
Citation: Ayfantopoulou, G.; Militsis,

M.N.; Grau, J.M.S.; Basbas, S.

Improving Map Matching of Floating

Car Data with Artificial Intelligence

Techniques. Information 2022, 13, 508.

https://doi.org/10.3390/info13110508

Academic Editors: Miguel Félix Mata

Rivera and Roberto Zagal Flores

Received: 10 September 2022

Accepted: 21 October 2022

Published: 24 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

Improving Map Matching of Floating Car Data with Artificial
Intelligence Techniques
Georgia Ayfantopoulou 1, Marios Nikolaos Militsis 1, Josep Maria Salanova Grau 1 and Socrates Basbas 2,*

1 Center for Research and Technology Hellas, Hellenic Institute of Transport, 57 001 Thessaloniki, Greece
2 Laboratory of Transportation Planning, Transportation Engineering & Highway Engineering,

Department of Transportation & Hydraulic Engineering, School of Rural & Surveying Engineering,
Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece

* Correspondence: smpasmpa@auth.gr

Abstract: Map matching is a crucial data processing task for transferring measurements from the
dynamic sensor location to the relevant road segment. It is especially important when estimating
road network speed by using probe vehicles (floating car data) as speed measurement sensors. Most
common approaches rely on finding the closet road segment, but road network geometry (e.g., dense
areas, two-way streets, and superposition of road segments due to different heights) and inaccuracy
in the GNSS location (up to decades of meters in urban areas) can wrongly allocate up to 30% of the
measurements. More advanced methods rely on taking the topology of the network into account,
significantly improving the accuracy at a higher computational cost, especially when the accuracy of
the GNSS location is low. In order to both improve the accuracy of the “closet road segment” methods
and reduce the processing time of the topology-based methods, the data can be pre-processed using
AI techniques to reduce noise created by the inaccuracy of the GNSS location and improve the overall
accuracy of the map-matching task. This paper applies AI to correct GNSS locations and improve
the map-matching results, achieving a matching accuracy of 76%. The proposed methodology is
demonstrated to the floating car data generated by a fleet of 1200 taxi vehicles in Thessaloniki used
to estimate road network speed in real time for information services and for supporting traffic
management in the city.

Keywords: map matching; GNSS trajectory; floating car data; artificial intelligence; deep neural networks

1. Introduction

Route optimization [1], traffic scheduling [2], fleet management [3], travel time esti-
mation [4], and other location-based services are significantly dependent on the accurate
mapping of raw GNSS trajectories onto the segments of road networks. However, satellite
visibility limitations, attenuated satellite signals, and GNSS device malfunctions may all
result in up to 20 m of accuracy degradation [5]. Dual frequency capability overcomes the
outlined noise sources; however, it is not widely available. Different GNSS device settings
and unpredictable communication failures can result in unintended sampling times due to
limited energy and transmission bandwidth. Currently available commercial digital maps
are prone to deficiencies, resulting in additional matching errors ranging from 5 to 20 m [6].
Further noise can be induced by complicated road network geometry (e.g., roundabouts,
bidirectional streets, and superposition of road segments due to different heights) [7], dense
areas in the urban environment commonly referred to as urban canyons [8], and varying
weather conditions [9]. Therefore, map matching is indispensable to accurately identify the
road segments that a vehicle travelled by mitigating the prevalent discrepancies between
the recorded raw GNSS trajectory and the ground truth one [10]. As a result, map matching
facilitates the effectual and robust functionality of intelligent transportation systems by
capturing the vehicle routes on the urban road network online [11,12].

Information 2022, 13, 508. https://doi.org/10.3390/info13110508 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info13110508
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0003-1564-2471
https://orcid.org/0000-0002-3706-8530
https://doi.org/10.3390/info13110508
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info13110508?type=check_update&version=2

Information 2022, 13, 508 2 of 14

A lot of effort has been put into exploring map-matching algorithms to support
various trajectory-based applications over the last two decades [13–15]. A map-matching
algorithm can be classified as online or offline based on the way it processes GNSS data.
Online methods deal with real-time data streams, while offline methods process historical
trajectory data [16].

Depending on the network and trip features taken into account, map-matching algo-
rithms can be categorized into four categories [10]. Geometric map-matching algorithms
exclusively consider the geometry of the road network. Topology based map-matching
algorithms consider the topology of the network, which consists of features such as intersec-
tion turning restrictions, road segments direction, and the connectivity between consecutive
segments. From a stochastic perspective, probabilistic map-matching algorithms assign
probabilities to multiple road segments in a confidence region surrounding a GNSS position.
Finally, algorithms that are considered to be more precise and robust to the noise sources
in complex urban road networks are called advanced map-matching algorithms. The last
class of algorithms consists of more refined conceptual models, such as Hidden Markov
Models (HMMs) [17], which are often used for benchmarking.

Most of the existing algorithms dwell a great deal on the geometric and topological
features of the road network while not taking advantage of the enormous vehicle trajectory
data and the internal dependencies between consecutive positions. Cumulative travel
patterns embedded in massive amounts of GNSS trajectory data urged by the proliferation
of smart devices can only be captured by shifting from rule-based approaches to data-
driven perspectives. Although methods, such as the weight-based method [5], Kalman
filter [18], Hidden Markov Model (HMM) [1,7], and fuzzy control theory [19], are fast
and intuitive, applying pre-defined rules for independently processing each sequence of
positions potentially leads to poor map matching. As the methods discussed above do
not utilize historical trajectories, they omit important information regarding certain users’
mobility patterns. Moreover, they do not consider historical trajectories of other vehicles,
making it impossible to reveal important features of traffic distribution and road network,
which would significantly improve the matching performance. Rule-based algorithms, and
especially the topology-based ones, fail to address the very frequent violations of road
traffic rules made by individual drivers, either deliberately or inadvertently. It is therefore
impossible to snap such recorded trajectories on real road segments. Rule-based algorithms
perform significantly worse when their rules are not updated according to occasional or
permanent network topology modifications.

In order to address the aforementioned challenges and drawbacks of rule-based
algorithms on the map-matching task, this paper applies AI and especially deep neural
networks. Effectively capturing internal dependencies between GNSS sequences, as well as
external correlations between recorded trajectories and road network paths, can be achieved
by leveraging mechanisms such as the self and multi head attention modules of a prominent
deep learning architecture in the field of language modeling and machine translation,
namely transformer [20]. Transformer, one of the most important recent breakthroughs
of AI, is expected to capture geometric and topological rules of the road network as
well as their violations and leverage information in big trajectory data with outstanding
performance while achieving parallel computing due to the multi-head scheme of the
attention module. The proposed methodology is demonstrated on the floating car data
generated by a fleet of 1200 taxi vehicles in Thessaloniki used to estimate road network
speed in real time for information services and for supporting traffic management in the
city. It can be regarded as a hybrid methodology, both offline and online, in the sense that
during the training phase it utilizes historical trajectory data, while during the inference,
real-time stream data are accepted as the input.

The remainder of the paper is structured as follows. The state-of-the-art method is
presented in Section 2. The methodology of the proposed model is outlined in Section 3.
Section 3.1 defines the framework in which the model is demonstrated. Section 3.2 intro-
duces the data used. A detailed description of the model architecture as well as its input

Information 2022, 13, 508 3 of 14

and output are presented in Section 3.3. In Section 4, the evaluation results are presented
based on the proposed metrics. The methodology and results are summarized in Section 5,
whereas limitations, challenges, and future directions are outlined in Section 6.

2. State-of-the-Art Method

With the latest advancements in AI, a shift to data-driven methodologies has been
witnessed to overcome the inherent limitations of rule-based algorithms. In that end
deep learning architectures have been harnessed to enhance the performance of map
matching. A state-of-the-art method, among others, is the transformer-based map matching
in conjunction with data augmentation and the transfer learning approach proposed by
Jin et al. [21]. Jen et al. model the map-matching task as a classification task where
the model assigns probabilities to each one of the road segments mapping the recorded
GNSS location to the segment with the highest probability. In addition, they adopt the
widely used auto-regressive decoder, which consumes the previous output to determine
the current one. Transformer is one of the most influential advances in AI over the last
five years. It was introduced by Vaswani et al. [20] as a novel architecture for neural
machine translation based on the attention mechanism. In this paper, we approach the map-
matching task as a regression problem with parallel decoding. That is, the model outputs
the denoised coordinates for each recorded GNSS location, achieving an optimal trade-off
between the computational cost and global computation. Transformer allows for capturing
the internal dependencies between GNSS sequences as well as the external correlations
between recorded trajectories and road network paths, mainly due to its encoder–decoder
structure and the use of multi-head self-attention mechanism. The self-attention mechanism
proposed by Vaswani et al. [20] is described below.

Attention Mechanism

Attention facilitates each specific encoder and decoder layer to generate output se-
quences by focusing on different parts of the input sequence. The transformer model can
attend to information from various representation subspaces simultaneously at different
positions due to its multi-head self-attention mechanism [20]. For each specific head of the
multi-head attention scheme, give a single embedding of GNSS points in the latent space,
zi ∈ Rd, and three learned vectors ki ∈ Rd′ , qi ∈ Rd′ , and vi ∈ Rd′ , where d′ = d

H and H
represents the total number of heads utilized. The elements of these vectors, known as the
key, query, and value vectors, are learned in parallel with the rest of the model parameters
through the training procedure. To determine how much each position in the embedded
sequence attends to all the other positions, the attention weights αi, j are computed, where i
is a query index and j is a key/value index. The attention weights are computed through
the SoftMax of all the pairwise dot products between the query and key vectors through (1).

αi, j =
e

1√
d′

qT
i kj

∑n
j=1 e

1√
d′

qT
i kj

(1)

For a specific position on the sequence of embeddings, the final output of a single head
in the multi-head self-attention mechanism is computed through the is the aggregation of
value vectors weighted by the corresponding attention weights according to (2).

zi =
n

∑
j=1

αi, jvj (2)

The outputs of the H different heads are concatenated and projected linearly to a dif-
ferent subspace through a projection matrix with learned parameters, leading to the final
output of the multi-head self-attention layer.

The extra attention module lying in each one of the N decoder layers, functions simi-
larly to multi-headed self-attention layer except that it depends on the layer below it for the

Information 2022, 13, 508 4 of 14

query vectors and on the output of encoder stack for the key and value vectors. As a result,
each token in the decoder can attend to every token in the input sequence. This module is
similar to the regular attention mechanisms harnessed by encoder–decoder structures.

3. Materials and Methods

The dominant sequence transduction model, transformer, is utilized to address bottle-
necks in rule-based algorithms. Transformer is one of the most influential advances in AI
over the last five years. It was introduced by Vaswani et al. [20] as a new building block
for neural machine translation based on the attention mechanism. The term “attention”
is very well known in neuroscience, where individuals with processing bottlenecks focus
selectively on some components of information and ignore others. Mapping the same
concept to sequential data, the attention mechanism refers to the process of focusing on
certain parts of sequences or regions during learning and blurring the remaining ones [22].
The main advantage of models utilizing attention is their ability to effectively capture
long-term correlations. Transformer follows the encoder–decoder structure of the most
competitive neural sequence transduction models [23–25]. In the proposed map-matching
model, transformer is expected to capture the internal dependencies between GNSS se-
quences as well as the external correlations between recorded trajectories and road network
paths. Attention modules in both encoders and decoders are primarily responsible for
capturing correlations [26].

3.1. Case Study

The Hellenic Institute of Transport (CERTH-H.I.T.) [27], in cooperation with the largest
taxi association in Thessaloniki, Greece, “Taxiway” [28], has access in real time to the
floating car data (FCD) produced by the taxi fleet. The taxi fleet consists of more than one
thousand vehicles moving almost constantly in the region of Thessaloniki. Every moving
vehicle produces and transmits 1 GNSS record per 10–12 s or every 100 m of movement.
Each received record contains information about the moving speed, the vehicle’s exact
location, the altitude, the orientation, and additional information, such as whether the taxi
transfers a customer or if it currently waits for a customer in a taxi stand. In average in
H.I.T.’s Portal database servers nearly two thousand new FCD records per minute are being
stored. The H.I.T. Portal provides accurate real-time traffic information in Thessaloniki,
Greece, by estimating the average moving speed of the vehicles on the road network [29,30].
Currently, the speed estimations are produced every 15 min. The procedure to produce
such value from the raw data can be described briefly as follows. Initially, all the FCD
records are processed appropriately to remove any data that would allow for unauthorized
or voluntary user identification. Records are then filtered to remove any erroneous entries
with extraordinary speeds or unaligned coordinates, or entries generated by faulty GNSS
receivers. By harnessing rule-based map-matching algorithms taking into account the
network topology, each single record is mapped to the segment to which it is most likely
to belong with the highest degree of certainty. Then, for each segment, proper statistical
analysis is performed to provide a safe estimation of the average speed at which vehicle
traffic is conducted on it. The FCD records are combined with detections from various
Bluetooth sensors distributed across the city, generating accurate predictions regarding
travel times on paths of the network and road traffic estimation [31].

3.2. Data

The dataset consists of 158,315 raw trajectories collected between 1 November and
16 November 2021. Since it includes both business days and weekends and the trips
are sufficiently distributed over the course of a day, the dataset is expected to provide
insight on the complex traffic patterns governing the road network. The records were
manually annotated and snapped to the ground truth road segments. Regarding the
noise on the GNSS signals, the Pearson’s correlation coefficient [32] indicates that there is
no correlation between the noise along latitude and noise along longitude, as it is equal

Information 2022, 13, 508 5 of 14

to 0.0643 with a p-value very close to zero. The means and standard deviations of the
latitude and longitude noise are 0.483–14.745 m and 0.285–15.256 m, respectively. Based
on these findings, it can be stated that the noise for both coordinates follows the Gaussian
distribution. The average trip length is approximately 5 km with a standard deviation of
around 4 km, while the average travel time is 16 min with standard deviation of 14.54 min.
The distributions of both measures are highlighted in Figure 1. Overall, 60% of the total
recorded trips were traveled with one or more passengers, while the 40% were traveled
with no passenger in the vehicle. As indicated in Figure 2, the recorded GNSS points
(represented by the semitransparent grey area) are uniformly distributed over the road
network of the metropolitan area of Thessaloniki. Additionally, 80% of the dataset is
utilized for the training, 10 % is used for validation, and 10% for testing.

Information 2022, 13, x FOR PEER REVIEW 5 of 15

3.2. Data

The dataset consists of 158,315 raw trajectories collected between 1 November and 16

November 2021. Since it includes both business days and weekends and the trips are suf-

ficiently distributed over the course of a day, the dataset is expected to provide insight on

the complex traffic patterns governing the road network. The records were manually an-

notated and snapped to the ground truth road segments. Regarding the noise on the GNSS

signals, the Pearson’s correlation coefficient [32] indicates that there is no correlation be-

tween the noise along latitude and noise along longitude, as it is equal to 0.0643 with a p-

value very close to zero. The means and standard deviations of the latitude and longitude

noise are 0.483–14.745 m and 0.285–15.256 m, respectively. Based on these findings, it can

be stated that the noise for both coordinates follows the Gaussian distribution. The aver-

age trip length is approximately 5 km with a standard deviation of around 4 km, while

the average travel time is 16 min with standard deviation of 14.54 min. The distributions

of both measures are highlighted in Figure 1. Overall, 60% of the total recorded trips were

traveled with one or more passengers, while the 40% were traveled with no passenger in

the vehicle. As indicated in Figure 2, the recorded GNSS points (represented by the semi-

transparent grey area) are uniformly distributed over the road network of the metropoli-

tan area of Thessaloniki. Additionally, 80% of the dataset is utilized for the training, 10 %

is used for validation, and 10% for testing.

(a) (b)

Figure 1. The distribution of trip distance (a) and travel time (b). The average value is represented

by the vertical dashed line.
Figure 1. The distribution of trip distance (a) and travel time (b). The average value is represented by
the vertical dashed line.

Information 2022, 13, x FOR PEER REVIEW 6 of 15

Figure 2. Spatial distribution of recorded GNSS points on metropolitan area of Thessaloniki.

3.3. Model Architecture

The overall matching procedure can be described briefly as follows. The model ac-

cepts as input the raw GNSS trajectory, which is a sequence of chronologically ordered

GNSS points in vector format, denoted as 𝑥 = {𝑥1, 𝑥2, … , 𝑥𝑛}, where n represents the

length of the sequence. Each vector 𝑥𝑖 contains information regarding the latitude and

longitude, the sampling timestamp, and the speed, as well as the movement angle with

respect to the north. The encoder maps the raw trajectory into a sequence of continuous

representations 𝑧 = {𝑧1, 𝑧2, … , 𝑧𝑛} in the latent space. Each vector 𝑧𝑖 ∈ 𝑅𝑑 is the embed-

ding of each GNSS point in the latent space. Latent space sequences are of the same length

as physical space raw sequences. Originally, transformer was used in auto-regressive

fashion [25,33], generating one element of the output sequence at a time by consuming the

previously generated output. This scheme is also followed by Jin et al. [21]. Auto-regres-

sion is, however, prohibitively expensive (proportional to the output length, and difficult

to batch) to infer. As a result, parallel sequence generation has been harnessed in many

fields such as audio [34], machine translation [35], word representation learning [36],

speech recognition [37], and object detection [38]. Parallel decoding is also utilized

through this paper, due to its optimal trade-off between computational cost and global

computation. To this end, the decoder accepts as input a set of n learned positional em-

beddings of dimension d, where n is the length of the input sequence to the encoder. The

final feed forward neural network on top of the decoder stack outputs a sequence of de-

noised GNSS points 𝑦 = {𝑦1 , 𝑦2, … , 𝑦𝑛}, which are further processed through a refinement

and calibration procedure to generate trajectories in compliance with network geometry

and topology. The architecture of the transformer is depicted on Figure 3. The demon-

strated algorithm is implemented in Python [39], and for the transformer, Pytorch [40] is

leveraged.

Figure 2. Spatial distribution of recorded GNSS points on metropolitan area of Thessaloniki.

Information 2022, 13, 508 6 of 14

3.3. Model Architecture

The overall matching procedure can be described briefly as follows. The model accepts
as input the raw GNSS trajectory, which is a sequence of chronologically ordered GNSS
points in vector format, denoted as x = {x1, x2, . . . , xn}, where n represents the length of
the sequence. Each vector xi contains information regarding the latitude and longitude,
the sampling timestamp, and the speed, as well as the movement angle with respect to the
north. The encoder maps the raw trajectory into a sequence of continuous representations
z = {z1, z2, . . . , zn} in the latent space. Each vector zi ∈ Rd is the embedding of each
GNSS point in the latent space. Latent space sequences are of the same length as physical
space raw sequences. Originally, transformer was used in auto-regressive fashion [25,33],
generating one element of the output sequence at a time by consuming the previously
generated output. This scheme is also followed by Jin et al. [21]. Auto-regression is,
however, prohibitively expensive (proportional to the output length, and difficult to batch)
to infer. As a result, parallel sequence generation has been harnessed in many fields
such as audio [34], machine translation [35], word representation learning [36], speech
recognition [37], and object detection [38]. Parallel decoding is also utilized through this
paper, due to its optimal trade-off between computational cost and global computation.
To this end, the decoder accepts as input a set of n learned positional embeddings of
dimension d, where n is the length of the input sequence to the encoder. The final feed
forward neural network on top of the decoder stack outputs a sequence of denoised
GNSS points y = {y1, y2, . . . , yn}, which are further processed through a refinement and
calibration procedure to generate trajectories in compliance with network geometry and
topology. The architecture of the transformer is depicted on Figure 3. The demonstrated
algorithm is implemented in Python [39], and for the transformer, Pytorch [40] is leveraged.

Information 2022, 13, x FOR PEER REVIEW 7 of 15

Figure 3. Architecture of transformer. Denoising of recorded GNSS coordinates.

3.3.1. Input Embedding

A linear projection is utilized to map the discrete GNSS location of each point (lati-

tude, longitude) into a dense vector to latent space of dimension d capturing the semantics

of the raw trajectory. Such vectors are called embeddings. GNSS points that are topologi-

cally similar to the physical space are projected geometrically close together in the embed-

ding space. Since the transformer does not utilize recurrence or convolutional operations,

the order of the sequence must be preserved by injecting information to model regarding

the relative and absolute position of each embedding in the sequence. This is of high sig-

nificance for the model to capture the temporal dependencies of the consecutive positions

composing the GNSS trajectory. To this end additional vectors of dimension d are added

to the input embeddings at the bottom layer of the encoder. There is a variety of positional

embeddings that are either fixed or learned [41]. The sinusoid formula used by Vaswani

et al. [20] is also utilized for this paper. The positional encodings are defined by sine and

cosine functions of different frequencies, as shown in (3).

𝑃(𝑝𝑜𝑠,2𝑖) = sin(
𝑝𝑜𝑠

1042𝑖
𝑑⁄

)

𝑃(𝑝𝑜𝑠,2𝑖+1) = cos(
𝑝𝑜𝑠

1042𝑖
𝑑⁄

)

(3)

3.3.2. Encoder–Decoder

The encoder consists of a stack of N identical layers. Each of these layers has a stand-

ard architecture and is composed of a multi-head self-attention module and a simple po-

sition-wise feed forward neural network with two linear transformations separated by a

Figure 3. Architecture of transformer. Denoising of recorded GNSS coordinates.

Information 2022, 13, 508 7 of 14

3.3.1. Input Embedding

A linear projection is utilized to map the discrete GNSS location of each point (latitude,
longitude) into a dense vector to latent space of dimension d capturing the semantics of
the raw trajectory. Such vectors are called embeddings. GNSS points that are topologically
similar to the physical space are projected geometrically close together in the embedding
space. Since the transformer does not utilize recurrence or convolutional operations, the
order of the sequence must be preserved by injecting information to model regarding
the relative and absolute position of each embedding in the sequence. This is of high
significance for the model to capture the temporal dependencies of the consecutive positions
composing the GNSS trajectory. To this end additional vectors of dimension d are added to
the input embeddings at the bottom layer of the encoder. There is a variety of positional
embeddings that are either fixed or learned [41]. The sinusoid formula used by Vaswani
et al. [20] is also utilized for this paper. The positional encodings are defined by sine and
cosine functions of different frequencies, as shown in (3).

P(pos,2i) = sin(
pos

1042i/d
)

P(pos,2i+1) = cos(
pos

1042i/d
)

(3)

3.3.2. Encoder–Decoder

The encoder consists of a stack of N identical layers. Each of these layers has a standard
architecture and is composed of a multi-head self-attention module and a simple position-
wise feed forward neural network with two linear transformations separated by a ReLU
activation function. Around each of the two sublayers, there is a residual connection [42]
followed by layer normalization [43]. The output of each sublayer is of dimension d.

The decoder also consists of a stack of N identical layers. Each of these layers follows
the architecture of the corresponding layers in the encoded, supplemented by a third
sublayer, which attends to the output generated by the last encoder layer. The bottom
layer accepts as input n the learned positional embeddings of dimension d. As a result, the
decoder, in parallel, decodes the n recorded GNSS points into their ground truth coordinates
utilizing a regression head. The model can reason about all GNSS points together exploiting
their dependencies, while considering the whole trajectory as context utilizing self-attention
and encoder–decoder attention over the learnt positional embeddings.

3.3.3. Regression Head

The decoder stack outputs a vector of floats of dimension d for each GNSS point
of the recorded trajectory. On top of the encoder, there is a regression head, which is
a position-wise feed forward neural network composed of three hidden layers with ReLU
activation function and a linear projection layer. This head predicts the ground truth
latitude and longitude of each GNSS point as well as the angle of the vehicle’s heading with
respect to the north. By calculating the Euclidian distance and the deviation of the vehicle’s
heading and the segment orientation with respect to the north, the inferred coordinates
are finally assigned to the closest road segment. In order to ensure geometry and topology
compliance and continuity, further refinement and calibration is needed. Based on this post
processing step, the final inferred trajectory consists of the inferred GNSS points, the nodes
linking consecutive inferred segments, and all the intermediate points of each segment.
This unscrambles complex geometrical patterns of road network such as roundabouts,
bidirectional streets, superposition of road segments due to different heights, etc.

3.4. Technical Details

The model demonstrated in this paper is a transformer consisting of an encoder and
a decoder stack, each one consisting of N = 6 identical layers. Both the multi-head self-
attention and the encoder–decoder attention is composed by H = 8 heads. The dimension
of each embedded vector, accepted as input to encoder and decoder layers, is of dimension

Information 2022, 13, 508 8 of 14

d = 256. The dimension of key, query, and value vectors is d’ = 32. The hidden layers of
all the feed forward neural networks consist of 256 neurons, expect the last layer of the
regression head, which has three units. The models accept batched sequences with a batch
size of 256.

The transformer is trained by minimizing the mean squared error between the model’s
predicted coordinates and the ground truth coordinates of the dataset through backpropa-
gation. The Adam optimizer [44] is utilized with a learning rate of 10−5 and weight decay to
10−4. The network parameters are initialized with Xavier init. [45]. Batch implementation
is harnessed for taking advantage of the parallel computation of the GPU.

4. Results

The performance of the map-matching procedure is evaluated through the matching
accuracy metric proposed in previous studies [46–49]. The matching accuracy is computed
through (4):

Acc =
len

(
T̂ ∩ T

)
max(len(T̂), len(T))

(4)

where T̂ is the inferred trajectory, T is the ground truth trajectory, len() refers to the total
length of the corresponding trajectory, and T̂ ∩ T represents the correctly matched seg-
ments. The operator max() acts as regularizer since it penalizes long inferred trajectories
dealing with the fact that longer inferred trajectories are much more probable to contain
the ground truth trajectory.

Table 1 highlights the matching performance achieved by a simple rule-based al-
gorithm based on closest distance and orientation, the transformer network as well as
their merge.

Table 1. Comparison of the matching accuracy achieved by rule-based algorithm, transformer, and
their combination.

Algorithm Accuracy

Rule Based 43.00%
Transformer 71.00%

Transformer and Rule-Based 76.00%

Based on the obtained results, it is obvious that the rule-based algorithm achieves
poor performance, managing to map correctly less than the half road segments of each
recorded trajectory. This comes with no surprise since the algorithm takes into account
only specific geometrical features such as the distance and the orientation. To that end,
complex geometrical schemes like roundabouts and superposition of road segments as well
as topological rules, such as segment continuity and permitted turns, are omitted from the
matching procedure. On the other hand, the performance obtained by the transformer net-
work is much higher, mapping correctly around the 70% of each recorded trajectory length.
This significant increase on the matching performance is because of the high learning
capacity of the used deep neural architecture. The depth, the width, the memory, and the
parallel mapping into different subspaces through the multi-head attention scheme seem to
efficiently capture long-term dependencies among specific trajectories and complex traffic
patterns of the road network. The matching accuracy of the transformer network is further
increased by harnessing the rule-based algorithm as post processing step for refinement
and calibration. This combination adds five more units on the matching performance.

As depicted in Figure 4, the performance of the suggested algorithm increases with
increasing trajectory density in a given area. The noise imposed to the recorded GNSS
trajectories due to the complex geometry of specific road segments is obviously reflected
on the transformer’s matching performance, as shown in Table 2.

Information 2022, 13, 508 9 of 14

Information 2022, 13, x FOR PEER REVIEW 9 of 15

Table 1 highlights the matching performance achieved by a simple rule-based algo-

rithm based on closest distance and orientation, the transformer network as well as their

merge.

Table 1. Comparison of the matching accuracy achieved by rule-based algorithm, transformer, and

their combination.

Algorithm Accuracy

Rule Based 43.00%

Transformer 71.00%

Transformer and Rule-Based 76.00%

Based on the obtained results, it is obvious that the rule-based algorithm achieves

poor performance, managing to map correctly less than the half road segments of each

recorded trajectory. This comes with no surprise since the algorithm takes into account

only specific geometrical features such as the distance and the orientation. To that end,

complex geometrical schemes like roundabouts and superposition of road segments as

well as topological rules, such as segment continuity and permitted turns, are omitted

from the matching procedure. On the other hand, the performance obtained by the trans-

former network is much higher, mapping correctly around the 70% of each recorded tra-

jectory length. This significant increase on the matching performance is because of the

high learning capacity of the used deep neural architecture. The depth, the width, the

memory, and the parallel mapping into different subspaces through the multi-head atten-

tion scheme seem to efficiently capture long-term dependencies among specific trajecto-

ries and complex traffic patterns of the road network. The matching accuracy of the trans-

former network is further increased by harnessing the rule-based algorithm as post pro-

cessing step for refinement and calibration. This combination adds five more units on the

matching performance.

As depicted in Figure 4, the performance of the suggested algorithm increases with

increasing trajectory density in a given area. The noise imposed to the recorded GNSS

trajectories due to the complex geometry of specific road segments is obviously reflected

on the transformer’s matching performance, as shown in Table 2.

Figure 4. Local matching accuracy of the transformer network with regards to the density of trajec-

tories of a given area.

Table 3 highlights the fluctuation of the proposed algorithm’s matching performance

depending on the level of the spatial aggregation, which is related to the road network

density.

Figure 4. Local matching accuracy of the transformer network with regards to the density of trajecto-
ries of a given area.

Table 2. Comparison of the matching accuracy with regards to the geometry of road segment.

Algorithm Accuracy

Intersections at Grade 68.00%
Grade-Separated Intersections 53.00%

Roundabouts 62.00%
Straight Links—1 Way 83.00%
Straight Links—2 Ways 79.00%

Table 3 highlights the fluctuation of the proposed algorithm’s matching performance
depending on the level of the spatial aggregation, which is related to the road network density.

Table 3. Comparison of the matching accuracy with regards to the level of spatial aggregation.

Area Accuracy

City Centre 69.00%
Urban Area 73.00%

Metropolitan Area 74.00%
Regional Area 76.00%

Figure 5 depicts the effect of various hyperparameters on the matching performance
achieved by the transformer network. The model reaches the highest value of its potential
for embedding size d = 256, batch size = 256, number of identical layers on both the encoder
and the decoder side N = 6, and number of heads on the multi-head attention module H = 8.
It can be stated that the projection of the recorded GNSS points into a latent hyperspace
of 256 dimensions, is a semantically meaningful representation capturing the correlation
between different GNSS points. Points that are close to each other on the physical space
in terms of semantics are geometrically close in the latent space. The batch size is the
number of samples used for a single update on the model parameters during optimization,
which is a training step. It is an important hyperparameter since it affects the stability of
the optimization, that is, the convergence on a local optimum. The number of encoder
and decoder layers is related to the capacity of the model to capture the complex patterns
governing the map-matching process, and it is clear that the deeper the model is, the
higher performance it can achieve. However, given a dataset, a network with too much
capacity is prone to overfitting. That is, it achieves high performance on the samples used
while training, but it cannot perform well on unknown samples; thus, it does not have
generalization ability. On the other hand, given a dataset, a model of low capacity is prone
to underfitting, which means it cannot achieve acceptable performance either in training on
inference. The demonstrated model achieves around 70% matching accuracy with no lack
of generalization for N = 6 layers. As a result of the multi-head self-attention mechanism,
the model can simultaneously focus on information from different representation subspaces

Information 2022, 13, 508 10 of 14

at different positions. The highest performance is achieved by utilizing H = 8 heads. That is,
each GNSS point is projected on eight different subspaces on a single forward pass through
the model.

Information 2022, 13, x FOR PEER REVIEW 10 of 15

Table 2. Comparison of the matching accuracy with regards to the geometry of road segment.

Algorithm Accuracy

Intersections at Grade 68.00%

Grade-Separated Intersections 53.00%

Roundabouts 62.00%

Straight Links—1 Way 83.00%

Straight Links—2 Ways 79.00%

Table 3. Comparison of the matching accuracy with regards to the level of spatial aggregation.

Area Accuracy

City Centre 69.00%

Urban Area 73.00%

Metropolitan Area 74.00%

Regional Area 76.00%

Figure 5 depicts the effect of various hyperparameters on the matching performance

achieved by the transformer network. The model reaches the highest value of its potential

for embedding size d = 256, batch size = 256, number of identical layers on both the encoder

and the decoder side N = 6, and number of heads on the multi-head attention module H =

8. It can be stated that the projection of the recorded GNSS points into a latent hyperspace

of 256 dimensions, is a semantically meaningful representation capturing the correlation

between different GNSS points. Points that are close to each other on the physical space

in terms of semantics are geometrically close in the latent space. The batch size is the num-

ber of samples used for a single update on the model parameters during optimization,

which is a training step. It is an important hyperparameter since it affects the stability of

the optimization, that is, the convergence on a local optimum. The number of encoder and

decoder layers is related to the capacity of the model to capture the complex patterns gov-

erning the map-matching process, and it is clear that the deeper the model is, the higher

performance it can achieve. However, given a dataset, a network with too much capacity

is prone to overfitting. That is, it achieves high performance on the samples used while

training, but it cannot perform well on unknown samples; thus, it does not have general-

ization ability. On the other hand, given a dataset, a model of low capacity is prone to

underfitting, which means it cannot achieve acceptable performance either in training on

inference. The demonstrated model achieves around 70% matching accuracy with no lack

of generalization for N = 6 layers. As a result of the multi-head self-attention mechanism,

the model can simultaneously focus on information from different representation sub-

spaces at different positions. The highest performance is achieved by utilizing H = 8 heads.

That is, each GNSS point is projected on eight different subspaces on a single forward pass

through the model.

(a) (b)

Information 2022, 13, x FOR PEER REVIEW 11 of 15

(c) (d)

Figure 5. Matching accuracy of the transformer network with regards to the embedding size (a), the

batch size (b), the number of layers both in the encoder and decoder (c), and the number of attention

heads (d).

5. Discussion

In this paper, the map-matching procedure was investigated under the data-driven

point of view utilizing AI techniques, and especially the high capacity of deep neural net-

works, in capturing complex patterns governing physical systems such as an urban road

network. The case study of Thessaloniki indicates that rule-based algorithms that dwell a

great deal on the geometric and topological features of the road network do not take ad-

vantage of the enormous vehicle trajectory data and the internal dependencies between

consecutive positions. Collective travel patterns embedded in massive amounts of GNSS

trajectory data urged by the proliferation of smart devices can only be captured by shifting

from rule-based approaches to data-driven perspectives. Effectively capturing internal de-

pendencies between GNSS sequences, as well as external correlations between recorded

trajectories and road network paths, can be achieved by leveraging mechanisms, such as

the multi-head self-attention modules of the prominent deep learning architecture in the

field of language modeling and machine translation, namely transformer. The transformer

network is an encoder–decoder architecture utilizing multi-head attention modules, for

projecting each recorded GNSS point into many different latent subspaces, allowing us to

jointly attend to information from different representation subspaces at different posi-

tions, expanding the model’s ability to focus on different positions. The demonstrated al-

gorithm is a transformer network with parallel decoding followed by a refinement and

calibration post processing step. It is a hybrid algorithm, in terms of offline training and

online inference. In that end, it provides accurate real-time estimations by revealing com-

plex traffic and topological patterns based on enormous historical trajectory data. Based

solely on the transformer network’s capacity, the matching performance is as high as 71%,

while the final refinement and calibration step adds 5%. In the case of Thessaloniki, the

demonstrated algorithm is expected to be extended beyond the scope of motorized traffic

for micromobility and decision support tools [50,51]. Feng et al. [46]with a deep learning-

based methodology, achieved a matching performance of 66% based on trajectories rec-

orded in Beijing. Jiang et al. [47], also harnessing a deep learning model inspired by vari-

ational autoencoders, achieved a matching performance of 80% in the city of Porto. Jin et

al. [21], using a transformer-based algorithm with autoregressive decoder, achieved a per-

formance of around 90% based on taxi trajectories in Gangnam District in Seoul. Currently

the direct comparison of the aforementioned methodologies with the proposed method-

ology of this paper is not feasible due to the fact that they are evaluated on different da-

tasets with different evaluation metrics. However, all four methodologies could be evalu-

ated under the same context in the future.

6. Conclusions

Figure 5. Matching accuracy of the transformer network with regards to the embedding size (a), the
batch size (b), the number of layers both in the encoder and decoder (c), and the number of attention
heads (d).

5. Discussion

In this paper, the map-matching procedure was investigated under the data-driven
point of view utilizing AI techniques, and especially the high capacity of deep neural
networks, in capturing complex patterns governing physical systems such as an urban
road network. The case study of Thessaloniki indicates that rule-based algorithms that
dwell a great deal on the geometric and topological features of the road network do not
take advantage of the enormous vehicle trajectory data and the internal dependencies
between consecutive positions. Collective travel patterns embedded in massive amounts
of GNSS trajectory data urged by the proliferation of smart devices can only be captured
by shifting from rule-based approaches to data-driven perspectives. Effectively capturing
internal dependencies between GNSS sequences, as well as external correlations between
recorded trajectories and road network paths, can be achieved by leveraging mechanisms,
such as the multi-head self-attention modules of the prominent deep learning architecture
in the field of language modeling and machine translation, namely transformer. The
transformer network is an encoder–decoder architecture utilizing multi-head attention
modules, for projecting each recorded GNSS point into many different latent subspaces,
allowing us to jointly attend to information from different representation subspaces at
different positions, expanding the model’s ability to focus on different positions. The
demonstrated algorithm is a transformer network with parallel decoding followed by
a refinement and calibration post processing step. It is a hybrid algorithm, in terms of offline
training and online inference. In that end, it provides accurate real-time estimations by
revealing complex traffic and topological patterns based on enormous historical trajectory
data. Based solely on the transformer network’s capacity, the matching performance is
as high as 71%, while the final refinement and calibration step adds 5%. In the case of
Thessaloniki, the demonstrated algorithm is expected to be extended beyond the scope
of motorized traffic for micromobility and decision support tools [50,51]. Feng et al. [46]

Information 2022, 13, 508 11 of 14

with a deep learning-based methodology, achieved a matching performance of 66% based
on trajectories recorded in Beijing. Jiang et al. [47], also harnessing a deep learning model
inspired by variational autoencoders, achieved a matching performance of 80% in the city
of Porto. Jin et al. [21], using a transformer-based algorithm with autoregressive decoder,
achieved a performance of around 90% based on taxi trajectories in Gangnam District in
Seoul. Currently the direct comparison of the aforementioned methodologies with the
proposed methodology of this paper is not feasible due to the fact that they are evaluated
on different datasets with different evaluation metrics. However, all four methodologies
could be evaluated under the same context in the future.

6. Conclusions

The obtained results are valid, for the floating car data collected by CERTH-H.I.T. [26]
from probe sensors on taxi vehicles of Taxiway [27]. To that end, the matching accuracy of
76% may be affected by the features of the specific GNSS devices used for the collection of
the data, which implies a specific noise distribution on the recorded locations. Additionally,
the achieved performance refers to a sampling frequency of 10–12 s for the GNSS points.
This sampling interval can be considered as high one, so the further investigation of the
model’s performance on data of lower sampling intervals is needed. The results may also
be biased by the digital road network utilized through the matching procedure.

Based on the high matching performance achieved in Thessaloniki, the transformer
architecture seems promising for unscrambling the very challenging map-matching task;
however, further investigation is needed under different configurations. To consider the
demonstrated model as a uniform machine dealing with the challenges of map matching,
it needs to be fine-tuned and tested on different cities, with different GNSS devices and
various sampling rates.

An important aspect of the demonstrated method is the data collection and annota-
tion, which is a very laborious and time-consuming procedure. The transformer network
achieves an accuracy of 71% trained approximately on 127,000 samples with no overfitting.
Deep neural networks indeed are data hungry. As a result, the more data they consume
during training, the more their generalization ability will be increased, and the higher
their performance will be on both training and inference. The prohibitive time and labor
needed for the manual annotation of more data could be avoided by utilizing data gener-
ated through simulations on digital environments such as digital twins [52]. Digital twins
are cyber replicas of physical systems, created from traffic data collected from sensors,
connected vehicles, traffic signals, and traffic monitoring cameras in real time, leveraging
the embedded sensor systems of physical transportation systems to provide real-time and
time-sensitive transportation services.

The matching performance of the demonstrated model, and of AI techniques in general,
could be amplified by one or more complementary networks providing accurate real-time
predictions regarding traffic measures of road segments such as the average speed and
travel time as well as the traffic flow. Utilizing such estimations could drastically enhance
the mapping of each single noisy GNSS location to the ground truth road segment. The
accuracy of such complementary estimations as well as their compliance to the topology of
the road network must be considered.

Harnessing the demonstrated algorithm for solving the challenging map-matching
task requires a system with computational power and powerful GPUs to exploit paral-
lelization. Computational cost and inference time can be significantly reduced by utilizing
a lightweight version of the current “cumbersome” model through techniques such as
knowledge distillation [53] and parameter pruning [54].

The demonstrated algorithm is currently effective for estimating road network speed
in real time for information services and for supporting traffic management in the case of
Thessaloniki. Addressing the limitations and challenges mentioned above would allow
for the algorithm’s transferability to various urban environments and its universality so
that it can enhance the quality of location-based services of intelligent transportation

Information 2022, 13, 508 12 of 14

systems, such as route optimization, traffic scheduling, fleet management, travel time
estimation, and allocation. The effectiveness of the proposed map-matching algorithm
could be enhanced by its evaluation on disaggregation level by leveraging the integrated
procedures of traditional transport models and big data proposed by Croce et al. [55,56]. In
order to further improve the matching accuracy, the inferred trajectories could be further
calibrated through models regarding route and path choices [57].

Author Contributions: G.A.: conceptualization, data curation, project administration, resources,
supervision, and validation, J.M.S.G.: data curation, project administration, supervision, validation,
and writing—review and editing, M.N.M.: methodology, formal analysis, investigation, visualization,
writing—review and editing, and writing—original draft, S.B.: data curation, project administration,
supervision, validation, and writing—review and editing. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Restrictions apply to the availability of these data. Data were obtained
from Taxiway and are available at CERTH-H.I.T. with the permission of Taxiway.

Acknowledgments: The authors would like to thank Taxiway company for data sharing.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yuan, J.; Zheng, Y.; Xie, X.; Sun, G. T-Drive: Enhancing Driving Directions with Taxi Drivers’ Intelligence. IEEE Trans. Knowl. Data

Eng. 2013, 25, 220–232. [CrossRef]
2. Stenneth, L.; Wolfson, O.; Yu, P.S.; Xu, B. Transportation mode detection using mobile phones and GIS information. In Proceedings

of the 19th SIGSPATIAL International Conference on Advances in Geographic Information Systems, Chicago, IL, USA, 1–4
November 2011. [CrossRef]

3. Nair, R.; Miller-Hooks, E. Fleet Management for Vehicle Sharing Operations. Transp. Sci. 2011, 45, 524–540. [CrossRef]
4. Rahmani, M.; Koutsopoulos, H.N.; Jenelius, E. Travel time estimation from sparse floating car data with consistent path inference:

A fixed point approach. Transp. Res. Part C Emerg. Technol. 2017, 85, 628–643. [CrossRef]
5. Sharath, M.; Velaga, N.R.; Quddus, M.A. A dynamic two-dimensional (D2D) weight-based map-matching algorithm. Transp. Res.

Part C Emerg. Technol. 2019, 98, 409–432. [CrossRef]
6. Toledo-Moreo, R.; Betaille, D.; Peyret, F. Lane-Level Integrity Provision for Navigation and Map Matching with GNSS, Dead

Reckoning, and Enhanced Maps. IEEE Trans. Intell. Transp. Syst. 2010, 11, 100–112. [CrossRef]
7. Merry, K.; Bettinger, P. Smartphone GPS accuracy study in an urban environment. PLoS ONE 2019, 14, e0219890. [CrossRef]
8. Mohamed, R.; Aly, H.; Youssef, M. Youssef, Accurate Real-time Map Matching for Challenging Environments. IEEE Trans. Intell.

Transp. 2017, 18, 847–857. [CrossRef]
9. Kos, S.; Brčić, D.; Musulin, I. Smartphone application GPS performance during various space weather conditions: A preliminary

study. In Proceedings of the 21st International Symposium on Electronics in Transport ISEP 2013, Ljubljana, Slovenia, 25–26
March 2013. Available online: https://www.bib.irb.hr/623174 (accessed on 30 August 2022).

10. Quddus, M.A.; Ochieng, W.Y.; Noland, R.B. Current map-matching algorithms for transport applications: State-of-the art and
future research directions. Transp. Res. Part C Emerg. Technol. 2007, 15, 312–328. [CrossRef]

11. Lü, W.; Zhu, T.; Wu, D.; Dai, H.; Huang, J. A heuristic path-estimating algorithm for large-scale real-time traffic information
calculating. Sci. China Ser. E Technol. Sci. 2008, 51, 165–174. [CrossRef]

12. Teng, W.; Wang, Y. Real-Time Map Matching: A New Algorithm Integrating Spatio-Temporal Proximity and Improved Weighted
Circle. Open Geosci. 2019, 11, 288–297. [CrossRef]

13. Kubicka, M.; Cela, A.; Mounier, H.; Niculescu, S.-I. Comparative Study and Application-Oriented Classification of Vehicular
Map-Matching Methods. IEEE Intell. Transp. Syst. Mag. 2018, 10, 150–166. [CrossRef]

14. Chao, P.; Xu, Y.; Hua, W.; Zhou, X. A Survey on Map-Matching Algorithms. In Proceedings of the ADC 2020: Databases Theory
and Applications, Melbourne, Australia, 3–7 February 2020. [CrossRef]

15. Hashemi, M.; Karimi, H.A. A critical review of real-time map-matching algorithms: Current issues and future directions. Comput.
Environ. Urban Syst. 2014, 48, 153–165. [CrossRef]

16. Gong, Y.-J.; Chen, E.; Zhang, X.; Ni, L.M.; Zhang, J. AntMapper: An Ant Colony-Based Map Matching Approach for Trajectory-
Based Applications. IEEE Trans. Intell. Transp. Syst. 2018, 19, 390–401. [CrossRef]

17. Newson, P.; Krumm, J. Hidden Markov map matching through noise and sparseness. In Proceedings of the GIS’09: 17th ACM
SIGSPATIAL International Conference on Advances in Geographic Information Systems, Seattle, WA, USA, 4–6 November 2009.
[CrossRef]

http://doi.org/10.1109/TKDE.2011.200
http://doi.org/10.1145/2093973.2093982
http://doi.org/10.1287/trsc.1100.0347
http://doi.org/10.1016/j.trc.2017.10.012
http://doi.org/10.1016/j.trc.2018.12.009
http://doi.org/10.1109/TITS.2009.2031625
http://doi.org/10.1371/journal.pone.0219890
http://doi.org/10.1109/TITS.2016.2591958
https://www.bib.irb.hr/623174
http://doi.org/10.1016/j.trc.2007.05.002
http://doi.org/10.1007/s11431-008-5013-6
http://doi.org/10.1515/geo-2019-0023
http://doi.org/10.1109/MITS.2018.2806630
http://doi.org/10.1007/978-3-030-39469-1_10
http://doi.org/10.1016/j.compenvurbsys.2014.07.009
http://doi.org/10.1109/TITS.2017.2697439
http://doi.org/10.1145/1653771.1653818

Information 2022, 13, 508 13 of 14

18. Jo, T.; Haseyama, M.; Kitajima, H. A map matching method with the innovation of the kalman filtering. IEICE Trans. Fundam.
Electron. Commun. Comput. Sci. 1996, 79, 1853–1855.

19. Kim, S.; Kim, J.; Hyun, I. Development of a map matching algorithm for car navigation system using fuzzy q-factor algorithm.
In Proceedings of the 5th World Congress on Intelligent Transport Systems, Seoul, Korea, 12–16 October 1998. Available online:
http://worldcat.org/isbn/899500732X (accessed on 30 August 2022).

20. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. In
Proceedings of the A 31st International Conference on Neural Information Processing Systems—NIPS, Long Beach, CA, USA, 4–9
December 2017. Available online: https://dl.acm.org/doi/proceedings/10.5555/3295222 (accessed on 31 August 2022).

21. Jin, Z.; Kim, J.; Yeo, H.; Choi, S. Transformer-based map-matching model with limited labeled data using transfer-learning
approach. Transp. Res. Part C Emerg. Technol. 2022, 140, 103668. [CrossRef]

22. Kamath, U.; Liu, J.; Whitaker, J. Deep Learning for NLP and Speech Recognition; Springer: Cham, Switzerland, 2019; pp. 407–419.
[CrossRef]

23. Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate. In Proceedings of the
ICLR 2015: International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015.

24. Cho, K.; van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations
using RNN Encoder-Decoder for Statistical Machine Translation. In Proceedings of the EMNLP 2014: Conference on Empirical
Methods in Natural Language Processing, Doha, Qatar, 25–29 October 2014. [CrossRef]

25. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to Sequence Learning with Neural Networks. In Proceedings of the NIPS’14: 27th
International Conference on Neural Information Processing Systems, Montreal, Canada, 8–13 December 2014. [CrossRef]

26. Lu, K.; Grover, A.; Abbeel, P.; Mordatch, I. Pretrained Transformers as Universal Computation Engines. arXiv 2021, arXiv:2103.05247.
27. CERTH-HIT. Available online: https://www.imet.gr/index.php/en/ (accessed on 31 August 2022).
28. Taxiway. Available online: https://taxiway.gr/ (accessed on 31 August 2022).
29. Bratsas, C.; Koupidis, K.; Salanova, J.-M.; Giannakopoulos, K.; Kaloudis, A.; Ayfantopoulou, G. A Comparison of Machine

Learning Methods for the Prediction of Traffic Speed in Urban Places. Sustainability 2019, 12, 142. [CrossRef]
30. Grau, J.M.S.; Maciejewski, M.; Bischoff, J.; Estrada, M.; Tzenos, P.; Stamos, I. Use of probe data generated by taxis. In Big Data

for Regional Science; Routledge Advances in Regional Economics, Science and Policy; Taylor & Francis Group: Abingdon, UK;
ISBN 1138282189/9781138282186.

31. Grau, J.M.S.; Mitsakis, E.; Tzenos, P.; Stamos, I.; Selmi, L.G. Ayfantopoulou, Multisource Data Framework for Road Traffic State
Estimation. J. Adv. Transp. 2018, 2018, 9078547. [CrossRef]

32. Ahlgren, P.; Jarneving, B.; Rousseau, R. Requirements for a cocitation similarity measure, with special reference to Pearson’s
correlation coefficient. J. Am. Soc. Inf. Sci. Technol. 2003, 54, 550–560. [CrossRef]

33. Graves, A. Generating Sequences with Recurrent Neural Networks. arXiv 2013, arXiv:1308.0850.
34. Oord, A.v.d.; Li, Y.; Babuschkin, I.; Simonyan, K.; Vinyals, O.; Kavukcuoglu, K.; Driessche, G.v.d.; Lockhart, E.; Cobo, L.C.; Stim-

berg, F.; et al. Parallel WaveNet: Fast High-Fidelity Speech Synthesis. In Proceedings of the Machine Learning Research—MLR,
Sydney, Australia, 6–11 August 2017.

35. Ghazvininejad, M.; Levy, O.; Liu, Y.; Zettlemoyer, L. Mask-Predict: Parallel Decoding of Conditional Masked Language Models.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019.

36. Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understand-
ing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Minneapolis, MN, USA, 2–7 June 2019.

37. Chan, W.; Saharia, C.; Hinton, G.; Norouzi, M.; Jaitly, N. Imputer: Sequence Modelling via Imputation and Dynamic Programming.
In Proceedings of the 37th International Conference on Machine Learning, Virtual Event, 13–18 July 2020.

38. Carion, N.; Kirillov, A.; Massa, F.; Synnaeve, G.; Usunier, N.; Zagoruyko, S. End-to-end object detection with Transformers. In
Proceedings of the 16th European Conference on Computer Vision—ECCV 2020, Glasgow, UK, 23–28 August 2020.

39. Guido, V.R.; Drake, F.L. Python 3 Reference Manual; CreateSpace: Scotts Valley, CA, USA, 2009.
40. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:

An Imperative Style, High-Performance Deep Learning Library. In Proceedings of the 33rd Conference on Neural Information
Processing Systems—NeurIPS2019, Vancouver, Canada, 8–14 December 2019.

41. Gehring, J.; Auli, M.; Grangier, D.; Yarats, D.; Dauphin, Y.N. Convolutional Sequence to Sequence Learning. In ICML'17:
Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017.

42. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition—CVPR, Las Vegas, NV, USA, 27–30 June 2016. [CrossRef]

43. Ba, J.L.; Kiros, J.R.; Hinton, G.E. Layer Normalization. arXiv 2016, arXiv:1607.06450.
44. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference for Learning

Representations, San Diego, CA, USA, 7–9 May 2015.
45. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Artificial

Intelligence and Statistics—AISTATS, Sardinia, Italy, 13–15 May 2010. Available online: http://proceedings.mlr.press/v9/glorot1
0a.html (accessed on 29 August 2022).

http://worldcat.org/isbn/899500732X
https://dl.acm.org/doi/proceedings/10.5555/3295222
http://doi.org/10.1016/j.trc.2022.103668
http://doi.org/10.1007/978-3-030-14596-5
http://doi.org/10.3115/v1/d14-1179
http://doi.org/10.5555/2969033.2969173
https://www.imet.gr/index.php/en/
https://taxiway.gr/
http://doi.org/10.3390/su12010142
http://doi.org/10.1155/2018/9078547
http://doi.org/10.1002/asi.10242
http://doi.org/10.1109/CVPR.2016.90
http://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v9/glorot10a.html

Information 2022, 13, 508 14 of 14

46. Feng, J.; Li, Y.; Zhao, K.; Xu, Z.; Xia, T.; Zhang, J.; Jin, D. DeepMM: Deep Learning Based Map Matching with Data Augmentation.
IEEE Trans. Mob. Comput. 2020, 21, 2372–2384. [CrossRef]

47. Jiang, L.; Chen, C.-X. L2MM: Learning to Map Matching with Deep Models for Low-Quality GPS Trajectory Data. ACM Trans.
Knowl. Discov. Data 2022. [CrossRef]

48. Wu, H.; Mao, J.; Sun, W.; Zheng, B.; Zhang, H.; Chen, Z.; Wang, W. Probabilistic Robust Route Recovery with Spatio-Temporal
Dynamics. In Proceedings of the KDD’16: 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, San Francisco, CA, USA, 13–17 August 2016. [CrossRef]

49. Zheng, K.; Zheng, Y.; Xie, X.; Zhou, X. Reducing Uncertainty of Low-Sampling-Rate Trajectories. In Proceedings of the 2012 IEEE
28th International Conference on Data Engineering, Arlington, VA, USA, 1–5 April 2012. [CrossRef]

50. Ayfantopoulou, G.; Grau, J.M.S.; Maleas, Z.; Siomos, A. Micro-Mobility User Pattern Analysis and Station Location in Thessaloniki.
Sustainability 2022, 14, 6715. [CrossRef]

51. Salanova, J.M.; Ayfantopoulou, G.; Magkos, E.; Mallidis, I.; Maleas, Z.; Narayanan, S.; Antoniou, C.; Tympakianaki, A.; Martin, I.;
Fajardo-Calderin, J. Developing a Multilevel Decision Support Tool for Urban Mobility. Sustainability 2022, 14, 7764. [CrossRef]

52. Rudskoy, A.; Ilin, I.; Prokhorov, A. Digital Twins in the Intelligent Transport Systems. Transp. Res. Procedia 2021, 54, 927–935.
[CrossRef]

53. Hinton, G.; Vinyals, O.; Dean, J. Distilling the Knowledge in a Neural Network. In Proceedings of the Advances of Neural
Information Processing Systems 27—NIPS 2014, Montreal, Canada, 8–13 December 2014. [CrossRef]

54. Valdera, S.; Ameen, S. Methods for Pruning Deep Neural Networks. arXiv 2020, arXiv:2011.00241.
55. Croce, A.I.; Musolino, G.; Rindone, C.; Vitetta, A. Vitetta, Transport System Models and Big Data: Zoning and Graph Building

with Traditional Surveys, FCD and GIS. ISPRS Int. J. Geo-Inf. 2019, 8, 187. [CrossRef]
56. Croce, A.; Musolino, G.; Rindone, C.; Vitetta, A. Estimation of Travel Demand Models with Limited Information: Floating Car

Data for Parameters’ Calibration. Sustainability 2021, 13, 8838. [CrossRef]
57. Croce, A.I.; Musolino, G.; Rindone, C.; Vitetta, A. Route and Path Choices of Freight Vehicles: A Case Study with Floating Car

Data. Sustainability 2020, 12, 8557. [CrossRef]

http://doi.org/10.1109/TMC.2020.3043500
http://doi.org/10.1145/3550486
http://doi.org/10.1145/2939672.2939843
http://doi.org/10.1109/ICDE.2012.42
http://doi.org/10.3390/su14116715
http://doi.org/10.3390/su14137764
http://doi.org/10.1016/j.trpro.2021.02.152
http://doi.org/10.48550/arXiv.1503.02531
http://doi.org/10.3390/ijgi8040187
http://doi.org/10.3390/su13168838
http://doi.org/10.3390/su12208557

	Introduction
	State-of-the-Art Method
	Materials and Methods
	Case Study
	Data
	Model Architecture
	Input Embedding
	Encoder–Decoder
	Regression Head

	Technical Details

	Results
	Discussion
	Conclusions
	References

