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Abstract: Owing to their high accuracy, deep convolutional neural networks (CNNs) are extensively
used. However, they are characterized by high complexity. Real-time performance and acceleration
are required in current CNN systems. A graphics processing unit (GPU) is one possible solution to
improve real-time performance; however, its power consumption ratio is poor owing to high power
consumption. By contrast, field-programmable gate arrays (FPGAs) have lower power consumption
and flexible architecture, making them more suitable for CNN implementation. In this study, we
propose a method that offers both the speed of CNNs and the power and parallelism of FPGAs. This
solution relies on two primary acceleration techniques—parallel processing of layer resources and
pipelining within specific layers. Moreover, a new method is introduced for exchanging domain
requirements for speed and design time by implementing an automatic parallel hardware–software
co-design CNN using the software-defined system-on-chip tool. We evaluated the proposed method
using five networks—MobileNetV1, ShuffleNetV2, SqueezeNet, ResNet-50, and VGG-16—and FPGA
processors—ZCU102. We experimentally demonstrated that our design has a higher speed-up
than the conventional implementation method. The proposed method achieves 2.47×, 1.93×, and
2.16× speed-up on the ZCU102 for MobileNetV1, ShuffleNetV2, and SqueezeNet, respectively.

Keywords: convolutional neural network; field-programmable gate array; hardware–software co-design

1. Introduction

In recent years, artificial intelligence and deep learning have been extensively used
to solve many real-world problems. Currently, convolutional neural networks (CNNs)
are one of the most advanced deep learning algorithms and are used to solve recognition
problems in several scenarios. CNNs are more accurate than conventional algorithms.
However, many parameters of the convolution operation require a considerable amount
of computational resources and memory access [1]. This is a computational challenge
for the central processing unit (CPU) as it consumes excessive power. Instead, hardware
accelerators such as a graphics processing unit (GPU), field-programmable gate array
(FPGA), and application-specific integrated circuit (ASIC) have been used to increase
the throughput of CNNs [2,3]. When CNNs are integrated through hardware, latency
is improved, and the energy consumption is reduced. GPUs are the most widely used
processors and can improve the training and inference processes of CNNs. However, GPUs
consume excessive power, which is a key performance metric in modern digital systems.
ASIC designs achieve high throughput and low power consumption but require more
development time and cost. By contrast, FPGAs increase the capacity of hardware resources,
providing thousands of floating-point computing units and lower power consumption.
Therefore, FPGA-based accelerators, like ASICs, are an efficient alternative that offer high
throughput and configurability at low power consumption and a reasonable cost.

With the development of FPGA-based hardware accelerators, algorithms for improv-
ing the accuracy of CNNs are also evolving. Advances in CNN algorithms require many
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convolution operation parameters, which increase complexity and speed. Many object
detection series algorithms, such as the two-stage-based R-CNN [4–6] and one-stage-based
YOLO [7,8], have been developed to improve speed and accuracy equally. However, im-
plementing edge computing of CNNs faces restrictions because of the complexity and the
requirements associated with increased computations. To address these problems, CNN
model compression methods have been attracting considerable attention.

CNN model compression technology involves simplifying the deep learning model
structure, reducing the number of model parameters, reducing the number of model bits,
reducing the amount of computation, improving the deep learning model inference speed,
and reducing the required storage resources. In the usage environment of edge devices,
fast response speed, low memory usage, and low energy consumption are required. Deep
learning model compression can efficiently improve model inference speed, reduce model
storage space, and reduce model energy consumption. In the application scenario of
large deep learning models, model compression can improve product competitiveness
by reducing edge equipment cost, increasing efficiency, and improving low-carbon en-
vironmental protection. In the existing deep learning model compression methods, the
compression technique is relatively complex, and the difficulty is primarily related to the
following aspects.

1. Existing model compression algorithms rely on model training:

The current model compression methods rely on the learning process without consid-
ering the time cost. However, owing to a lack of raw data or algorithm complexity, users
cannot obtain the training code and cannot reproduce the training process.

2. The several types of model compression algorithms and the difficulty of parameter
adjustment:

Taking post-training quantization as an example, classic and commonly used offline
quantization algorithms exist, including MSE, ABS_MAX, Bias Correctiony, AVG, HIST,
KLD, AdaRound, and EMD. Each offline quantization algorithm has 2–4 parameters. The
efficient selection of an appropriate offline quantization algorithm for a model and its
parameters in a specific scenario is a significant problem in the implementation of a model
compression technology project.

3. The complexity of combining the model compression of multiple strategies:

In addition to offline quantization, model compression includes various compression
techniques such as pruning and distillation. A combination of various compression algo-
rithms can also be used as the demand for model miniaturization increases. Compression
algorithms affect each other and cannot simply accumulate their effects. Selecting a suit-
able compression algorithm set from various candidate compression algorithms is highly
dependent on human experience and long-term experimentation.

4. The numerous compressed model structures and the complexity of the deployment
environments:

In terms of model structure, the backbone network improves rapidly, and the active
function continues to evolve. Different structures and active functions have different
sensitivities and lossless compression ratios. In addition, in terms of the deployment
environment, the FPGA characteristics and optimization details of the inference library are
all factors to consider when compressing. Considering the model structure and deployment
environment, manual compression faces difficulty in achieving the expected goal.

In this study, we develop an automatic model compression tool set that can signifi-
cantly reduce the size of deep learning models by combining model optimization methods
with model compression to solve the aforementioned problems. Automatic parallelization
of FPGA designs such that software and hardware coordinate CNN tasks and cleaning up
CNNs to better adapt to FPGA and advanced RISC machine (ARM) NEON architectures
are examined. Sections 2.1 and 2.2 discuss recent studies related to FPGA design CNNs and
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CNN optimization. Section 3 focuses on the proposed research method. The developed
method can address several problems by focusing on the following main ideas.

1. We propose a model compression method that considers memory resources to enable
software and hardware acceleration through a lightweight CNN model. In the pro-
posed model compression method, the quantization method is determined through
the distillation method. Further, the pruning method also balances accuracy and
speed to ensure maximum performance for CNN prediction.

2. The determined pruning is grouped to achieve an appropriate balance between CNN
prediction accuracy and accessing group-specific memory. The per-memory data flow
varies and helps with parallel computations. To improve the computational efficiency
of CNN, we propose a CPU-FPGA cooperative computation method. Based on the
CNN architecture and advanced pruning method, we design software and hardware
to be parallelized in CNN computation. This approach achieves high hardware
parallelism, including weight groups and memory access methods. Moreover, it
enables parallelism of the ARM NEON architecture and FPGAs.

3. We propose an automated method to design an optimal accelerator with the per-
formance of ARM and FPGA balanced by utilizing a space exploration model. The
proposed method generates a CNN auto-accelerator through network analysis, layer
decomposition, software-defined system-on-chip (SDSOC) template mapping, and
long short-term memory (LSTM)-based CNN auto-generator design steps. Based on
this process, an automatic CNN model optimization engine is designed by imple-
menting a CNN model generation LSTM that satisfies the FPGA design performance
suitable for CNN implementation.

2. Related Work
2.1. Related Research for Implantation of FPGA DNN

Recently, with the release of the Xilinx Zynq hyperscale board capable of quick imple-
mentation of deep neural network (DNN) inference, this technology has been compared
to implementations of DNN acceleration. By all kernels in the convolutional layer, which
extensively use local memory to store data and rely on parallelism, the architecture is
computed flexibly in all network sizes. This technology enables reduced implementation
time and power consumption when accessing external memory. It compares considerably
with the performance when implemented in the CPU. The power consumption in hardware
use is less than that of the CPU.

Independent and careful research is required to design a DNN model and FPGA
hardware acceleration, and deep learning experts design using two methods. The first is
to design deep learning models manually, and the second is to design them automatically
through RNN or reinforcement learning. An example of an FPGA accelerator design is
how a conventional convolution and a Winograd convolution are combined to implement a
DNN in an FPGA [9]. Aidonnat et al. reported that Winograd-based solutions could reduce
the DNN multiplication operation because it is FPGA-based [10].

Another study utilizes a processor-based DNN search method to implement DNN
inference using a variety of processors [11]. This method is also improving and evolving
over many previously published studies. However, for the studies mentioned, the authors
only considered the DNN inference latency of the CPU and GPU, not the FPGA DNN
inference latency.

In DNN implementation studies, new techniques such as quantization [12] and
compression [13] methods of DNN models are also used in FPGA DNN accelerators.
This method has the advantage of reducing the size and latency of the model while
inferring the DNN. However, there are limitations because DNN models cannot use
these methods.

Recent research can deploy DNN on the FPGA rapidly by researching and developing
automation tools [14]. However, integrated register-transfer level (RTL) design is possible
only by targeting the convolution layer, which is the main layer, and FPGA RTL design
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studies have not been conducted for fully connected layers. The proposed RTL design
template automatically maps the DNN to the FPGA. However, it has lower computational
performance than dedicated designs in other networks. This is because dynamic link li-
braries (DLL) use integrated computational units such as fixed-size computing engines [15].
In this study, the DNN automatic FPGA mapping method using the high-level synthesis
(HLS) template was further studied, significantly improving the RTL size [16].

2.2. Related Research for Pruning DNN

Pruning is a method for reducing unnecessary operations and memory without losing
accuracy. The weights of the CNN have operations that are duplicated by repeating many
layers. It is a lightweight method of the CNN model, widely used recently, minimizing
overlap. The two most widely used pruning methods are unstructured pruning [17,18] and
structured pruning [19,20].

Unstructured pruning is possible in both the channels and filters of DNN weights
without a definite shape; it is not fixed-weight pruning. Figure 1 shows the unstructured
pruning method. Because the channel and filter are arbitrarily pruning, and not a fixed
shape, it has high flexibility and a high compression rate. However, arbitrary matrices
are randomly removed from the weights, which causes irregular sparsity and requires
additional indices to find non-zero values during the operation. These methods are not
suitable for hardware parallelism in FPGAs. We wished to utilize pruning to speed it
up; however, DNN acceleration can be slow on FPGAs. Therefore, unstructured pruning
has the advantage of having high flexibility, a high compression ratio, and a low loss of
accuracy in DNN weight operations, while it has the disadvantage of reducing speed as
well as difficulty in applying it to FPGA DNN acceleration.
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Figure 1. Example of unstructured pruning.

Structured pruning regularly removes rows and columns or channels and filters of
DNN weights. Figure 2 shows this method. It can either remove entire channels or filters. It
is a method to continuously and regularly remove the channels and filters developers want
to remove. Further, this method maintains a regular shape because it structurally prunes
the weights continuously, which is appropriate for FPGA hardware. Hardware parallelism
can be utilized when designing FPGA accelerators. However, considerable accuracy is lost
owing to the continuous removal of the entire filter and channel. Therefore, structured
pruning is suitable for FPGA hardware design and can apply parallel processing to weight
operations; however, it has the disadvantage of a high loss of accuracy.
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Figure 2. Example of structured pruning.

3. Materials and Methods
3.1. Overview of Proposed Design Flow

Figure 3 shows the overall contents of a software method for optimizing CNN weights,
a hardware accelerator architecture that co-designs a CNN with a CPU and FPGA, and
an automatic CNN model optimization engine that can implement CNN prediction with
the performance required by the user for the indicated design. We proposed an optimal
automation accelerator design that balances the ARM and FPGA performances. We needed
a parallel computation method as a joint design computation approach of the CPU and
FPGA to efficiently utilize resources on time when processing CNN inference. Because
CNN frequently uses multi-branch architecture, we optimized it through the CPU-FPGA
co-design computation method.
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We utilized the distillation technique to proceed with quantizing the CNN inference
model. The proposed quantization model compression imports the definition file of the
CNN inference model, copies the inference model in the memory as a teacher model of
knowledge distillation, and copies the original model as a student model. This causes the
teacher model to supervise the quantization in search of a suitable layer for distillation loss
addition and a layer with learnable parameters. By grouping the quantized CNN weights
by branch and accessing the memory, we prevented memory conflicts in the computation
process. Methods involving structured and unstructured pruning are relied on to devise
grouping patterns. We first split the given weights by branch. We pruned the split weights
by appropriately balancing accuracy and speed. Pruning in each group can be freely
removed to suit performance requirements. This branch-by-branch memory grouping
pruning has several advantages. Because the approach is segmented by branch, we can
apply the sparsity of the weight differently. When groups of different pruning types are
accessed simultaneously, they are transferred to static random-access memory (SRAM) and
FPGA local memory to prevent access conflicts. Section 3.2 provides more details about
this part.

The hardware architecture proposes an architecture that calculates the CNN weights
stored in the branch-pruned format by moving them for each processor. In this method,
weights belonging to the same group are moved to the same processor and calculated. In
the case of an unstructured pruning group, where the speed is low when adapting to the
FPGA with high flexibility, the operation is performed in the ARM. In this case, a memory
copy is moved to SRAM. Conversely, in the case of structured pruning where hardware
parallel processing is suitable for use, the operation proceeds in the FPGA and moves to
the FPGA local memory. Section 3.3 presents the architecture and memory flow in detail.

Finally, we proposed a space exploration model to design an optimal accelerator
that balances the ARM and FPGA performances. First, the developers design and train
CNNs. After training, the CNN is analyzed through an analyzer, decomposed according to
the configured layers, and mapped according to the SDSOC template. By extracting and
implementing feature values from SDSOC C/C++ inference code and training these feature
values using LSTM, designs with a high degree of parallelism are automatically generated.
Section 3.4 presents the automatic CNN model optimization engine in detail.

3.2. CNN Model Compression Method through Distillation

We primarily identified the effects of automated compression in an open-source model
dealing with image classification, image semantic segmentation, and image object detection.
Automatic compression also supports inference models created in PyTorch and TensorFlow.
In contrast to the conventional manual compression, the automatic aspect of automatic
compression is primarily reflected in four areas: deep learning training code separation,
offline quantized hyperparameter search, automatic algorithm combination, and hardware
recognition model. Users can perform compression methods that rely on training processes
such as quantitative training and sparse training by providing only an inference model and
unlabeled data. Automated compression adds training logic to the inference model through
distillation. Figure 4 shows the distillation process, and Figure 5 shows the compression
process. First, the user-specified inference model file is loaded, the inference model is
copied to the memory as the teacher model of knowledge distillation, and the original
model is copied as the student model. It then automatically analyzes the model structure
to find a suitable layer for adding distillation losses and finds a layer with learnable
parameters. Finally, the teacher model supervises the quantization training of the original
model through distillation loss.
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Offline quantization with many models and fast iteration rates in the search scenario
is the best compression method for this scenario. Various offline quantization algorithms
are implemented. Offline quantization algorithms perform a few algorithms that can be
used in combination.

The automatic compression function analyzes the model structure and automatically
selects an appropriate combination algorithm according to the user-specified model struc-
ture characteristics and deployment environment. Determining the parameters of each
compression algorithm after selecting a joint compression algorithm is challenging. Setting
the parameters of the compression algorithm is closely related to the deployment envi-
ronment. Various factors, such as chip characteristics and the degree of optimization of
the inference library, must be considered. As an agent of the deployment environment,
the hardware awareness module models and learns the characteristics of the deployment
environment and provides a performance inquiry service for parameter setting.

The relationship between compression parameters and inference speed, constrained
by optimizations such as inference library operator fusion, is not linear. Taking sparsity
as an example, an inference library can support matrix multiplication operations where
sparsity is greater than 75%. That is, 60% sparsity and 10% sparsity have no inference accel-
eration effect. Therefore, setting the sparsity to 60% is impractical. In addition, the sparse
acceleration effect is also affected by the input form of the matrix multiplication operator.
In conclusion, accurately evaluating the relationship between compression parameters and
inference speed based on human experience or simple formulas in various model structures
and deployment environments is impossible.

To this end, we developed a hardware delay estimation function. This feature uses
data tables combined with deep learning models to model factors that affect inference
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speed and guide the setting of parameters for the joint algorithm. The two key modules of
the hardware delay estimation function are the delay estimation table and the estimator.

Estimation table: Sample and test the inference performance of multiple operators for
each deployment environment and record it in the data table. Each row in the data table
contains the operator type, parameters of the operator itself (e.g., input shape stride and
padding), sparsity, quantization, and other information. Estimation tables can accurately
estimate the information of the target operator; however, it faces difficulty in dealing with
all possible parameters of the operator.

Predictors: Use data from the estimation table to train predictors for each type of
operator to predict inference performance. The predictor accuracy is not as good as the
prediction table; however, it has stronger generalizability and can contain more operator
parameter values.

The workflow for this function is shown in the flowchart on the right in Figure 6.
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Step 1: Analyze the model structure and perform OP fusion on the inference model
(to get the OP executed during deployment).

Step 2: Check the estimation table in turn for every OP of the inference model created
in step 1, and check the estimator if it does not meet the target.

Step 3: Accumulate the time of all OPs to obtain the final inference performance of the
candidate model.

By supporting the above functions, quickly obtaining model inference performance
under various compression parameters and locking a small number of candidate models
according to the user-specified inference acceleration multiplier on specific hardware are
possible. Finally, the accuracy of the candidate models is verified individually.

The candidate model obtained after verification optimizes the CNN branch by pruning
to perform parallel computation in the CPU–FPGA co-design method of the CNN. The
branch optimizes with structured pruning and unstructured pruning for both CPU and
FPGA processors, respectively. The CPU processor focused on unstructured pruning, which
arbitrarily removed CNN weights. Unstructured pruning is a technique that can achieve
high sparsity, averaging 90%, which helps reduce resources for on-chip storage needs when
computing CNNs. However, high sparsity does not necessarily lead to high-performance
speed-ups owing to the additional encoding and indexing overhead, workload imbalance,
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and poor data locality. The performance is degraded when the sparsity distribution is
heavily skewed. Significant progress has recently been made in structured pruning, which
aims to prune networks according to specific sparsity patterns. Starting with a strict
sparsity pattern that follows particular mathematical properties, it designs the hardware
to support the necessary mathematical transformations. These techniques can achieve
high regularity and computational efficiency suitable for FPGA hardware designs. A
typical convolutional computation is a computationally intensive kernel that traverses a
multidimensional tensor (feature map, weights) to perform addition and multiplication. We
must reconstruct the CNN branch weights into blocks to increase the parallelism of the CNN
architecture. Multiple branches access tensors simultaneously with each processor solving
memory bottlenecks and helping with parallel computing performance resistance issues
during computation.

3.3. Hardware Acceleration through CPU–FPGA Co-Design

A parallel operation method is required as a joint design operation approach for the
CPU and FPGA to utilize resources more efficiently in time execution during CNN inference
processing. Because most of the latest CNNs use multi-branch architecture frequently, we
performed hardware acceleration through the CPU–FPGA co-design computation method.
Implementing CNN inference with only one processor on the system-on-chip (SOC) board
wastes excessive computational resources. In particular, the CPU has excessive wasted
resources when the FPGA performs the operation. Therefore, if the CPU and FPGA perform
calculations simultaneously, we can obtain high efficiency and speed in resource use.

Hardware such as FPGAs are better suited for highly parallel tasks, such as convolution
tasks in CNNs, than CPUs. In a CNN multi-branch structure, there is a difference in
operation time between a branch structure with many convolutional layers and a branch
structure with relatively few or no convolutional layers. In addition, owing to the branch-
by-branch pruning previously performed, there is a structural difference between groups
in addition to time. If a branch is optimized through structured pruning, it operates as an
FPGA, and another branch of unstructured pruning operates as a CPU. Then, CPU and
FPGA can be used simultaneously. If the convolutional layer of the branch of structured
pruning is continuous, it can be operated sequentially using FPGA.

As shown in Figure 7, we stored the weights of CNNs divided into groups in DRAM
for calculation. The CPU and FPGA logical spaces inside dynamic random-access memory
(DRAM) can be copied between each other; therefore, arranging the weights to move to
each processor memory at CNN runtime is possible. In pruning, the sort criterion takes the
form of a structure copied into space on the CPU and FPGA. When the corresponding CNN
branch is executed, the weight groups copied to each processor space are copied again to
different memories for operation, and the weight groups of the unstructured pruning are
moved from the CPU logical space to the SRAM. However, the weight group of structured
pruning is moved from the FPGA logical space to the FPGA local memory.

Branch operation time is defined as t_u for unstructured pruning and as t_s for
structured pruning to measure the operation time of each CPU and FPGA in a branch of the
CNN. For CNN branch architecture with various branches, the representable computing
times are t_s1, t_s2, t_s3, . . . , t_u1, t_u2, and t_u3. When branch1 and branch2 of Figure 3
are operated simultaneously from the CPU and FPGA to different processors, the operation
time is determined by the long operation time, expressed by the following equation:

T_diff = max {t_u1, t_s2} (1)

If the processors for branch1 and branch2 are computed in CPU-CPU and FPGA-FPGA,
the minimum time is calculated differently. If the two structures in the branch are identical
and the operation is performed on the same processor, serial computing is performed. If
each branch is computed on the same processor, the computation time is determined as
follows:

T_same = min {t_s1 + t_s2, t_u1 + t_u2} (2)
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By comparing the serial operation time T_same of the same processor and the CPU-
FPGA parallel operation time T_diff of different processors, the optimal processor for
branch1 and branch2 can be selected as the minimum. The CPU and FPGA execution times
are measured in each branch, and T_total is the total computation time for both branches.

T_total = min {T_same, T_diff} (3)

Consequently, this calculation computes the CNN inference process with the processor
combination that is the minimum value of the total computation time T_total. When run-
ning on this processor, implementing CNN inference with high speed and high hardware
utilization is possible through a CPU–FPGA co-design approach.
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3.4. Auto-Generator Design

We proposed a space exploration model to design an optimal accelerator that balances
the constraints of the CNN and the FPGA performance. As shown in Figure 8, we devel-
oped a CNN accelerator through a procedure that includes a network analyzer and the
automatic generation of ARM C/C++ and HDL. Developers use deep learning frameworks
to design and train target CNNs. A CNN designed and trained by the developer generates
a definition file of the CNN. We passed the definition file of the CNN to the CNN analyzer.
The network analyzer decomposed the layers in the network designed by the developer.
The decomposed layer comprises various layers such as the convolution layer, pooling
layer, and fully connected layer. We mapped the exploded layers to fit the SDSOC template.
Finally, we extracted specific values from SDSOC’s CNN inference C or C++ code, trained
specific values with LSTMs, and designed an LSTM-based automatic CNN model opti-
mization generator. These methods automatically generated designs that allowed CNN
inference to be processed with a high degree of parallelism. We generated the CNN model
automatically generated by the CNN model optimization generator such that it could be
compiled on each processor of the CPU and FPGA to balance the user’s accuracy and
speed requirements.
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Calculations and data communication are critical to improving throughput in accel-
erator designs. A deep learning network consists of various operators; however, not all
operators have the same properties. Even when performing similar operations, memory
usage is typically low, high, or unequal. The same operator computes by changing prop-
erties using the parameters. We can classify various operators in deep learning networks
into computationally intensive and memory-access-intensive operators. Computationally
intensive operators are typically convolution and FC. The time implemented to infer CNN
has a linear relationship with the computation of computationally intensive operators. In
addition, ReLU and Concat are representative memory-access-intensive operators. For
these operators, CNN inference time has a linear relationship with memory access. A deep
learning network consists of both types of operators. However, many difficulties in the
design of CNNs involve fully exploiting the hardware performance using operators of
two properties. Therefore, our design, based on LSTM, automatically generates the CNN
model optimization design to meet the performance needs of developers. LSTM design
requires extracting specific values from C/C++ code. We must train an LSTM using specific
extracted values and predict a new method in SDSOC with the trained LSTM. The specific
values extracted from the SDSOC code include operators, variables, parallel structures,
and memory allocation sizes; we can use an abstract syntax tree to extract them. We can
express an abstract syntax tree by structuring specific values into a sorted tree, as shown
in Figure 9. First, it expresses a loop like a for statement and stores the range of the loop.
It then transforms the matrix of loop-level variables into memory allocation patterns. At
each loop level, we must add tags to distinguish loops from other loops that define buffer
dimensions to avoid using duplicate loops. In addition, before hardware synthesis, the loop
is optimized and added to the tag. To design an automatic CNN generator, interchange,
tile, and unrolling were selected as optimization examples and extracted as specific values
that determine these loops in the SDSOC pragma.
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We must add training via LSTM to synthesize hardware designs by extracting specific
values. The structure of the LSTM architecture should consider CNN depth, layer size,
and connection activation function between layers. When designing it by expressing it
as a parameter, it may have good performance or overfit depending on the number of
parameters. We trained it based on the regression LSTM to design the LSTM with the best
performance. Regression LSTMs are modeled as regression problems when inferring CNNs
by speeding up. By transforming the algorithm code with the extracted values, predicting
the expected execution speed is possible, in contrast to the existing program.

4. Results

We used the proposed method to build five CNNs: ResNet-18, MobileNet, Shuf-
fleNet, SqueezeNet, and VGG-16. ResNet-18 is a CNN composed of 18 layers and uses
residual block as the basic structure [21]. In addition, MobileNet is a lightweight model
using depth-wise separable convolution [22,23]. It differs from Xception by focusing on
lightweighting rather than increasing performance by stacking as many layers as the num-
ber of reduced parameters using depth-wise separable convolution. ShuffleNet uses the
structure of MobileNet and has a 1 × 1 convolution structure with almost all computations
and parameters [24,25]. SqueezeNet uses eight fire modules and one convolutional layer
each for input and output [26]; however, it does not use the fully connected layer. Finally,
VGG is a model trained on a neural network in layers 16–19, using 3 × 3 filters on all
convolutional layers [27]. This model succeeded in training the deep network twice more
than AlexNet, and also succeeded in reducing the error rate by half.

We first used the Xilinx tool to generate RTL code from a C/C++-based CNN design for
the accelerator. We prototyped the proposed method on FPGA platforms, Xilinx ZCU102.
We chose the Zynq family, an example FPGA board with few gates. The Xilinx ZCU102 was
configured with UltraScale FPGA, quad ARM Cortex-A53 processor, and 500 MB DDR3.
We used Xilinx Vivado HLS and Xilinx SDSOC for implementation.

Auto-compression can effectively compress and work with small models designed for
mobiles such as MobileNet, ShuffleNet, and SqueezeNet. After automatic compression, the
inference time of various models on ARM-FPGA reduced significantly. Table 1 presents
the evaluation results on the Xilinx ZCU102 platform using MobileNetV1, ShuffleNetV2,
and SqueezeNet networks. ZCU102 achieves 12.88 ms for the MobileNetV1 network.
The performance of the ShuffleNetV2 implementation is 5.201 ms on the ZCU102. The
performance of the SqueezeNet implementation is 16.01 ms on the ZCU102.
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Table 1. Evaluation of FPGA.

Accuracy before
Compression
(Top Acc%)

Accuracy after
Compression
(Top Acc%)

Speed before
Compression

(ms)

Speed after
Compression

(ms)

Speed-Up
Ratio

Board
Used

MobileNetV1 66.29 67.53 31.86 12.88 2.47 ZCU102
ShuffleNetV2 64.19 65.38 10.02 5.201 1.93 ZCU102
SqueezeNet 55.73 56.60 34.58 16.01 2.16 ZCU102

Additionally, we compared the speed of the proposed method with the latest em-
bedded GPUs, TX2 and TX1. Owing to the real-time requirements of edge applications,
we tried to use the minimum batch size. Based on the experimental results summarized
in Table 2, we observed that the designs of Xilinx ZCU104 and ZCU102 provided higher
efficiency than Nvidia Jetson TX2-based TensorRT inference solutions.

Table 2. Speed evaluation on FPGA.

ZCU 104
(ms)

ZCU 102
(ms)

Jetson TX1
(ms)

Jetson TX2
(ms)

ResNet-18 5.49 6.71 21 14.7
VGG-16 40.12 48.12 151 105.7

MobileNetV2 5.51 6.72 20.5 14.3

We compared two previously studied accelerator designs, D.Wu [28] and L.Bai [29].
We measured top-1 accuracy and the overall performance of all convolution layers. Table 3
shows that our proposed method performs better than the two previously studied methods.

Table 3. Comparison with other FPGA works.

D. Wu [28] L. Bai [29] Ours

CNN Models MobileNetV2

Platform ZU2EG Arria-10 ZU7EV
Frequency 433 133 150

Overall CONV GOPs 487.1 160.1 181.8
Top-1 Accuracy 68.1% - 68.65

5. Conclusions

Real-time artificial intelligence of things (AIoT) applications, which are being widely
used, require improved performance. AIoT devices have difficulties in complex and real-
time calculations, making it difficult to localize devices for tasks that require high precision
or many variables. FPGA designs are a promising solution because of their low cost and
energy efficiency. However, most FPGA development can only work with a single artificial
intelligence (AI) network, and developing it is time-consuming. Therefore, we developed
an automation technique by combining model compression for accelerating CNN models
and methods using CPU–FPGA parallelism. We experimentally demonstrated that our
design has a higher speed-up than the conventional implementation method. Moreover,
we evaluated this method on the ZCU102 FPGA platforms, and it achieved 2.47×, 1.93×,
and 2.16× speed-up for MobileNetV1, ShuffleNetV2, and SqueezeNet, respectively.
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