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Abstract: Interpretability is becoming an active research topic as machine learning (ML) models are
more widely used to make critical decisions. Tabular data are one of the most commonly used modes
of data in diverse applications such as healthcare and finance. Much of the existing interpretability
methods used for tabular data only report feature-importance scores—either locally (per example) or
globally (per model)—but they do not provide interpretation or visualization of how the features
interact. We address this limitation by introducing Feature Vectors, a new global interpretability
method designed for tabular datasets. In addition to providing feature-importance, Feature Vectors
discovers the inherent semantic relationship among features via an intuitive feature visualization
technique. Our systematic experiments demonstrate the empirical utility of this new method by
applying it to several real-world datasets. We further provide an easy-to-use Python package for
Feature Vectors.

Keywords: interpretability; tabular ML; explainability

1. Introduction

As machine learning (ML) models have become widely adopted in various sensitive
applications ranging from healthcare [1–3] to finance [4,5], the demand for interpretability
has become crucial and is now even a legal requirement in some cases [6]. While many
interpretability techniques are developed for unstructured data such as images, tabular
data remain the most common modality of data in various ML applications and the majority
of computational resources are still devoted to training and deploying models trained on
this form of data [7]. To clarify, what we mean by tabular data is the structured modality
of data which consists of rows and columns. Each row is a single data point and contains
the same number of cells (although some of these cells might be empty). Each column
contains the values of a given feature (numerical or categorical) of all data points. Although
some attempts were made to extend the impressive results of deep-learning techniques
to structured data [8,9], tree-based models consistently show superior performance [10].
Nevertheless, recent work on explainable ML has focused on improving neural network
interpretability rather than tree-based models [11].

Current interpretability methods for tabular ML revolve around similar themes.
These methods are either model-agnostic or specific to tree-based models and output
an importance-score for each feature in the data. These scores measure either a feature’s
effect on predicting a single example (local) or its contribution to the model’s overall
performance (global). Therefore, the most informative visualization component of these
methods will be a simple bar chart of feature-importance scores. This approach, similar to
the feature-importance methods (e.g., saliency maps) used for vision and text models [12–14],
is neither truly interpretable, nor actionable [15,16]. More so, the bar chart visualization
component is even less informative compared to image and text modalities.

Information 2022, 13, 15. https://doi.org/10.3390/info13010015 https://www.mdpi.com/journal/information

https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0001-6465-2321
https://doi.org/10.3390/info13010015
https://doi.org/10.3390/info13010015
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/info13010015
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info13010015?type=check_update&version=2


Information 2022, 13, 15 2 of 17

A recent line of explainable ML research [16–18] on image and text data are around
providing information beyond importance scores; for instance, visualizing important
concepts (objects, colors, etc.) [19]. Our goal is to make a similar effort for tabular ML by
providing visualizations that will provide interpretations beyond simple importance scores.

1.1. Our Contribution

We propose a new interpretability method called Feature Vectors for tabular ML. Our
contribution is orthogonal and complementary to other endeavors that are focused on
computing better feature-importance “scores” i.e., scores that are more true to the model.
Feature Vectors outputs an easy-to-understand visualization of the tabular dataset with two
sets of information: (1) feature-importance scores, and (2) Feature semantics. In our definition
of feature semantics, two features are similar if they have similar interactions with the rest
of the features in predicting the outcome and therefore, are nearly exchangeable from the
model’s perspective.

1.2. Related Literature

Deep learning models achieve state of the art performance in tasks related to vision,
text, and speech data. Tabular data lack spacial or temporal invariance and, therefore,
despite recent effort to design deep learning models specific to tabular data (e.g., TabNet [8]
and Deep Neural Decision Trees [9]), tree-based models still have the strongest perfor-
mance [10]. Examples of popular tree-based models are Random Forests [20], XGBoost [21],
Extremely Randomized Trees [22], Light GBM [23], and CatBoost [24].

Global interpretability methods explain the model as a whole and report the impor-
tance of features for the model’s overall performance. In tabular ML, a traditional approach
is to compute the gain of each individual feature [25–27] by computing the amount of
boost in performance (“e.g., drop in training loss”) gained by including a feature. Model-
agnostic permutation-based methods approximate a feature’s importance by randomly
permuting a feature’s value among test data points and tracking the decrease in the model’s
performance [20,28,29].

A large group of existing ML interpretability methods are developed for the local
scenario where the goal is to explain the model’s prediction on a single example [30–33].
The recent focus has been on gradient-based methods [34–36] where taking the gradient of
the model output with respect to the input is possible, e.g., deep neural networks. Although
these methods are local, by aggregating the importance of features across a large number of
samples, it is possible to compute global feature importance scores. An interesting recent
example is the extension of the prevalent SHAP method [30] to tree-based models [37].

Efforts have been made to bring interpretability beyond absolute feature importance
for tabular ML. A family of approaches are focused on computing importance scores for
interaction of features rather than individual features [38–43]. RuleFit [41] is a well-known
algorithm which translates a tree-based model into a set of binary features and then selects
the most important decision paths by training a linear classifier with `1 regularization
on top of all the binary features. A similar approach to RuleFit is the Iterative Random
Forest [44] algorithm where a new weighted random forest model is trained based on a
previously trained model iteratively. At the end, groups of features with high frequency of
co-occurrence in the trees’ decision paths are detected. This is similar to our approach of
using feature co-occurrences to extract feature embeddings; however, with the different goal
of finding the a sparse set of feature subsets that are salient which is different from our goal
of providing a unified visualized semantic interpretation of all individual features. There
have been efforts to use visualization as a better interpreatiblity tool. Partial Dependence
Plots (PDP), Accumulate Local Effect plots (ALE) [45], Individual Conditional Expectation
(ICE) plots and centered ICE [46], visualize the marginal effect of one or a pair of features
on the output [26,47]. Another approach is depicting the local importance scores for a
feature in a large number of individual examples in a single plot [37]. To the best of our
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knowledge, this is the first work that introduces a global interpretability method for tabular
data that visualizes semantic explanations in addition to feature-importance scores.

2. Materials and Methods
2.1. Semantic Embedding

Our objective is to compute an embedding for each feature that contains both im-
portance and semantic information. Inspired by word embeddings in Natural Language
Processing (NLP), we are looking for a continuous dense representation of features that
contains semantic information. We define two features to be semantically similar if they are
exchangeable with respect to the feature interactions that determine the model’s predictions.
We want this similarity to be reflected in the cosine similarity of their embeddings. Similar
to the common objective in NLP, enforcing exchangeability in the context of other features
will make it possible to find such a representation. In NLP, one simple embedding tech-
nique common in NLP tasks is using the co-occurrence of words in the vocabulary [48–50].
The intuition is that if two words are semantically similar, in a large enough corpora of
sentences, their (normalized) co-occurrence frequency with other words will be similar. For
a large dictionary size, in order to have a low-dimensional word embedding, Singular Value
Decomposition (SVD) dimensionality reduction is applied to the co-occurrence matrix.

There are some problems and limitations with directly applying the idea of word-
vectors to features. First of all, unlike NLP where computing word embeddings is possible
due to virtually unlimited supply of grammatically structured text data, in tabular data,
co-occurrence of features in is not clearly defined and there is no corpus of structured
co-occurrence of features. Luckily, in addition to their strong predictive performance, tree-
based models naturally provide us with a structured co-occurrence of features. As shown
in Figure 1, a tree contains a number of decision paths where each path is a conjunction of
binary conditions on a number of features. Secondly, considering a group of words with
similar meanings, each word has a non-zero chance of appearing in a sentence while in a
decision tree, among a group of similar features, only the most predictive feature will be
chosen at its respective split. For example, consider a salary prediction task where there are
two features with similar information about the outcome: earned degree (categorical) and
number of years at college (numerical). Assuming that earned degree is a better predictor,
in a given split of the tree (e.g., in a decision path that also contains age and marital status
features), it will always be chosen over number of years at college. As a result, it is not
possible to extract the co-occurrence of number of years at college with other features and
to observe its exchangeability with earned degree. The solution is to enforce a non-zero
chance of occurrence to all features in a given decision path. The solution is to train a large
ensemble of trees where each tree is only given a random subset of features (i.e., a random
forest). This is the same as using a Random Forest model.
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Figure 1. Feature Vectors. A simple description of the notion behind the Feature Vectors algorithm.
The goal is to extract a meaningful embedding for each feature by looking at its co-occurrence with
other features across sentences. The sentences are decision paths in a decision tree. In order to impose
exchangeability among features, an ensemble of decision trees are trained such that at each split only
a random subset of features is observed. Here, for simplicity, we only show one of the trained trees
in the forest. By going through each of the decision paths in the tree, one sentence is extracted. Then,
the co-occurrence of each feature with other features in the sentences is computed using a sliding
window. Here, we are using a window size of 3. For example, for x1 and x3 pair, they appear within
the same sliding window four times; Sentence 3 (x1 ∧ x3 ∧ x2), Sentence 4 (x1 ∧ x3 ∧ x1), and Sentence
5 (x1 ∧ x3 ∧ x1 and x3 ∧ x1 ∧ x4). Once all the sentences in all of the trees are looked at, dimensionality
reduction is applied to the co-occurrence matrix to extract two-dimensional embedding vectors for
all features. Therefore, if two feature share the same co-occurrence pattern (up to a scale), their
embeddings will have the same angle. Additionally, the embedding for the feature that has a larger
total co-occurrence count will have a larger norm. For instance, we can see that the co-occurrence
pattern of x1 is different from the other features and therefore it has a unique angle. However, as
it has the largest number of counts, its embedding is furthest from the origin. This means it is a
semantically unique feature that is also salient.

2.2. Feature Importance

In natural language, word embeddings are computed with a normalization constraint
so that only the semantic information is preserved in the embedding angles [51,52]. Our
goal, however, is to preserve both importance and semantic information. After extracting
the sentences from the trained random forest, a feature’s co-occurrence with other features
is a direct indicator of how many times it was chosen in a split. For example, between two
similar features, the less important one will only be chosen in a split if the other feature is
not present. Therefore, although the normalized co-occurrence frequency of both features is
similar, the absolute co-occurrence of the less informative feature will be smaller. Thus, the
Feature Vectors algorithm computes word embeddings using the counts of co-occurrence.
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2.3. Human-Understandable Visualization

The last desired property is to have a human-understandable visualization. After
computing the co-occurrence matrix of features, to be able to visualize the features in
an intuitive fashion, we reduce the dimensionality of word embeddings to two. One
possible drawback is that a two dimensional embedding might lose some of the information
from the feature co-occurrence pattern. In practice, for all real-world datasets that we
examined, between 80% to 99% of the co-occurrence matrix’s variance is explained by the
first two components.

2.4. Feature Vectors Algorithm

The pseudo-code in Algorithm 1 describes the Feature Vectors algorithm’s steps. Let
us discuss the computational overhead that the Feature Vectors algorithm has over training
an ensemble of trees. After all the trees have been trained, the complexity of the algorithm
depends on d the number of features, R the total number of sentences (i.e., number of all
decision paths in all trees), and w the sliding window size. Creating the co-occurrence
matrix requires O(R×w) operations (with the underlining assumption that the trees are not
too deep, otherwise you should multiply by depth). Computing the SVD-decomposition
requires O(d3) operations. As the number of sentences is usually fixed on the order of
105–106, the algorithm’s speed is bottlenecked by the dataset dimensionality for datasets
with 100 or more features. Therefore, the algorithm is efficient to run for datasets that do
not have a very large number of features. Using the truncated SVD implementation of the
Scikit Learn [53] library, on a workstation with eight Intel(R) Core(TM) i9-9960X cpus, the
algorithm takes about thirty seconds to run for a dataset with 50,000 features.

Algorithm 1 Feature Vectors

1: Input: A dataset tabular X with n data points (rows) and d categorical or numerical
features (columns), n prediction targets y (categorical for classification and numerical
for regression)

2: Hyperparameters: Number of rules R (number of total decision paths in all of the
trees), co-occurrence sliding window size w used for counting the co-occurrence of
features that appear in a sentence

3: Output: Feature embeddings v1, . . . , vd ∈ R2.
4: Initialization: Set of sentences S = {}
5: while |S| < R do
6: Train a decision tree on (X, y). The training is done such that at each split of the tree,

only a random subset of size d
√

de of features is considered rather than the whole
feature set.

7: st = Set of all decision paths in the tree. A sentence or a decision path is the list
of features that are used at consecutive splits starting from the root of the tree and
ending at a leaf. A Tree with M leaves contains M decision paths.

8: S = S ∪ st
9: Initialization: Co-occurrence matrix M ∈ Rd×d. Set all elements of M to be zero.

10: for s ∈ S do
11: Slide a window of size w on s and for each pair of features xi and xj that are in the

window, increase Mij and Mji by one.
12: Apply 2− d truncated SVD on M: MT ∈ Rd×2

13: MT =

vT
1
...

vT
d

 Each row is the embedding vector of one of the features.

2.5. Comparison with Existing Methods

Existing global interpretability methods like gini importance, SHAP [30], and permuta-
tion importance [20] will only provide scalar values for each feature and the result is similar
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to Figure 2’s bar chart. In comparison, the output of feature vectors, while preserving the
importance information, also shows the groups of features that are semantically similar in
the eyes of the model.

Unlike Feature Vectors that computes the feature embeddings using the input-output
relationship, an alternative approach is to find the feature-importance (size) and semantic
similarity (angle) separately. We can use any existing importance method to find the size
and then, if all the features are numerical, we can use the features’ covariance matrix
(instead of feature co-occurrence) to compute the semantic similarity of features. As tabular
data is usually a mix of categorical and numerical variables, point-biserial correlation
can be used to mitigate the issue of having mixed-type variables. We show the possible
drawback of such an approach using an example in Figure 2. We create a synthetic dataset
where the 20 features are sampled from independent normal distributions. The label is
assigned using a set of logical expressions from binary thresholds applied to the first 6
input features, e.g., (x1 > 2∧ x2 < −3)∨ x1 > 0 where for each true expression, the chance
of y = 1 increases. Only 6 features are present in the expressions and we divide them into
three pairs. The logical expressions are created such that each group of paired features
are interchangeable, that is, for every expression that contains one of the features, similar
expressions that contain other features of that group exist. In other words, the two features
in a group are semantically similar. Figure 2 shows that our method perfectly discovers the
pairs of semantically similar features while any covariance-based method will fail as the
features are independent.

Im
po
rta
nc
e

Semantic

X8

X11
X2

X17

X19

X5

X8 X19

X2
X11

X5 X17

Figure 2. Comparison between standard feature importance scores and Feature Vector. The bar chart
on the left shows the Gini importance score and the left plot shows the output of Feature Vectors.
The dataset is synthetic where the features have normal distributions independent of each other.
The label is generated by applying thresholds over six of the twenty features where each feature
is a synonym to one other feature in that they are exchangeable in the label generation rules. The
magnitude of the feature vectors shows their feature-importance while the direction encodes semantics.
The circles’ colors also encodes angle information to make it easier to observe the similarity and
dissimilarity of features.

3. Experiments and Results

In this section, we first show a few examples of Feature Vectors implementation
on widely used tabular datasets to show the usefulness of information provided by our
method. The second set of experiments aims to show that the fature-importance measure
provided by this method are objectively valid. We finally use the notion of Knockoff
features [54] to examine the information provided by the angle. For all experiments, we
use cross-validation for selecting the depth of trees. We empirically observe by setting R =
100,000 (number of rules), the computed feature embeddings become stable across multiple
runs. We also set the window size to w = 3.

3.1. Easy to Implement

The implementation of Feature Vectors is available as a Python package and can be
accessed from https://github.com/featurevec/featurevec (accessed on 18 October 2021).

https://github.com/featurevec/featurevec
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This tool is easy to use in general, and seamlessly integrates with Scikit-Learn’s [53] tree-
based models in a few lines of code:

1 from featurevec import FeatureVec
2 from sklearn.ensemble import RandomForestClassifier
3 X, y, feature_names = data_loader ()
4 predictor = RandomForestClassifier ().fit(X, y)
5 fv = FeatureVec(
6 mode=’classify ’,
7 feature_names=feature_names ,
8 tree_generator=predictor
9 )

10 fv.fit(X, y)
11 fv.plot()

3.2. Case Studies on Real-World Datasets

We first apply the Feature Vectors method to three real-world datasets and discuss the
explanation provided by the algorithm. Feature-vectors outputs are shown in Figure 3 for
three tabular datasets:

1. The first dataset contains gene expression of around 1800 genes for 3000 peripheral
blood mononuclear cells (PBMCs) from a healthy donor [55] i.e., each data point is a
single cell and has 1800 numerical features. Using K-means algorithm, the data points
are clustered into eight different groups. The task is a binary prediction with a goal
to predict whether a given cell is normal (i.e., belongs to the largest cluster) or not.
Using interpretability methods after training a binary classifier model on this dataset
can allow us to find the important (e.g., top-10) features (i.e., gene expressions). These
could potentially be used as “marker genes” that determine if a cell is normal or not.
Using Feature Vectors, however, in addition to finding the marker genes by their
importance, we have a more detailed interpretation of how the different marker genes
interact in determining if a cell is normal (Figure 3a). A gene can be characterized as
important not just by the magnitude of it’s contribution but also by it’s uniqueness.
In this case, it can be observed that the effects of marker genes can be clustered into
four major groups with similar genes. Furthermore, although the HLA-DQA1 gene
is not among the top-5 genes with the highest feature-importance, it is an important
marker as it is unique and does not have any other similar genes to it.

2. As our second dataset we use the UK Biobank dataset [56]. The UK Biobank dataset
has comprehensive phenotype and genotype information of 500,000 individuals in
the UK. This information includes among others gender, age, medical history, diet, etc.
Using the original dataset and specifically the medical history data, we create a new
dataset by selecting the subset of individuals (data points) that are later diagnosed
with lung cancer and randomly selecting another equally large subset of individuals
that do not get lung cancer. The result is a new binary classification dataset where the
task is to predict whether a person will be diagnosed with lung cancer. We use the
341 phenotypic features that have the least number of missing values in the dataset.
It is known that a number of phenotypic factors can be used to predict lung cancer
but it might not be clear whether they all carry similar information. Therefore, after
applying the Feature Vectors algorithm to this dataset, we can investigate the high
importance features and how they cluster together. Figure 3 shows that there are three
main groups of phenotypic features. A group of features that are related to age and
how much time has passed since the person stopped smoking, a group of features
that show the overall exposure to tobacco, and a group of features that describe the
activity level.

3. As out last dataset, we choose the classic and frequently used adult income prediction
dataset from the UCI repository of machine learning datasets [57,58]. This dataset is
extracted from census data and contains demographical information (marital status,
education, etc.) of around 50 thousand individuals. The task is to predict whether their
income is above 50 thousand dollars. After applying the Feature Vectors algorithm
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to this dataset, we can see that education (including education-num), age, and race
are the best predictors. An interesting observation is that education as a categorical
feature and education-num as a numerical feature are semantically similar while
education is a better predictor. This is expected as the number of years of education is
an approximate indicator of education level.

UK Biobank

Adult Income

PMBC3K

Figure 3. Feature Vector examples on three datasets. Each dot corresponds to one feature. Features
with similar angles are more interchangeable for the ML prediction model. For example, for predicting
lung cancer in the UK Biobank, several age related features all have similar angles.

3.3. Validating Feature Vector Angles Using Knockoffs

Our next experiment seeks to objectively verify the angle as a valid similarity measure.
We find the notion of “Knockoff” features the best tool for examination. In short, for a
given feature, its knockoff is a fake feature that has perfectly similar interactions with all
other features in the data. However, it only has predictive power if the original feature is
removed, i.e., it is conditionally independent from the outcome. Therefore, in the Feature
Vectors plot, if the original feature has predictive power, we expect a feature and it’s
knockoff have similar angles with different magnitudes. A formal definition is as follows:
for a d-dimensional random variable X, its knockoff X̃ is a random variable that satisfies:

• Conditional independence from outcome: X̃ ⊥⊥ Y|X
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• Exchangeability ∀S ⊂ {1, . . . , d}

[X, X̃]swap(S)
d
= [X, X̃]

where d
= means equality in distribution and [X, X̃]swap(S) means swapping the original and

knockoff features in S. The exchangeability condition results in perfect semantic similarity
of a feature and its knockoff while the independence condition means that if an original
feature has predictive importance (i.e., it is not null: Xj 6⊥⊥ Y|X−j), its knockoff will have a
smaller importance.

Figure 4 shows the Feature Vectors output for three datasets where the features and
their knockoffs are present (the models is trained on the concatenation of [X, X̃]). The
difficulty with knockoffs is that generating them for an arbitrary distribution of data is not
possible. In [59] it was shown that if the distribution of X is a mixture of Gaussians, one can
sample the knockoffs. Therefore, our first dataset is a synthetic 20-dimensional mixture of
three Gaussians, where only the first three features are non-null (predictive of the outcome).
As expected, in Figure 4a, we observe that the features (circles) and their knockoff (squares)
have similar angles. Additionally, we can see that for non-null features, the knockoffs have
a smaller importance while for other features the knockoff and the original feature have
similar feature vectors. For the other two real-world datasets, the validity of the generated
knockoffs depends on the validity of the Gaussian Mixture Model (GMM) assumption.
Following [59], we fit a GMM model to the data. We can see in Figure 4a that the features
and their knockoffs have similar angles. In addition to the subjective observation, we
perform a permutation test in Figure 4b to measure the semantic similarity of original and
knockoff features. The null hypothesis is that the average difference in the angle between
features and their knockoffs is not different from the average difference in a random pairing
of features. As expected, the hypothesis is rejected with p-values close to 0.01.
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Figure 4. Knockoffs. (a) Feature Vector visualizes the features and their corresponding knockoffs.
We can see that the feature and its knockoff have similar semantics while for non-null features, the
importance (embedding size) is different. (b) A permutation test is performed. The hypothesis is that
the angle difference between each feature and its knockoff is the same as angle difference between
two randomly selected features. For each sample of the test, features (original and knockoffs) are
paired randomly. For each pair, the difference in angle of the two features is calculated and then the
difference is averaged across all pairs. By repeating this 10,000 times, the blue histogram is generated.
The red line shows the same average angular difference but instead of random pairing of features,
each feature is paired by its knockoff. We can see that in this case, the average difference in angles is
much smaller than that of random pairing and therefore, the hypothesis is rejected.
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3.4. Validating Feature-Importance Scores

We conduct quantitative experiments to verify the feature-importance generated by
the Feature Vectors visualization. There exist various objective metrics for measuring the
goodness of global feature-importance methods and following existing work [19,60], we will
focus on two intuitive and widely used metrics:

• Smallest Destroying Subset (SDS)—Smallest subset of features that by removing them
an accurate model cannot be trained.

• Smallest Sufficient Subset (SSS)—Smallest subset of features that are sufficient for
training an accurate model.

To measure SSS (SDS), we start removing (adding) features from the most important
to the least important one by one (based on each method’s importance scores) and each
time train a new model and measure its performance. Figure 5 shows the performance
of Feature Vectors compared to three other famous global interpretability methods on
four UCI ML repository datasets [57] (More examples are provided in Appendix B). Other
methods are: (1) Gini Importance score which computes the number of times each feature
has been used in a split proportional to the number of samples it splits. (2) Permutation
Importance [20] which removes features one by one by permuting its value in different
data points and computes the drop in model’s performance. (3) TreeSHAP [37], which
models the features as players in a cooperative game and computes the contribution of
each feature to the collaboration using the notion of Shapley value. We can see that Feature
Vectors has a comparable performance to the other three and as expected, correlates very
well with the Gini importance method. To showcase the advantage of the Feature Vectors
algorithm to other methods, we run the same experiment but for three high-dimensional
datasets (results are shown in Appendix C). This shows that as the dimension of the dataset
increases, Feature Vectors’ advantage becomes more clear.

All in all, while Feature Vectors provides feature-importance scores that are as good
as or better than other existing interpretability methods, it provides semantic information
of the features.
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Figure 5. Importance scores comparison. Feature vectors importance scores are compared with Gini,
Permutation, and SHAP global importance methods. The first row shows the SDS results (the lower
the better) where we remove features from the most important and train a new model each time and
report its test performance. The bottom row shows the SSS (the higher the better) results where we
add the features with the order of importance and train a new model and reports its test performance.
We can see that the Feature Vectors has similar performance to other methods.

One important question is how stable these results are across different runs of the Feature
Vectors algorithm. To answer this question, we take 54 tabular datasets from the Open ML
repository [61] (We have provided Feature Vectors visualization of these tabular datasets along
with their names here: https://github.com/featurevec/featurevec/tree/main/example/plots/

https://github.com/featurevec/featurevec/tree/main/example/plots/OpenML
https://github.com/featurevec/featurevec/tree/main/example/plots/OpenML
https://github.com/featurevec/featurevec/tree/main/example/plots/OpenML
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OpenML, accessed on 18 October 2021) and for each dataset, we train a new ensemble of trees
and compute the Feature-Vectors 10 different times. To have a single performance metric,
for each run we compute the area under the SSS curve. We realize that among all of the
datasets, there is at most a 1% difference (on average 0.5% difference) between the largest
and smallest area under curve of the different runs. This shows that the Feature Vectors
algorithm’s performance is stable across different runs in the sense that the ordering of the
features’ importance is preserved (on average, Spearman’s Rank Correlation of the importance
scores of features in a dataset across different runs is 0.984) We could extend the stability analysis
to the changes in the embedding vector itself. On average, the relative difference between
maximum and minimum `2 norm of a feature’s embedding vector across different runs is 15.5%.
The maximum angular difference between the same feature’s embedding vector in 10 runs is
on average 5.2◦. This shows that the visualized information is also stable across different runs.

4. Discussion and Conclusions

We introduce Feature Vectors, a global interpretability method for tabular ML. Feature
Vectors takes a tabular dataset as an input and outputs a visualization of features where each
feature is shown by its two dimensional embedding (see Appendix A). The embeddings
explain two main aspects of the data: (1) the magnitude of the embedding gives how
the importance of the feature to the predictive power of the model. (2) The direction
of the corresponding feature shows how semantically similar or dissimilar it is to other
features. Semantic similarity is defined as an interpretation tool where two features that
are semantically similar have similar interactions with other features in predicting the
outcome. Through extensive quantitative and qualitative experiments, we show that using
Feature Vectors can help users have a better understanding of the model while not losing
any information compared to other existing methods. This work opens a new window
towards creating better interpretability tools for tabular data and using the element of
visualization as a tool for intuitive explanations of feature interactions. One interesting
future direction is to extend this global interpretability method for local explainability as
well. Feature Vectors is intrinsically limited to the tree-based models that randomly select
subsets of features (e.g., random forests) and an important future direction is to extend the
notion of feature semantics to other models that are used for tabular data.
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Appendix A. Two Dimensional Embeddings Are Sufficient

Table A1 shows the percentage of explained variance of the co-occurrence matrix
using the 2-dimensional Feature Vectors embedding.

https://github.com/featurevec/featurevec/tree/main/example/plots/OpenML
https://github.com/featurevec/featurevec/tree/main/example/plots/OpenML
https://github.com/featurevec/featurevec
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Table A1. Explained Variance Ratio.

Dataset Explained Variance (%)

UK Biobank Lung Cancer Prediction 81
PBMC3k 85

Adult Income 92
Spambase 86

Bank Marketing 98
Parkinson Telemonitoring 99

Wine Quality 98
Breast Cancer 87

Appendix B. Comparing Feature-Importance Methods

In Figure A1, we compare the feature importance scores of different methods using
the SSS and SDS metrics for four more datasets.

UK Biobank Adult Income PBMC3K SpamBase

SD
S

SS
S

Figure A1. Importance scores comparison. Feature vectors importance scores are compared with
Gini, Permutation, and SHAP global importance methods. The first row shows the SDS results were
we remove features from the most important and train a new model each time and report its test
performance. The bottom row shows the SSS results were we add the features with the order of
importance and train a new model and reports its test performance. We can see that the Feature
Vectors has similar performance to other methods.

Appendix C. Comparing Feature-Importance Methods in High-Dimensional Setting

In Figure A2, we compare the feature importance scores of different methods using
the SSS and SDS metrics for four dataset with high dimensionality from the Open ML
reopository. Compared to other datasets, the advantage of the FV algorithm is more clear
in these results.
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IMDB.Drama

20_newsgroups.drift

KDD98
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Figure A2. Importance scores comparison. Feature vectors importance scores are compared with
Gini, Permutation, and SHAP global importance methods for high-dimensional datasets. The first
row shows the SDS results (the lower the better) where we remove features from the most important
and train a new model each time and report its test performance. The bottom row shows the SSS
results (the higher the better) were we add the features with the order of importance and train a new
model and reports its test performance. We can see that the Feature Vectors has better performance
to other methods. (For better visualization, the plots are smoothed with a moving average of size 5).
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