1.21 −0.64 1.04 −1.24 −0.62
8 0.0 −1.8 −1.2 −0.05 −1.73 −1.34 −0.05 −1.76 −1.31
9 0.4 −1.2 −1.2 0.42 −1.16 −1.16 0.42 −1.16 −1.16

10 1.5 0.3 0.3 1.45 0.30 0.30 1.45 0.29 0.29
11 2.3 3.7 3.7 2.34 3.79 3.79 2.34 3.81 3.81
12 −0.9 −1.5 1.0 −0.84 −1.41 1.05 −0.83 −1.43 1.08
13 −0.9 −1.5 1.0 −0.92 −1.42 1.15 −0.91 −1.44 1.17
14 −1.2 −1.2 −1.2 −1.16 −1.16 −1.16 −1.15 −1.15 −1.15
15 −1.8 0.0 3.3 −1.70 0.19 2.89 −1.69 0.16 3.06
16 0.0 0.0 3.3 0.07 0.07 3.21 0.07 0.07 3.24
17 1.0 1.0 3.4 1.00 1.00 3.20 0.99 0.99 3.22
18 0.0 −1.2 −1.2 0.02 −1.26 −1.26 0.02 −1.26 −1.26
19 1.4 −0.4 −0.4 1.49 −0.48 −0.48 1.49 −0.63 −0.33

Note. True = true item parameters; Est Fused Reg bic = Estimated item parameters using fused regularization
for item difficulties bic; Est Reg eic = Estimated item parameters using SCAD regularization for DIF effects eic;
bic = item difficulty of item i in class c. Correctly detected DIF effects are printed in black bold font. Incorrectly
detected DIF effects are printed in red bold font.

We estimated the RMRM in two variants. First, we applied fused regularization to item
parameter differences bic− bic′ (see Equation (8)). Second, we used SCAD regularization for
class-specific DIF effects eic based on the decomposition (9) and the regularized likelihood
function (11). We used the identification constraint µ̂1 = 0 in model estimation. Replication
material can be found at https://osf.io/wrs5k/ (accessed on 30 September 2022). We
did not carry out a bootstrap to compute standard errors because it would require some
computational effort, and our primary interests were only interpretational purposes.

The optimal regularization parameter λ was chosen using the least AIC value. It was
λ = 0.07 for the two estimation approaches. Overall, it turned out that the estimated model
parameters were very close in the two estimation approaches. The estimated distribution
parameters for fused regularization were µ̂1 = 0, σ̂1 = 1.03, p̂1 = 0.53 for Class 1, µ̂2 = 0.83,
σ̂2 = 0.73, p̂2 = 0.33 for Class 2, and µ̂3 = −0.56, σ̂3 = 1.12, p̂3 = 0.14 for Class 3. The
estimated distribution parameters for SCAD regularization for DIF effects eic were µ̂1 = 0,
σ̂1 = 1.03, p̂1 = 0.53 for Class 1, µ̂2 = 0.81, σ̂2 = 0.74, p̂2 = 0.33 for Class 2, and µ̂3 = −0.54,
σ̂3 = 1.12, p̂3 = 0.14 for Class 3.

The estimated class-specific item difficulties are displayed in Table 5. It is evident
that the pattern of true DIF effects was perfectly detected by fused and SCAD regulariza-
tion. Moreover, one item (item 3) or two items (items 3 and 19) were detected to possess
additional DIF effects that were not simulated for fused and SCAD regularization, respec-
tively. Overall, the item parameter differences between the two estimation approaches
were negligible.

6. Discussion

In this article, we proposed a regularized estimation approach of the mixture Rasch
model. By putting a regularization penalty on differences in class-specific item difficulties
or on latent DIF effects, the interpretability of latent classes in the mixture Rasch model is
substantially eased. The regularization technique enables the automatic detection of latent
DIF effects and provides a parsimonious model selection.

https://osf.io/wrs5k/
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In the simulation study that involves two latent classes, model selection based on
AIC tended to outperform model selection based on BIC. With AIC, there is a tendency to
overestimate the number of DIF effects. At the same time, model selection based on BIC
substantially underestimates the number of DIF effects. Which of the two criteria should
be used in practice depends on the choice of how large type I error rates for non-DIF effects
should be tolerated while guaranteeing sufficiently large power rates for the detection of
DIF effects. In our view, AIC should be preferred because BIC would result in too many
true DIF effects that remain undetected.

We presented two case studies to illustrate the potential of regularized mixture Rasch
models. With sufficiently large sample sizes and using AIC for model selection, we suc-
cessfully recovered the data-generating structure of DIF effects. Our observation that BIC
should not be universally preferred over AIC was also confirmed in other research on the
mixture Rasch model [43]. Moreover, we could also replicate this finding for other classes
of item response models in our research [60].

We limited our simulation study only to sample sizes larger than 1000. Much smaller
sample sizes might be interesting in applied research. However, we think that the maximum
likelihood estimation of mixture models should involve large sample sizes (say, at least
larger than 500) to ensure a sufficiently stable estimation of model parameters. Investigating
the limits of applying the regularized mixture Rasch model might be an interesting topic of
future research.

The computation of standard errors by nonparametric bootstrap has only been illus-
trated in Simulated Case Study 2. In future research, different standard error computation
methods for estimating regularized mixture Rasch models might be investigated.

As with any newly proposed statistical technique, the future will tell whether the
regularization approach can prove helpful in empirical applications. We think that this
technique provides a means for obtaining more interpretable and less variable class-specific
item parameter estimates. Likely, the regularization approach can also be applied to other
classes of mixture latent variable models, such as the two- or three-parameter mixture
logistic item response model or factor mixture models.

In conclusion, we believe that regularized mixture Rasch models can be used in ex-
ploratory analysis in the same way as nonregularized mixture Rasch models. We recognize
the primary potential of regularization in obtaining more structured (and more stable)
results if the true class-specific item difficulties follow a sparsity assumption. This as-
sumption might not be realistic in all applications. However, one can at least include the
regularized mixture Rasch model in the researcher’s toolbox for analyzing dichotomous
item responses.
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The following abbreviations are used in this manuscript:

AIC Akaike information criterion
BIC Bayesian information criterion
DIF differential item functioning
EM expectation maximization
MRM mixture Rasch model
RM Rasch model
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RMRM regularized mixture Rasch model
RMSE root mean square error
SCAD smoothly clipped absolute deviation
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