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Abstract: This paper aims to propose a novel multi-attribute group decision-making (MAGDM)
method based on interval-valued q-rung orthopair fuzzy sets (IVq-ROFSs). The IVq-ROFSs have been
proved to be effective in handling MAGDM problems, and several novel decision-making methods
have been proposed. Nevertheless, it is worth pointing out that these approaches still have some
limitations, and there still exist some realistic situations that cannot be solved by existing MAGDM
methods. Hence, the objective of this paper is to introduce a novel MAGDM method, which can
overcome some of the drawbacks of existing approaches. To effectively and appropriately aggregate
interval-valued q-rung orthopair fuzzy numbers (IVq-ROFNs), we combine the power average
with generalized Maclaurin symmetric mean (GMSM), propose the power GMSM operator and
extend it into IVq-ROFSs. Afterwards, a collection of new aggregation operators for IVq-ROFNs are
developed. In this paper, we study definitions of these operators and investigate their characteristics
as well as special cases. Then, based on the new aggregation operators, we present a new MAGDM
method. Finally, we apply the proposed MAGDM method in online education platform performance
evaluation to illustrate its effectiveness and validity. In addition, we also provide comparative
analysis to explain why decision-makers should use our method instead of the others.

Keywords: interval-valued q-rung orthopair fuzzy sets; power average; generalized Maclaurin
symmetric mean; power generalized Maclaurin symmetric mean; multi-attribute group decision-
making; online education platform performance evaluation

1. Introduction

With the continuous development of information and communication technologies,
the online education industry has ushered in new development opportunities, and many
new online education platforms have emerged. Especially under the influence of the
COVID-19 epidemic, many countries and regions have taken measures to close schools
and switch to online teaching. Hence, online education platforms have obtained new
development opportunities. In addition, the promotion of online education platforms can
alleviate the unbalanced distribution of educational resources between regions, thereby
promoting educational equity to a certain extent. Different online education platforms are
quite different, and their quality and performance are also uneven. Therefore, it is necessary
to evaluate the performance of online education platforms according to some methods.

The evaluation problem of online education platforms can be regarded as a multi-
attribute group decision-making (MAGDM) problem essentially. Decision-makers evaluate
different online education platforms from multiple dimensions, and on this basis, they can
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choose an appropriate method to determine the ranking order of online education plat-
forms. Actually, MAGDM is a widely existing phenomenon, which has attracted increasing
attention and interests in the fields of modern decision-making science, operational re-
search, production and operation management, etc. There are many methodologies that
help decision-makers to obtain the ranking results of possible alternatives. Recently, many
scholars focused on MAGDM methods based on aggregation operators (AOs), which pro-
duce the final ranking orders of alternatives by integrating individual attribute values [1–5].
When using AOs to solve realistic MAGDM problems, to make the final decision results
dependable and appropriate, we usually have to handle two kinds of situations. First, as
different decision-makers have different background, priori knowledge and experience,
they probably provide unbalanced evaluation values. In other words, in MAGDM process,
some decision-makers may provide unduly high or low evaluation values, which, as a
result, have significant negative impact on the final decision results. Second, attributes in
realistic MAGDM problems are usually interrelated and such kinds of interrelationship
among interactive attributes should be counted when calculating the overall evaluation
values of alternatives.

For the first kind of decision-making situations, Yager [6] originated the power average
(PA) operator, which is adequate to deal with decision-makers’ unreasonable or extreme
evaluation values. It is worth pointing out that, however, the original PA operator was
proposed for decision-making problems with crisp numbers. To make the PA operator
more practical, many scholars focused on extending PA to complex decision-making envi-
ronments. For example, Xu [7] and Wei and Lu [8] generalized PA into intuitionistic fuzzy
sets and Pythagorean fuzzy sets, respectively. Wang et al. [9] introduced PA operators for
dual hesitant fuzzy elements, and they applied the newly developed AOs into a safe path
selection problem. Some other extensions and generalizations of PA into different fuzzy
sets can be found in [10–15]. For the second kind of decision-making situations, some schol-
ars started to study information AOs, which can consider the complex interrelationship
among attributes. The Bonferroni mean (BM) [16] and Heronian mean (HM) [17] are two
important AOs, which integrate not only the input arguments, but also the interrelationship
among them. More and more scientists have realized the characteristics of BM and HM,
and some novel fuzzy AOs have been proposed to deal with MAGDM problems. For BM,
Xu and Yager [18], Yang et al. [19], Zhu and Xu [20], and Tu et al. [21] studied it under the
circumstances of intuitionistic fuzzy sets, Pythagorean fuzzy sets, hesitant fuzzy sets, and
dual hesitant fuzzy sets, respectively. Similar to BM, HM has also been a research hotspot
and many new achievements have been reported in recent publications. For instance,
Liu and Chen [22] first generalized HM into a fuzzy decision-making environment and
introduced a collection of intuitionistic fuzzy HM operators. Liu and You [23] considered
HM in linguistic intuitionistic fuzzy sets and proposed several novel AOs, which reflect
the interrelationship among any two linguistic intuitionistic numbers. Yu et al. [24] pre-
sented dual hesitant fuzzy HM operators and applied them in a supplier selection problem.
Similarly, Xu et al. [25] also investigated supplier selection problems under q-rung dual
hesitant fuzzy sets based on HM. To date, HM is still a research hotspot and new MAGDM
methods can still be found in newly published articles [26–29].

The above-mentioned references only focused on PA, BM or HM, respectively. As
realistic decision-making issues are highly complicated, scholars also focused on hybrid
AOs. In [30], authors proposed hesitant fuzzy power Bonferroni mean (PBM) operators
and investigated their applications in hesitant fuzzy MAGDM problems. The main contri-
butions and novelties are that they creatively combined PA with BM and put forward a
hybrid AO, i.e., PBM. It is realized by scholars that PBM takes the merits of PA and BM,
and it is more suitable to deal with practical MAGDM problems. After the introduction
of PBM, Liu and Liu [31] studied it under linguistic intuitionistic fuzzy sets. Liu and
Li [32] provided decision-makers an interval-valued intuitionistic fuzzy PBM operator
based MAGDM method. Wang and Li [33] presented Pythagorean fuzzy interactive PBM
operators and studied their applications in online payment service providers evaluation.
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Considering that HM has the similar function as BM, motivated by PBM, Liu [34] com-
bined PA with HM and proposed power Heronian mean (PHM) operator and applied
it in interval-valued intuitionistic fuzzy sets. Liu’s [34] contributions demonstrated the
advantages and superiorities of PHM. Based on Liu’s [34] pioneering works, Ju et al. [35],
Liu et al. [36], Wang et al. [37], Liu et al. [38], and Jiang et al. [39] investigated PHM under
hesitant fuzzy linguistic sets, linguistic neutrosophic sets, q-rung orthopair hesitant fuzzy
sets, neutrosophic cubic sets, and interval-valued dual hesitant fuzzy sets, respectively.

Recent publications reveal the advantages of PBM and PHM in aggregating fuzzy
information, however, they still have drawbacks. One of the prominent drawbacks of PBM
and PHM is that they only consider the interrelationship among any two attributes, which
is insufficient and inadequate to handle some real MAGDM problems. More and more
researches have indicated the importance and necessity of considering the interrelationship
and interaction among multiple attributes [40]. Hence, it is necessary to combine PA with
an AO, which considers the interrelationship among multiple arguments. The generalized
Maclaurin symmetric mean (GMSM) [41] is an operator, which has the ability of reflecting
the interrelationship among multiple input variables. In addition, GMSM has the ability
of reflecting the individual importance of aggregated arguments, which makes it more
powerful than the classical Maclaurin symmetric mean (MSM) [42]. Due to this reason,
GMSM has been widely applied in Pythagorean fuzzy sets [43], q-rung orthopair fuzzy sets
(q-ROFSs) [44], multi-hesitant fuzzy linguistic sets [45], intuitionistic fuzzy soft sets [46],
probabilistic linguistic sets [47], etc. In this paper, considering the ability and flexibility of
GMSM, we combine PA with GMSM and propose the power generalized Maclaurin sym-
metric mean (PGMSM) operator. Evidently, PGMSM is more powerful than PBM, PHM,
and GMSM and is more suitable to deal with actual-life MAGDM problems. Additionally,
we notice that the interval-valued q-ROFS (IVq-ROFS) proposed by Ju et al. [48] is a pow-
erful information representation tool that can depict fuzziness and uncertainty efficiently.
The IVq-ROFS is an extension of q-ROFS proposed by Yager [49]. MAGDM methods based
on q-ROFSs have received much attention [50–52]. Similarly, some MAGDM methods
under IVq-ROFSs have been proposed [53–56]. Nevertheless, these methods still have a
drawback, i.e., they fail to handle the complicated interrelationship between attributes and
simultaneously eliminate the bad influence of decision-makers’ evaluation values. In order
to overcome this drawback, this paper extends PGMSM into IVq-ROFSs to propose a new
MAGDM method.

The main contributions of this paper contain three aspects. First, a novel AO, called
PGMSM is developed. Second, some new AOs for interval-valued q-rung orthopair fuzzy
numbers (IVq-ROFNs) are developed. Finally, a new MAGDM method under IVq-ROFS
circumstances is put forward. The rest of this paper is organized as follows. Section 2
recalls basic notions. Section 3 presents several new AOs for IVq-ROFNs and discusses
their properties and characteristics. Based on the developed AOs, Section 4 presents a novel
MAGDM method. Section 5 applies the proposed MAGDM method in online education
performance evaluation. Section 6 summarizes the paper.

2. Basic Notions

This section introduces some basic notions that will be used in the following sections.

2.1. The Interval-Valued q-Rung Orthopair Fuzzy Sets

Definition 1 [48]. Let X be an ordinary fixed set, an IVq-ROFS A defined on X is expressed as

A = {x, µA(x), vA(x)|x ∈ X } (1)

where µA(x), vA(x) ⊆ [0, 1] are two interval-valued values, denoting the membership and non-
membership degrees of element x ∈ X to the set A, such that (sup(µA(x)))q + (sup(vA(x)))q ≤
1(q ≥ 1). For convenience, the ordered pair A = (µA(x), vA(x)) is called an IVq-ROFN, which
can be denoted as α = ([a, b], [c, d]) for simplicity, such that a ≤ b, c ≤ d, and bq + dq ≤ 1(q ≥ 1).
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Basic operations of IVq-ROFNs are presented as follows:

Definition 2 [48]. Let α = ([a, b], [c, d]), α1 = ([a1, b1], [c1, d1]) and α2 = ([a2, b2], [c2, d2]) be
any three IVq-ROFNs, and λ be a positive real number, then

(1) α1 ⊕ α2 =

([(
aq

1 + aq
2 − aq

1aq
2

)1/q
,
(

bq
1 + bq

2 − bq
1bq

2

)1/q
]

, [c1c2, d1d2]

)
;

(2) α1 ⊗ α2 =

(
[a1a2, b1b2],

[(
cq

1 + cq
2 − cq

1cq
2

)1/q
,
(

dq
1 + dq

2 − dq
1dq

2

)1/q
])

;

(3) λα =

([(
1− (1− aq)λ

)1/q
,
(

1− (1− bq)λ
)1/q

]
,
[
cλ, dλ

])
;

(4) αλ =

([
aλ, bλ

]
,
[(

1− (1− cq)λ
)1/q

,
(

1− (1− dq)λ
)1/q

])
.

The method to compare any two IVq-ROFNs is presented as follows:

Definition 3 [48]. Let α = ([a, b], [c, d]) be an IVq-ROFN, then the score function of α is
expressed as

S(α) =
2 + aq + bq − cq − dq

4
(2)

and the accuracy function of α is expressed as

H(α) =
aq + bq + cq + dq

2
(3)

For any two IVq-ROFNs α1 and α2

(1) if S(α1) > S(α2), then α1 ≥ α2;
(2) if S(α1) > S(α2), then

if H(α1) > H(α2), then α1 > α2;
if H(α1) = H(α2), then α1 = α2.

The distance measure between two IVq-ROFNs is defined as follows:

Definition 4. Let α1 = ([a1, b1], [c1, d1]) and α2 = ([a2, b2], [c2, d2]) be two IVq-ROFNs, then
the distance between α1 and α2 is defined as

d(α1, α2) =

∣∣∣aq
1 − aq

2

∣∣∣+ ∣∣∣bq
1 − bq

2

∣∣∣+ ∣∣∣cq
1 − cq

2

∣∣∣+ ∣∣∣dq
1 − dq

2

∣∣∣
4

(4)

2.2. The Power Average and Generalized Maclaurin Systems Mean Operators

Definition 5 [6]. Let ai(i = 1, 2, . . . , n) be a collection of non-negative crisp numbers, then the
PA operator is expressed as

PA(a1, a2, . . . , an) =
∑n

i=1(1 + T(ai))ai

∑n
i=1(1 + T(ai))

(5)

where T(ai) = ∑n
j=1,i 6=j Sup

(
ai, aj

)
, Sup

(
ai, aj

)
denotes the support ai from aj, satisfying the

conditions

(1) 0 ≤ Sup
(
ai, aj

)
≤ 1;

(2) Sup
(
ai, aj

)
= Sup

(
aj, ai

)
;

(3) Sup(a, b) ≤ Sup(c, d), if |a, b| ≥ |c, d|.
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Definition 6 [41]. Let ai(i = 1, 2, . . . , n) be a collection of crisp numbers, then the GMSM
operator is defined as

GMSM(k,λ1,λ2,...,λk)(a1, a2, . . . , an) =

∑1≤i1<...<ik≤n

(
∏k

j=1 a
λj
ij

)
Ck

n


1

λ1+λ2+...+λk

(6)

where λ1, λ2, . . . , λk ≥ 0, and k = 1, 2, . . . , n is an integer.

If we combine PA with GMSM, then the PGMSM operator is obtained.

Definition 7. Let ai(i = 1, 2, . . . , n) be a collection of crisp numbers, then the PGMSM operator
is defined as

PGMSM(k,λ1,λ2,...,λk)(a1, a2, . . . , an)

=


∑1≤i1<...<ik≤n

∏k
j=1

 n
(

1+T
(

aij

))
aij

∑n
i=1(1+T(ai))


λj


Ck
n



1
λ1+λ2+...+λk

(7)

where λ1, λ2, . . . , λk ≥ 0, and k = 1, 2, . . . , n is an integer. T(ai) = ∑n
j=1,i 6=j Sup

(
ai, aj

)
,

Sup
(
ai, aj

)
denotes the support for ai from aj, satisfying the properties presented in Definition 5. If

γi = (1 + T(ai))/ ∑n
i=1(1 + T(ai)), then Equation (7) can be written as

PGMSM(k,λ1,λ2,...,λk)(a1, a2, . . . , an)

=

∑1≤i1<...<ik≤n

(
∏k

j=1

(
nγij

αij

)λj
)

Ck
n


1

λ1+λ2+...+λk (8)

where γ = (γ1, γ2, . . . , γn)
T is called the power weight vector (PWV), such that 0 ≤ γi ≤ 1 and

∑n
i=1 γi = 1.

In addition, we can obtain some special cases of the proposed PGMSM operator.

Case 1: if k = 2, then PGMSM operator is reduced to the PBM operator with the parameters λ1
and λ2, i.e.,

PGMSM(2,λ1,λ2)(a1, a2, . . . , an) =

(
∑1≤i1<i2≤n

(
(nγi1 ai1 )

λ1×(nγi2 ai2 )
λ2
)

C2
n

) 1
λ1+λ2

=

(
2

n(n−1) ∑1≤i<j≤n

(
(nγiai)

λ1 ×
(

nγjaj

)λ2
)) 1

λ1+λ2

=

(
1

n(n−1) ∑1≤i,j≤n;i 6=j

(
(nγiai)

λ1 ×
(

nγjaj

)λ2
)) 1

λ1+λ2

= PBM(λ1,λ2)(a1, a2, . . . , an).

(9)
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Case 2: if k = 3, then PGMSM operator is reduced to the power generalized Bonferroni mean
(PGBM) operator with the parameters λ1 λ2 and λ3, i.e.,

PGMSM(3,λ1,λ2,λ3)(a1, a2, . . . , an)

=

(
∑1≤i1<i2<i3≤n

(
(nγi1

ai1)
λ1×(nγi2 ai2)

λ2×(nγi3 ai3)
λ3
)

C3
n

) 1
λ1+λ2+λ3

=

(
6 ∑1≤i1<i2<i3≤n

(
(nγi1

ai1)
λ1×(nγi2 ai2)

λ2×(nγi3 ai3)
λ3
)

n(n−1)(n−2)

) 1
λ1+λ2+λ3

=
(

1
n(n−1)(n−2) ∑n

i,j,l=1;i 6=j 6=l

(
(nγiai)

λ1 ×
(
nγjaj

)λ2 × (nγlal)
λ3
)) 1

λ1+λ2+λ3

= PGBM(3,λ1,λ2,λ3)(a1, a2, . . . , an)

(10)

Case 3: if λ1 = λ2 = . . . = λk = 1, the PGMSM operator is reduced to the power Maclaurin
symmetric mean (PMSM) operator, i.e.,

PGMSM(k,1,1,...,1)(a1, a2, . . . , an) =

(
∑1≤i1<...<ik≤n

(
∏k

j=1 nγij
αij

)
Ck

n

) 1
k

= PMSM(k)(a1, a2, . . . , an)

(11)

3. Novel Aggregation Operators for IVq-ROFNs

In MAGDM problems, AOs are used to aggregate attribute values to determine
comprehensive evaluation values of alternatives. Hence, based on the above-mentioned
basic AOs, we introduce some novel AOs for IVq-ROFNs and discuss their properties.

3.1. The Interval-Valued q-Rung Orthopair Fuzzy Power Average Operator

We first extend the classical PA operator into IVq-ROFSs to propose a PA operator for
IVq-ROFNs.

Definition 8. Let αi = ([ai, bi], [ci, di])(i = 1, 2, . . . , n) be a collection of IVq-ROFNs, the
interval-valued q-rung orthopair fuzzy power average (IVq-ROFPA) operator is defined as

IVqROFPA(α1, α2, . . . , αn) =
⊕n

i=1(1 + T(ai))αi

∑n
i=1(1 + T(ai))

, (12)

whereT(αi) = ∑n
j=1,i 6=j Sup

(
αi, αj

)
, Sup

(
αi, αj

)
denotes the support for αi from αj, satisfying the

following conditions:

(1) 0 ≤ Sup
(
αi, αj

)
≤ 1;

(2) Sup
(
αi, αj

)
= Sup

(
αj, αi

)
;

(3) Sup
(
αi, αj

)
≤ Sup(αs, αt), if dis

(
αi, αj

)
≥ dis((αs, αt)).

If we assume

vi =
1 + T(αi)

∑n
i=1(1 + T(αi))

, (13)

then Equation (12) can be transformed into

IVqROFPA(α1, α2, . . . , αn) = ⊕n
i=1viαi, (14)

where v = (v1, v2, · · · , vn)
T is called the PWV, such that 0 ≤ vi ≤ 1 and ∑n

i=1 vi = 1.

Based on the operational rules presented in Definition 2, the following aggregated
results can be obtained.
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Theorem 1. Let αi = ([ai, bi], [ci, di])(i = 1, 2, . . . , n) be a collection of IVq-ROFNs, then the
aggregated value by the IVq-ROFPA operator is still an IVq-ROFN and

IVqROFPA(α1, α2, . . . , αn)

=

([(
1−∏n

i=1

(
1− aq

i

)vi
)1/q

,
(

1−∏n
i=1

(
1− bq

i

)vi
)1/q

]
,
[
∏n

i=1 cvi
i , ∏n

i=1 dvi
i

])
.

(15)

Theorem 1 is trivial and we omit its proof. In addition, it is easy to prove that the
IVq-ROFPA operator has the following properties.

Theorem 2 (Idempotency). Let αi(i = 1, 2, . . . , n) be a collection of IVq-ROFNs, if αi = α =
([a, b], [c, d]) for i = 1, 2, . . . , n, then

IVqROFPA(α1, α2, . . . , αn) = α (16)

Theorem 3 (Boundedness). Let αi = ([ai, bi], [ci, di])(i = 1, 2, . . . , n) be a collection of IVq-
ROFNs, then

α− ≤ IVqROFPA(α1, α2, . . . , αn) ≤ α+ (17)

where
α+ = ([maxn

i=1ai, maxn
i=1bi], [minn

i=1ci, minn
i=1di]),

and
α− = ([minn

i=1ai, minn
i=1bi], [maxn

i=1ci, maxn
i=1di]).

3.2. The Interval-Valued q-Rung Orthopair Fuzzy Power Weighted Average Operator

In MAGDM problem, when aggregating a collection of IVq-ROFNs, not only the
IVq-ROFNs themselves, but also their corresponding weight information should be taken
into account. Hence, we take into consideration of the weights of aggregated IVq-ROFNs
in the IVq-ROFPA operator and propose its weighted form.

Definition 9. Let αi = ([ai, bi], [ci, di])(i = 1, 2, . . . , n) be a collection of IVq-ROFNs and w =

(w1, w2, . . . , wn)
T be the corresponding weight vector, such that ∑n

i=1 wi = 1 and 0 ≤ wi ≤ 1.
The interval-valued q-rung orthopair fuzzy power weighted average (IVq-ROFPWA) operator is
defined as

IVqROFPWA(α1, α2, . . . , αn) =
⊕n

i=1wi(1 + T(ai))αi

∑n
i=1 wi(1 + T(ai))

, (18)

where T(αi) = ∑n
j=1,i 6=j Sup

(
αi, αj

)
, Sup

(
αi, αj

)
denotes the support for αi from αj , satisfying

the properties presented in Definition 8. Similarly, we assume

σi =
wi(1 + T(αi))

∑n
i=1 wi(1 + T(αi))

, (19)

then, Equation (18) can be transformed into the following form

IVqROFPWA(α1, α2, . . . , αn) = ⊕n
i=1σiαi, (20)

where σ = (σ1, σ2, . . . σn)
T is called the PWV, such that 0 ≤ σi ≤ 1 and ∑n

i=1 σi = 1.

Simialrily, we can gain the following theorem.
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Theorem 4. Let αi = ([ai, bi], [ci, di])(i = 1, 2, . . . , n) be a collection of IVq-ROFNs, the aggre-
gated value by the IVq-ROFPWA operator is still an IVq-ROFN and

IVqROFPWA(α1, α2, . . . , αn)

=
([(

1−∏n
i=1

(
1− aq

i

))σi
,
(

1−∏n
i=1

(
1− bq

i

))σi
]
,
[
∏n

i=1 cσi
i , ∏n

i=1 dσi
i
])

.
(21)

In addition, it is easy to prove that the IVq-ROFPWA operator has the properties of
idempotency and boundedness.

3.3. The Interval-Valued q-Rung Orthopair Fuzzy Power Generalized Maclaurin Symmetric Mean
Operator

In MAGDM problems, when fusing attribute values, we usually have to consider two
significant issues, i.e., taking the interrelationship among attributes into consideration and
reducing or eliminating the negative influence of decision-makers’ extreme evaluation
values. The above-mentioned PGMSM takes the advantages of both PA and GMSM and,
hence, it can resolve the above two issues. Therefore, in this subsection, we extend the
PGMSM operator into IVq-ROFSs to propose a novel AO for IVq-ROFNs.

Definition 10. Let αi = ([ai, bi], [ci, di])(i = 1, 2, . . . , n) be a collection of IVq-ROFNs, the interval-
valued q-rung orthopair fuzzy power generalized Maclaurin symmetric mean (IVq-ROFPGMSM)
operator is defined as

IVqROFPGMSM(k,λ1,λ2,...,λk)(α1, α2, . . . , αn)

=

⊕1≤i1<...<ik≤n

(
⊗k

j=1

(
n(1+T(αi))

∑n
i=1(1+T(αi))

αij

)λj
)

Ck
n


1

λ1+λ2+...+λk

,
(22)

where λ1, λ2, . . . , λk ≥ 0, and k = 1, 2, . . . , n is an integer. T(αi) = ∑n
j=1,i 6=j Sup

(
αi, αj

)
,

Sup
(
αi, αj

)
denotes the support for αi from αj, satisfying the properties presented in Definition 8.

Similarly, we assume

ηi =
1 + T(αi)

∑n
i=1(1 + T(αi))

(23)

then Equation (22) can be transformed into

IVqROFPGMSM(k,λ1,λ2,...,λk)(α1, α2, . . . , αn)

=

⊕1≤i1<...<ik≤n

(
⊗k

j=1

(
nηij

αij

)λj
)

Ck
n


1

λ1+λ2+...+λk

,
(24)

where η = (η1, η2, . . . , ηn)
T is called the PWV, such that 0 ≤ ηi ≤ 1 and ∑n

i=1 ηi = 1.
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Theorem 5. Let αi = ([ai, bi], [ci, di])(i = 1, 2, . . . , n) be a collection of IVq-ROFNs, then the
aggregated valued by the IVq-ROFPGMSM operator is also an IVq-ROFN and

IVqROFPGMSM(k,λ1,λ2,...,λk)(α1, α2, . . . , αn)

=


(1−∏1≤i1<...<ik≤n

(
1−∏k

j=1

(
1−

(
1− aq

ij

)nηij
)λj
)1/Ck

n
) 1

q(λ1+λ2+...+λk)

,

(
1−∏1≤i1<...<ik≤n

(
1−∏k

j=1

(
1−

(
1− bq

ij

)nηij
)λj
)1/Ck

n
) 1

q(λ1+λ2+...+λk)


1−

1−∏1≤i1<...<ik≤n

(
1−∏k

j=1

(
1− c

qnηij
ij

)λj
)1/Ck

n


1
λ1+λ2+...+λk


1/q

1−

1−∏1≤i1<...<ik≤n

(
1−∏k

j=1

(
1− c

qnηij
ij

)λj
)1/Ck

n


1
λ1+λ2+...+λk


1/q

.

(25)

Proof. According to Definition 2, we have

nηij αij =

([(
1−

(
1− aq

ij

)nηij
)1/q

,
(

1−
(

1− bq
ij

)nηij
)1/q

]
,
[

c
nηij
ij

, d
nηij
ij

])
,

and (
nηij αij

)λj
=

([(
1−

(
1− aq

ij

)nηij
)λj/q

,
(

1−
(

1− bq
ij

)nηij
)λj/q

]
(1−

(
1− c

qnηij
ij

)λj
)1/q

,

(
1−

(
1− d

qnηij
ij

)λj
)1/q

.

Hence,

⊗k
j=1

(
nηij αij

)λj
=

([
∏k

j=1

(
1−

(
1− aq

ij

)nηij
)λj/q

, ∏k
j=1

(
1−

(
1− bq

ij

)nηij
)λj/q

]
(1−∏k

j=1

(
1− c

qnηij
ij

)λj
)1/q

,

(
1−∏k

j=1

(
1− b

qnηij
ij

)λj
)1/q


⊕1≤i1<...<ik≤n

(
⊗k

j=1

(
nηij αij

)λj
)

=

([(
1−∏1≤i1<...<ik≤n

(
1−∏k

j=1

(
1−

(
1− aq

ij

)nηij
)λj
))1/q

,(
1−∏1≤i1<...<ik≤n

(
1−∏k

j=1

(
1−

(
1− aq

ij

)nηij
)λj
))1/q

]
∏1≤i1<...<ik≤n

(
1−∏k

j=1

(
1− c

qnηij
ij

)λj
)1/q

,

∏1≤i1<...<ik≤n

(
1−∏k

j=1

(
1− d

qnηij
ij

)λj
)1/q


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Further,

⊕1≤i1<...<ik≤n

(
⊗k

j=1

(
nηij

αij

)λj
)

Ck
n

=

(1−∏1≤i1<...<ik≤n

(
1−∏k

j=1

(
1−

(
1− aq

ij

)nηij
)λj
)1/Ck

n
)1/q

,

(
1−∏1≤i1<...<ik≤n

(
1−∏k

j=1

(
1−

(
1− bq

ij

)nηij
)λj
)1/Ck

n
)1/q

∏1≤i1<...<ik≤n

(
1−∏k

j=1

(
1− c

qnηij
ij

)λj
)1/qCk

n

∏1≤i1<...<ik≤n

(
1−∏k

j=1

(
1− d

qnηij
ij

)λj
)1/qCk

n
.

Finally,

⊕1≤i1<...<ik≤n

(
⊗k

j=1

(
nηij

αij

)λj
)

Ck
n


1

λ1+λ2+...+λk

=
(1−∏1≤i1<...<ik≤n

(
1−∏k

j=1

(
1−

(
1− aq

ij

)nηij
)λj
)1/Ck

n
) 1

q(λ1+λ2+...+λk)

,

(
1−∏1≤i1<...<ik≤n

(
1−∏k

j=1

(
1−

(
1− bq

ij

)nηij
)λj
)1/Ck

n
) 1

q(λ1+λ2+...+λk)


1−

1−∏1≤i1<...<ik≤n

(
1−∏k

j=1

(
1− c

qnηij
ij

)λj
)1/Ck

n


1
λ1+λ2+...+λk


1/q

1−

1−∏1≤i1<...<ik≤n

(
1−∏k

j=1

(
1− c

qnηij
ij

)λj
)1/Ck

n


1
λ1+λ2+...+λk


1/q

.

It is worth investigating special cases of the proposed IVq-ROFPGMSM operator.
First of all, we study special operators of IVq-ROFPGMSM operator with regarding of the
parameter q. �

Case 1: if q = 1, then IVq-ROFPGMSM becomes the interval-valued intuitionistic fuzzy PGMSM
(IVIFPGMSM) operator, viz.,
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IVqROFPGMSM(k,λ1,λ2,...,λk)
q=1 (α1, α2, . . . , αn)

=


(1−∏1≤i1<...<ik≤n

(
1−∏k

j=1

(
1−

(
1− aij

)nηij
)λj
)1/Ck

n
) 1

λ1+λ2+...+λk

,

(
1−∏1≤i1<...<ik≤n

(
1−∏k

j=1

(
1−

(
1− bij

)nηij
)λj
)1/Ck

n
) 1

λ1+λ2+...+λk


1−

1−∏1≤i1<...<ik≤n

(
1−∏k

j=1

(
1− c

nηij
ij

)λj
)1/Ck

n


1
λ1+λ2+...+λk


1/q

1−

1−∏1≤i1<...<ik≤n

(
1−∏k

j=1

(
1− c

nηij
ij

)λj
)1/Ck

n


1
λ1+λ2+...+λk


1/q



= IVIFPGMSM(k,λ1,λ2,...,λk)(k, λ1, λ2, . . . , λk).

(26)

Case 2: if q = 2, then IVq-ROFPGMSM becomes the interval-valued Pythagorean fuzzy PGMSM
(IVPFPGMSM) operator, viz.,

IVqROFPGMSM(k,λ1,λ2,...,λk)
q=2 (α1, α2, . . . , αn)

=


(1−∏1≤i1<...<ik≤n

(
1−∏k

j=1

(
1−

(
1− a2

ij

)nηij
)λj
)1/Ck

n
) 1

2(λ1+λ2+...+λk)

,

(
1−∏1≤i1<...<ik≤n

(
1−∏k

j=1

(
1−

(
1− b2

ij

)nηij
)λj
)1/Ck

n
) 1

2(λ1+λ2+...+λk)


1−

1−∏1≤i1<...<ik≤n

(
1−∏k

j=1

(
1− c

2nηij
ij

)λj
)1/Ck

n


1
λ1+λ2+...+λk


1/2

1−

1−∏1≤i1<...<ik≤n

(
1−∏k

j=1

(
1− c

2nηij
ij

)λj
)1/Ck

n


1
λ1+λ2+...+λk


1/2

.

= IVPFPGMSM(k,λ1,λ2,...,λk)(α1, α2, . . . , αn).

(27)

Case 3: if q = 3, then IVq-ROFPGMSM becomes the interval-valued Fermatean fuzzy PGMSM
(IVFFPGMSM) operator, viz.,
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IVqROFPGMSM(k,λ1,λ2,...,λk)
q=3 (α1, α2, . . . , αn)

=


(1−∏1≤i1<...<ik≤n

(
1−∏k

j=1

(
1−

(
1− a2

ij

)nηij
)λj
)1/Ck

n
) 1

2(λ1+λ2+...+λk)

,

(
1−∏1≤i1<...<ik≤n

(
1−∏k

j=1

(
1−

(
1− b2

ij

)nηij
)λj
)1/Ck

n
) 1

2(λ1+λ2+...+λk)


1−

1−∏1≤i1<...<ik≤n

(
1−∏k

j=1

(
1− c

2nηij
ij

)λj
)1/Ck

n


1
λ1+λ2+...+λk


1/2

1−

1−∏1≤i1<...<ik≤n

(
1−∏k

j=1

(
1− c

2nηij
ij

)λj
)1/Ck

n


1
λ1+λ2+...+λk


1/2

.

= IVFFPGMSM(k,λ1,λ2,...,λk)(α1, α2, . . . , αn).

(28)

Additionally, we investigate some special cases of IVq-ROFPGMSM operator with
regarding of the parameters in GMSM.

Case 4: if k = 2, then IVq-ROFPGMSM operator reduces to the interval-valued q-rung orthopair
fuzzy power Bonferroni mean (IVq-ROFPBM) operator with the parameters λ1 and λ2, viz.,

IVqROFPGMSM(2,λ1,λ2)(α1, α2, . . . , αn) =
(

1
n(n−1) ⊕

n
i,j=1;i 6=j

(
(nηiai)

λ1 ⊗
(
nηjaj

)λ2
)) 1

λ1+λ2
(1−

(
∏n

i,j=1;i 6=j

(
1−

(
1−

(
1− aq

i

)nηi
)λ1
×
(

1−
(

1− aq
j

)nηj
)λ2
)) 1

n(n−1)
) 1

q(λ1+λ2)

,

(
1−

(
∏n

i,j=1;i 6=j

(
1−

(
1−

(
1− bq

i

)nηi
)λ1
×
(

1−
(

1− bq
j

)nηj
)λ2
)) 1

n(n−1)
) 1

q(λ1+λ2)

,


1−

(
1−∏n

i,j=1;i 6=j

(
1−

(
1− cqnηi

i

)λ1 ×
(

1− c
qnηj
j

)λ2
) 1

n(n−1)
) 1

λ1+λ2


1/q

,

1−
(

1−∏n
i,j=1;i 6=j

(
1−

(
1− dqnηi

i

)λ1 ×
(

1− d
qnηj
j

)λ2
) 1

n(n−1)
) 1

λ1+λ2


1/q



= IVqROFPBM(λ1,λ2)(α1, α2, . . . , αn),

(29)

Additionally, if the value Sup
(
αi, αj

)
is a non-negative number, then IVq-ROFPGMSM

operator further reduces to the interval-valued q-rung orthopair fuzzy Bonferroni mean
(IVq-ROFBM) operator, i.e.,
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IVqROFPGMSM(2,λ1,λ2)(α1, α2, . . . , αn) =
(

1
n(n−1) ⊕

n
i,j=1;i 6=j

(
aλ1

i ⊗ aλ2
j

)) 1
λ1+λ2(1−

(
∏n

i,j=1

(
1−

(
aλ1

i aλ2
j

)q)) 1
n(n−1)

) 1
q(λ1+λ2)

,

(
1−

(
∏n

i,j=1

(
1−

(
bλ1

i bλ2
j

)q)) 1
n(n−1)

) 1
q(λ1+λ2)

 ,
1−

(
1−∏n

i,j=1

(
1−

(
1− cq

i

)λ1 ×
(

1− cq
j

)λ2
) 1

n(n−1)
) 1

λ1+λ2


1/q

,

1−
(

1−∏n
i,j=1

(
1−

(
1− dq

i

)λ1 ×
(

1− dq
j

)λ2
) 1

n(n−1)
) 1

λ1+λ2


1/q



= IVqROFBM(λ1,λ2)(α1, α2, . . . , αn).

(30)

Case 5: if k = 3, the IVq-ROFPGMSM operator reduces to the interval-valued q-rung orthopair
fuzzy power generalized Bonferroni mean (IVq-ROFPGBM) operator with the parameters λ1, λ2
and λ3, viz.

IVqROFPGMSM(3,λ1,λ2,λ3)(α1, α2, . . . , αn)

=

(
1

n(n−1)(n−2) ⊕
n
i,j,l=1;i 6=j 6=l

(
(nηiai)

λ1 ⊗
(

nηjaj

)λ2
⊗ (nηl al)

λ3

)) 1
λ1+λ2+λ3

=


(1−∏n

i,j,l=1;i 6=j 6=l

(
1−

(
1−

(
1− aq

i

)nηi
)λ1
×
(

1−
(

1− aq
j

)nηj
)λ2
×
(

1−
(

1− aq
l

)nηl
)λ3
) 1

n(n−1)(n−2)
) 1

q(λ1+λ2+λ3)

,

(
1−∏n

i,j,l=1;i 6=j 6=l

(
1−

(
1−

(
1− bq

i

)nηi
)λ1
×
(

1−
(

1− bq
j

)nηj
)λ2
×
(

1−
(

1− bq
l

)nηl
)λ3
) 1

n(n−1)(n−2)
) 1

q(λ1+λ2+λ3)

,


1−

(
1−∏n

i,j,l=1;i 6=j 6=l

(
1−

(
1− cqnηi

i

)λ1
×
(

1− c
qnηj

j

)λ2
×
(

1− cqnηl
l

)λ3
) 1

n(n−1)(n−2)
) 1

λ1+λ2+λ3

1/q

,


1−

(
1−∏n

i,j,l=1;i 6=j 6=l

(
1−

(
1− dqnηi

i

)λ1
×
(

1− d
qnηj

j

)λ2
×
(

1− dqnηl
l

)λ3
) 1

n(n−1)(n−2)
) 1

λ1+λ2+λ3

1/q


= IVqROFPGBM(λ1,λ2,λ3)(α1, α2, . . . , αn),

(31)

Additionally, if the value Sup
(
αi, αj

)
is a non-negative number, then IVq-ROFPGMSM

operator further reduces to the interval-valued q-rung orthopair fuzzy generalized Bonfer-
roni mean (IVq-ROFGBM) operator, i.e.,
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IVqROFPGMSM(3,λ1,λ2,λ3)(α1, α2, . . . , αn) =
(

1
n(n−1)(n−2) ⊕

n
i,j,l=1;i 6=j 6=l

(
aλ1

i ⊗ aλ2
j ⊗ aλ3

l

)) 1
λ1+λ2+λ3

=

(1−∏n
i,j,l=1;i 6=j 6=l

(
1− aqλ1

i aqλ2
j aqλl

l

) 1
n(n−1)(n−2)

) 1
q(λ1+λ2+λ3)

,
(

1−∏n
i,j,l=1;i 6=j 6=l

(
1− bqλ1

i bqλ2
j bqλl

l

) 1
n(n−1)(n−2)

) 1
q(λ1+λ2+λ3)



1−

(
1−∏n

i,j,l=1;i 6=j 6=l

(
1−

(
1− cq

i

)λ1
×
(

1− cq
j

)λ2
×
(

1− cq
l

)λ3
) 1

n(n−1)(n−2)
) 1

λ1+λ2+λ3

1/q

,

1−
(

1−∏n
i,j,l=1;i 6=j 6=l

(
1−

(
1− dq

i

)λ1
×
(

1− dq
j

)λ2
×
(

1− dq
l

)λ3
) 1

n(n−1)(n−2)
) 1

λ1+λ2+λ3

1/q


= IVqROFGBM(λ1,λ2,λ3)(α1, α2, . . . , αn).

(32)

Case 6: if λ1 = λ2 = . . . = λk = 1, then IVq-ROFPGMSM operator reduces to the interval-
valued q-rung orthopair fuzzy power Maclaurin symmetric mean (IVq-ROFPMSM) operator, viz.

IVqROFPGMSM(k,1,1,...,1)(α1, α2, . . . , αn) =

(
⊕1≤i1<...<ik≤n

(
⊗k

j=1nγij
αij

)
Ck

n

) 1
k

=



(1−

(
∏1≤i1<...<ik≤n

(
1−∏k

j=1

(
1−

(
1− aq

ij

)nγij
)))1/Ck

n

)1/q
1/k

,

(1−
(

∏1≤i1<...<ik≤n

(
1−∏k

j=1

(
1−

(
1− bq

ij

)nγij
)))1/Ck

n

)1/q
1/k

,


1−

(
1−∏1≤i1<...<ik≤n

(
1−∏k

j=1

(
1− c

qnγij
ij

))1/Ck
n
)1/k1/q

1−
(

1−∏1≤i1<...<ik≤n

(
1−∏k

j=1

(
1− d

qnγij
ij

))1/Ck
n
)1/k1/q


,

= IVqROFPMSM(k)(α1, α2, . . . , αn).

(33)

Additionally, if the value Sup
(
αi, αj

)
is a non-negative number, then IVq-ROFPGMSM

operator further reduces to the interval-valued q-rung orthopair fuzzy Maclaurin symmet-
ric mean (IVq-ROFMSM) operator, i.e.,

IVqROFPGMSM(k,λ1,λ2,...,λk)(α1, α2, . . . , αn)

=

((1−
(

∏1≤i1<...<ik≤n

(
1−∏k

j=1 aq
ij

)1/Ck
n
))1/q)1/k

,

((
1−

(
∏1≤i1<...<ik≤n

(
1−∏k

j=1 bq
ij

)1/Ck
n
))1/q)1/k

(1−
(

1−
(

∏1≤i1<...<ik≤n

(
1−∏k

j=1

(
1− cq

ij

))1/Ck
n
))1/k)1/q

(
1−

(
1−

(
∏1≤i1<...<ik≤n

(
1−∏k

j=1

(
1− dq

ij

))1/Ck
n
))1/k)1/q


= IVqROFMSM(k)(α1, α2, . . . , αn).

(34)
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3.4. The Interval-Valued q-Rung Orthopair Fuzzy Power Weighted Generalized Maclaurin
Symmetric Mean Operator

In addition, when fusing a set of IVq-ROFNs, their weight information should also
be taken into account. Hence, we take the weight vector of aggregated IVq-ROFNs in the
IVq-ROFPGMSM operator and propose its weighted form.

Definition 11. Let αi = ([ai, bi], [ci, di])(i = 1, 2, . . . , n) be a collection of IVq-ROFNs, and w =

(w1, w2, . . . , wn)
T be the corresponding weight vector, such that ∑n

i=1 wi = 1 and 0 ≤ wi ≤ 1.
The interval-valued q-rung orthopair fuzzy power weighted generalized Maclaurin symmetric mean
(IVq-ROFPWGMSM) operator is defined as

IVqROFPWGMSM(k,λ1,λ2,...,λk)(α1, α2, . . . , αn) =⊕1≤i1<...<ik≤n

(
⊗k

j=1

(
wi(1+T(αi))

∑n
i=1 wi(1+T(αi))

αij

)λj
)

Ck
n


1

λ1+λ2+...+λk

,
(35)

where λ1, λ2, . . . , λk ≥ 0, and k = 1, 2, . . . , n is an integer. T(αi) = ∑n
j=1,i 6=j Sup

(
αi, αj

)
,

Sup
(
αi, αj

)
denotes the support for αi from αj, satisfying the properties presented in Definition 8.

Similarly, we assume

φi =
wi(1 + T(αi))

∑n
i=1 wi(1 + T(αi))

(36)

then Equation (35) can be transformed into

VqROFPWGMSM(k,λ1,λ2,...,λk)(α1, α2, . . . , αn) =⊕1≤i1<...<ik≤n

(
⊗k

j=1

(
nφij

αij

)λj
)

Ck
n


1

λ1+λ2+...+λk

,
(37)

where η = (η1, η2, . . . , ηn)
T is called the PWV, such that 0 ≤ ηi ≤ 1 and ∑n

i=1 ηi = 1.

Theorem 6. Let αi = ([ai, bi], [ci, di])(i = 1, 2, . . . , n) be a collection of IVq-ROFNs, then the
aggregated valued by the IVq-ROFPWGMSM operator is also an IVq-ROFN and

IVqROFPWGMSM(k,λ1,λ2,...,λk)(α1, α2, . . . , αn) =

1−∏1≤i1<...<ik≤n

(
1−∏k

j=1

(
1−

(
1− aq

ij

)nφij ij

)λj
)1/Ck

n


1
q(λ1+λ2+...+λk)

,

1−∏1≤i1<...<ik≤n

(
1−∏k

j=1

(
1−

(
1− bq

ij

)nφij

)λj
)1/Ck

n


1
q(λ1+λ2+...+λk)


1−

1−∏1≤i1<...<ik≤n

(
1−∏k

j=1

(
1− c

qnφij
ij

)λj
)1/Ck

n


1
λ1+λ2+...+λk


1/q

1−

1−∏1≤i1<...<ik≤n

(
1−∏k

j=1

(
1− c

qnφij
ij

)λj
)1/Ck

n


1
λ1+λ2+...+λk


1/q

.

(38)

The proof of Theorem 6 is similar to that of Theorem 5.
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4. A New Multi-Attribute Group Decision-Making Method Based on Interval-Valued
q-Rung Orthopair Fuzzy Numbers

This section investigates a new MAGDM method under IVq-ROFSs. We assume
there are m alternatives to be evaluated, which can be denoted as A = {A1, A2, . . . , Am}.
There are l decision-makers that are asked to evaluate the performance of the candidates.
The group of decision-makers can be denoted as {D1, D2, . . . , Dl}. The weight vector of
decision-makers is λ = (λ1, λ2, . . . , λl)

T , such that ∑l
t=1 λt = 1 and 0 ≤ λt ≤ 1. Suppose

that decision-makers are required to evaluate the alternatives under n attributes, and the
attribute set can be expressed as G = (G1, G2, . . . , Gn)

T . Weight vector of these attributes
is w = (w1, w2, . . . , wn)

T , satisfying ∑n
j=1 wj = 1 and 0 ≤ wj ≤ 1. In the following, we

present a novel method to determine the optimal alternative.
Step 1. Construct the original decision matrices. Decision-makers are asked for eval-

uating the properties of the candidates under the n attributes by using IVq-ROFNs. For
instance, decision-maker Dt uses an IVq-ROFN αt

ij = ([at
ij, bt

ij], [c
t
ij, dt

ij]) to express his/her
evaluation value of the attribute Gj(j = 1, 2, . . . , n) of alternative Ai(i = 1, 2, . . . , m). After-
wards, a series of interval-valued q-rung orthopair fuzzy decision matrices are obtained.

Step 2. Normalize the original decision matrices. Considering the fact that there
exist two kinds of attributes, i.e., benefit type (T1) and cost type (T2), the original decision
matrices provided by decision-makers should be normalized according to the following
formula, i.e.,

αt
ij =

{
([at

ij, bt
ij], [c

t
ij, dt

ij]) f or Gj ∈ T1

([ct
ij, dt

ij], [a
t
ij, bt

ij]) f or Gj ∈ T2
(39)

Step 3. Determine the comprehensive decision matrix.
Step 3.1. Calculate the support Sup(αs

ij, α
f
ij) by

Sup(αs
ij, α

f
ij) = 1− d(αs

ij, α
f
ij), (40)

where s, f = 1, 2, . . . , l(s 6= f ) and d(αs
ij, α

f
ij) denotes the distance between αs

ij and α
f
ij.

Step 3.2. Calculate the overall support T(αs
ij) by

T(αs
ij) =

l

∑
f=1, f 6=s

Sup(αs
ij, α

f
ij), (41)

Step 3.3. Compute the power weight associated with αs
ij by

ηs
ij =

λs(1 + T(αs
ij))

∑l
s=1 λs(1 + T(αs

ij))
, (42)

Step 3.4. Utilize the IVq-ROFPWA operator to compute the overall decision matrix,
i.e.,

αij = IVqROFPWA(α1
ij, α2

ij, . . . , αl
ij), (43)

Step 4. Compute the overall evaluation value for each alternative.
Step 4.1. Calculate the support Sup(αij, αih) by

Sup(αij, αih) = 1− d(αij, αih), (44)

where j, h = 1, 2, . . . , n(j 6= h) and d(αij, αih) is the distance between αij and αih.
Step 4.2. Determine the overall support

T(αij) =
n

∑
h=1,h 6=j

Sup(αij, αih), (45)
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Step 4.3. Compute the power weight of αij by

φij =
wj(1 + T(αij))

∑n
j=1 wj(1 + T(αij))

, (46)

Step 4.4. Obtain the overall evaluation values by using the IVq-ROFPWGMSM
operator, i.e.,

αi = IVqROFPWGMSM(k,λ1,λ2,...,λk)(αi1, αi2, . . . , αin), (47)

Step 5. Compute the score values of alternatives Xi(i = 1, 2, . . . , m).
Step 6. Determine the rank of their scores and choose the best one.
To better demonstrate the steps of our new proposed MAGDM method, we provide

the following Figure 1.
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5. An Application of the Proposed Method in Online Education Platform Performance
Evaluation

With the rise of the Internet, the education industry has ushered in new development
opportunities, and increasingly more online education platforms have sprung up. Mobile
Internet and 5G communication technology have promoted the development of the online
education industry, and the development of online education platforms is showing a
blowout trend. In addition, affected by COVID-19, more and more schools and educational
institutions adopt online teaching models, which objectively promotes the development
of online education platforms. Online teaching platforms cannot only realize distance
teaching, but are also considered to be an important measure to promote the flow and
reasonable distribution of teaching resources, and can alleviate the structural contradictions
caused by the unbalanced distribution of educational resources. Therefore, all countries
are vigorously developing online education platforms. With the continuous increase in the
number of online education platforms, their uneven quality has also received widespread
attention from the public. Therefore, it is very necessary to evaluate the performance
of online education platforms. Assume that three decision-makers (D1, D2, and D3) are
invited to evaluate the performance of four famous online education platforms, which can
be denoted as A1, A2, A3, and A4. Weight vector of decision-maker is λ = (0.3, 0.3, 0.4)T .
Decision-makers evaluate the performance of the four education platforms under four
attributes, i.e., availability (G1), interactive quality (G2), system quality (G3), and quality of
service (G4). Weight vector of attributes is w = (0.40, 0.25, 0.20, 0.15)T .

5.1. Online Education Platforms Performance Evaluation Process

Step 1. Require the three decision-makers to provide their evaluation values in the
form of IVq-ROFNs. Hence, we can obtain three interval-valued q-rung orthopair fuzzy
decision matrices, which are presented in Tables 1–3.

Table 1. The decision matrix provided D1.

G1 G2 G3 G4

A1 ([0.3, 0.6], [0.7, 0.8]) ([0.4, 0.5], [0.6, 0.8]) ([0.5, 0.6], [0.7, 0.9]) ([0.4, 0.7], [0.6, 0.7])
A2 ([0.2, 0.3], [0.7, 0.9]) ([0.2, 0.5], [0.6, 0.9]) ([0.4, 0.6], [0.8, 0.9]) ([0.2, 0.4], [0.6, 0.8])
A3 ([0.3, 0.4], [0.5, 0.7]) ([0.4, 0.5], [0.6, 0.8]) ([0.1, 0.2], [0.6, 0.7]) ([0.1, 0.3], [0.7, 0.8])
A4 ([0.1, 0.2], [0.7, 0.9]) ([0.3, 0.5], [0.6, 0.8]) ([0.4, 0.5], [0.5, 0.6]) ([0.3, 0.5], [0.7, 0.9])

Table 2. The decision matrix provided D2.

G1 G2 G3 G4

A1 ([0.2, 0.4], [0.6, 0.7]) ([0.3, 0.6], [0.8, 0.9]) ([0.1, 0.3], [0.6, 0.9]) ([0.3, 0.4], [0.6, 0.7])
A2 ([0.1, 0.2], [0.8, 0.9]) ([0.5, 0.6], [0.7, 0.8]) ([0.2, 0.4], [0.6, 0.7]) ([0.1, 0.3], [0.7, 0.9])
A3 ([0.3, 0.5], [0.8, 0.9]) ([0.3, 0.4], [0.7, 0.9]) ([0.2, 0.4], [0.5, 0.8]) ([0.2, 0.3], [0.6, 0.8])
A4 ([0.3, 0.4], [0.6, 0.8]) ([0.1, 0.2], [0.7, 0.9]) ([0.2, 0.3], [0.6, 0.7]) ([0.6, 0.7], [0.3, 0.5])

Table 3. The decision matrix provided D3.

G1 G2 G3 G4

A1 ([0.1, 0.2], [0.5, 0.7]) ([0.2, 0.4], [0.5, 0.6]) ([0.3, 0.4], [0.2, 0.4]) ([0.3, 0.5], [0.2, 0.4])
A2 ([0.1, 0.2], [0.5, 0.7]) ([0.2, 0.4], [0.4, 0.5]) ([0.3, 0.4], [0.5, 0.7]) ([0.2, 0.3], [0.4, 0.5])
A3 ([0.5, 0.8], [0.1, 0.2]) ([0.4, 0.5], [0.7, 0.8]) ([0.2, 0.4], [0.6, 0.8]) ([0.6, 0.8], [0.1, 0.2])
A4 ([0.5, 0.6], [0.2, 0.3]) ([0.6, 0.8], [0.3, 0.4]) ([0.5, 0.7], [0.4, 0.5]) ([0.2, 0.5], [0.6, 0.8])

Step 2. Normalize the original decision matrices. It is noted that all attributes are
benefit type and hence the original decision matrices do not need to be normalized.

Step 3. Determine the integrated decision matrix.
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Step 3.1. According to Equation (40), calculate the values Sup(αs
ij, α

f
ij). Hence, we can

obtain the following results

Sup(1,2) = Sup(2,1) =


0.8833 0.8398 0.8900 0.9210
0.9512 0.8620 0.7775 0.9030
0.7915
0.8935

0.8895
0.8783

0.9192
0.9070

0.9665
0.6683


Sup(1,3) = Sup(3,1) =


0.8448 0.8740 0.6875 0.8145
0.8425 0.7958 0.7595 0.8560
0.7488
0.6578

0.9683
0.6968

0.9420
0.8923

0.6135
0.9093


Sup(2,3) = Sup(3,2) =


0.9615 0.7323 0.7660 0.8630
0.8067 0.7663 0.9725 0.7775
0.5707
0.7643

0.9213
0.5750

0.9773
0.7993

0.6470
0.7495


It is noted that we use the symbol Sup(s, f ) to denote the supports of αs

ij from α
f
ij, where

s, f = 1, 2, 3 and s 6= f .
Step 3.2. Calculate the overall support T

(
αs

ij

)
by Equation (41) and we can obtain

T(1) =


1.7280 1.7138 1.5775 1.7355
1.7938 1.6578 1.5370 1.7590
1.5403
1.5513

1.8578
1.5750

1.8612
1.7993

1.5800
1.5775


T(2) =


1.8448 1.5720 1.6560 1.7840
1.7580 1.6283 1.7500 1.6805
1.3622
1.6578

1.8108
1.4533

1.8965
1.7063

1.6135
1.4178


T(3) =


1.8063 1.6063 1.4535 1.6775
1.6492 1.5620 1.7320 1.6335
1.3195
1.4220

1.8895
1.2718

1.9193
1.6915

1.2605
1.6588


Here we use the symbol T(s) to represent the overall supports for αs

ij, where s = 1, 2, 3.
Step 3.3. Compute the power weight associated with αs

ij by Equation (42) and we have

η(1) =


0.2929 0.3098 0.3031 0.3010
0.3075 0.3054 0.2841 0.3082
0.3177
0.3023

0.3001
0.3196

0.2965
0.3078

0.3143
0.3018


η(2) =


0.3054 0.2936 0.3123 0.3063
0.3036 0.3020 0.3080 0.2995
0.2955
0.3150

0.2952
0.3045

0.3002
0.2976

0.3184
0.2831


η(3) =


0.4017 0.3967 0.3846 0.3928
0.3888 0.3926 0.4079 0.3923
0.3868
0.3827

0.4046
0.3759

0.4033
0.3946

0.3672
0.4151


Here we use the symbol η(s) to denote the power weights associated with the IVq-

ROFN αs
ij, where s = 1, 2, 3.

Step 3.4. Use the IVq-ROFPWA operator to determine the integrated decision matrix,
which is listed in Table 4.
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Table 4. The comprehensive decision matrix.

G1 G2

A1 ([0.0738, 0.1477], [0.7570, 0.8665]) ([0.1471, 0.2958], [0.7596, 0.8166])
A2 ([0.0730, 0.1461], [0.7637, 0.8705]) ([0.1466, 0.2948], [0.6979, 0.7618])
A3 ([0.3692, 0.6235], [0.4104, 0.5366]) ([0.2978, 0.3747], [0.8656, 0.9137])
A4 ([0.3680, 0.4463], [0.5401, 0.6308]) ([0.4438, 0.6183], [0.6360, 0.7086])

G3 G4

A1 ([0.2188, 0.2929], [0.5384, 0.7030]) ([0.2203, 0.3711], [0.5315, 0.6978])
A2 ([0.2231, 0.2986], [0.7537, 0.8646]) ([0.1465, 0.2202], [0.6981, 0.7619])
A3 ([0.1479, 0.2975], [0.8138, 0.9139]) ([0.4405, 0.6141], [0.4293, 0.5538])
A4 ([0.3716, 0.5346], [0.6966, 0.7607]) ([0.1493, 0.3778], [0.8089, 0.9115])

Step 4. Compute the overall evaluation value for each alternative.
Step 4.1. Calculate the support Sup

(
αij, αih

)
by Equation (43)

Sup1,2 = Sup2,1 = (0.9660, 0.9129, 0.6497, 0.9026);
Sup1,3 = Sup3,1 = (0.8468, 0.9838, 0.6645, 0.8913);
Sup1,4 = Sup4,1 = (0.8368, 0.9168, 0.9822, 0.7601);
Sup2,3 = Sup3,2 = (0.8782, 0.9246, 0.9601, 0.9288);
Sup2,4 = Sup4,2 = (0.8686, 0.9961, 0.6499, 0.7649);
Sup3,4 = Sup4,3 = (0.9900, 0.9210, 0.6648, 0.8362);

Here we employ the symbol Supj,h to denote the supports for αij from αih, where
j, h = 1, 2, 3, 4 and j 6= h.

Step 4.2. Determine the overall support T
(
αij
)

by using Equation (44), and we have
the following results.

T =


2.6496 2.7127 2.7150 2.6954
2.8134 2.8337 2.8295 2.8339
2.2964
2.5540

2.2596
2.5963

2.2894
2.6562

2.2969
2.3612


Step 4.3. Compute the power weight of αij according to Equation (45) and we have

φ =


0.3961 0.2519 0.2016 0.1504
0.3988 0.2506 0.2002 0.1504
0.4013
0.3998

0.2480
0.2528

0.2002
0.2056

0.1505
0.1418


Step 4.4. Obtain the overall evaluation values by using the IVq-ROFPWGMSM

operator, then we have the following results, viz.,

α1 = ([0.1633, 0.2708], [0.6766, 0.7934])
α2 = ([0.1466, 0.2390], [0.7433, 0.8293])
α3 = ([0.3320, 0.4984], [0.7085, 0.7898])
α4 = ([0.3660, 0.5030], [0.6984, 0.7681])

Step 5. Compute the score values of alternatives Xi(i = 1, 2, . . . , m).

S(A1) = 0.4487,
S(A2) = 0.4575,
S(A3) = 0.4440,
S(A4) = 0.4523
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Step 6. Determine the rank of alternatives and we can obtain A2 � A4 � A1 � A3.
Hence, A2 is the best online education platform.

5.2. Parameter Analysis

It is noted that the parameters in our proposed MAGDM method have significant
impact on the decision results. Hence, it is worth investigating the effect of the parameters
on the decision results.

5.2.1. The Impact of q

We first investigate the influence of the parameter q on the decision results. We use
different values of q in our MAGDM method and present the final decision results in Table 5.
In addition, we also provide Figure 2 to better illustrate the decision-making results.

Table 5. Ranking results by the proposed method when k = 2, λ1 = 1, λ2 = 1 for different values of the parameter q.

q Scores S(αi)(i=1,2,3,4) Ranking Orders

q = 1 S(α1) =0.4530, S(α2) = 0.4633, S(α3) = 0.4447, S(α4) = 0.4508 A2 � A1 � A4 � A3
q = 2 S(α1) = 0.4483, S(α2) = 0.4594, S(α3) = 0.4410, S(α4) = 0.4484 A2 � A4 � A1 � A3
q = 3 S(α1) = 0.4487, S(α2) = 0.4575, S(α3) = 0.4440, S(α4) = 0.4523 A2 � A4 � A1 � A3
q = 4 S(α1) = 0.4519, S(α2) = 0.4572, S(α3) = 0.4484, S(α4) = 0.4578 A4 � A2 � A1 � A3
q = 5 S(α1) = 0.4566, S(α2) = 0.4586, S(α3) = 0.4529, S(α4) = 0.4633 A4 � A2 � A1 � A3
q = 6 S(α1) = 0.4620, S(α2) = 0.4610, S(α3) = 0.4572, S(α4) = 0.4683 A4 � A2 � A1 � A3
q = 7 S(α1) = 0.4674, S(α2) = 0.4642, S(α3) = 0.4613, S(α4) = 0.4726 A4 � A2 � A1 � A3
q = 8 S(α1) = 0.4724, S(α2) = 0.4676, S(α3) = 0.4650, S(α4) = 0.4764 A4 � A2 � A1 � A3
q = 9 S(α1) = 0.4770, S(α2) = 0.4710, S(α3) = 0.4685, S(α4) = 0.4796 A4 � A2 � A1 � A3
q = 10 S(α1) = 0.4809, S(α2) = 0.4743, S(α3) = 0.4717, S(α4) = 0.4824 A4 � A2 � A1 � A3
q = 20 S(α1) = 0.4976, S(α2) = 0.4937, S(α3) = 0.4911, S(α4) = 0.4959 A1 � A4 � A2 � A3
q = 30 S(α1) = 0.4997, S(α2) = 0.4986, S(α3) = 0.4974, S(α4) = 0.4991 A1 � A4 � A2 � A3
q = 40 S(α1) = 0.5000, S(α2) = 0.4997, S(α3) = 0.4993, S(α4) = 0.4998 A1 � A4 � A2 � A3
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It is noted that when the variables k and λ remain unchanged, with the increase in
the value of q, all the results show a trend of decreasing firstly and increasing afterwards.
When the value of q is small, the result value decreases gradually with the increase in q.
When the value of q is large, the result value gradually increases with the increase in q.
In addition, different q values lead to different sorting results but A3 is always the worst
alternative, whereas the optimal alternative keeps in changing. More specifically, A2 is the
optimal alternative when q = 1, 2 and 3. If q = 4 or 10, the optimal alternative is A4. Hence,
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the value of q has significant impact on the decision results. In practical MAGDM problems,
decision-makers can choose a proper value of q according to evaluation values provided
by decision-makers. The principle of determining the value of q is that its should take
the smallest integer that satisfies the constraint bq + dq ≤ 1. For instance, if the attribute
value is [(0.6, 0.9), (0.7, 0.8)], then the value can be taken as 0.94 + 0.84 = 1.0657 > 1 and
0.95 + 0.85 = 0.91817 < 1, hence, the value of q is 5.

5.2.2. The Impact of λ

In order to evaluate the impact of different λ on the final evaluation results, we keep k
and q unchanged and use different λ in the IVq-ROFPWGMSM operator to determine the
final decision results. The corresponding results are shown in Table 6. For the sake of easy
description, we divide the researches into three groups to comprehensively analyze the
influence of the parameters on the decision results. The decision-making results of each
group are in Figures 3–5.

Table 6. Ranking results by the proposed method when q = 3, k = 2 for different values of the parameter λ1 and λ2.

λ1 λ2 Score Values S(αi)(i=1,2,3,4) Ranking Orders

λ1 = 1 λ2 = 1 S(α1) = 0.4487, S(α2) = 0.4575, S(α3) = 0.4440, S(α4) = 0.4523 A2 � A4 � A1 � A3
λ1 = 1 λ2 = 2 S(α1) = 0.4484, S(α2) = 0.4607, S(α3) = 0.4464, S(α4) = 0.4544 A2 � A4 � A1 � A3
λ1 = 1 λ2 = 3 S(α1) = 0.4480, S(α2) = 0.4629, S(α3) = 0.4477, S(α4) = 0.4548 A2 � A4 � A1 � A3
λ1 = 1 λ2 = 4 S(α1) = 0.4476, S(α2) = 0.4647, S(α3) = 0.4484, S(α4) = 0.4542 A2 � A4 � A1 � A3
λ1 = 1 λ2 = 5 S(α1) = 0.4474,S(α2) = 0.4663,S(α3) = 0.4485,S(α4) = 0.4532 A2 � A4 � A3 � A1
λ1 = 2 λ2 = 1 S(α1) = 0.4479, S(α2) = 0.4547, S(α3) = 0.4407, S(α4) = 0.4536 A2 � A4 � A1 � A3
λ1 = 3 λ2 = 1 S(α1) = 0.4471, S(α2) = 0.4535, S(α3) = 0.4378, S(α4) = 0.4541 A4 � A2 � A1 � A3
λ1 = 4 λ2 = 1 S(α1) = 0.4464, S(α2) = 0.4529, S(α3) = 0.4353, S(α4) = 0.4541 A4 � A2 � A1 � A3
λ1 = 5 λ2 = 1 S(α1) = 0.4459, S(α2) = 0.4525, S(α3) = 0.4334, S(α4) = 0.4538 A4 � A2 � A1 � A3

λ1 = 0.5 λ2 = 0.5 S(α1) = 0.4491, S(α2) = 0.4574, S(α3) = 0.4436, S(α4) = 0.4494 A2 � A4 � A1 � A3
λ1 = 2 λ2 = 2 S(α1) = 0.4481, S(α2) = 0.4576, S(α3) = 0.4444, S(α4) = 0.4556 A2 � A4 � A1 � A3
λ1 = 3 λ2 = 3 S(α1) = 0.4475, S(α2) = 0.4576, S(α3) = 0.4449, S(α4) = 0.4570 A2 � A4 � A1 � A3
λ1 = 4 λ2 = 4 S(α1) = 0.4455, S(α2) = 0.4566, S(α3) = 0.4448, S(α4) = 0.4576 A4 � A2 � A1 � A3
λ1 = 5 λ2 = 5 S(α1) = 0.4448, S(α2) = 0.4614, S(α3) = 0.4444, S(α4) = 0.4578 A2 � A4 � A1 � A3
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First, we assume λ1 to be a constant (λ1 = 1) and investigate how the parameter λ2
affects the decision results. In Figure 3, we discover that when the value λ2 increases, the
score values of A2 and A3 also increase. In addition, the score values of A1 decreases. The
change in score values of A4 is special. With the increase in value λ2, the score value of A4
increases at the beginning and decreases soon afterwards. Moreover, different values of λ2
lead to different score values and ranking orders of alternatives. Nevertheless, the optimal
alternative is always A2.

Second, we assume λ2 to be a constant (λ2 = 1) and study the influence the parameter
λ1 on the decision results. It can be seen from Figure 4 that the increase in value λ1 leads
the increase of the score values of A1, A2, and A3. The change in the score value of A4 is
special. With the increase in the value λ1, the score value of A4 decreases first and increases
afterwards. In addition, different values of λ1 in the IVq-ROFPWGMSM operator result in
different score values and ranking orders of alternatives. Moreover, the worst alternative is
always A4.

Third, we investigate the influence of the parameters λ1 and λ2 on the final decision
results simultaneously (we assume λ1 = λ2). As seen from Figure 5, with the increase in
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values λ1 and λ2, some score value also increase and some other decrease. In addition,
different values of parameters λ1 and λ2 lead to different score values and the worst
optimal alternative is always A3. From the above analysis, we can discover that the values
of parameters λ1, λ2, . . . , λk have significant impact on the final decision results.

5.2.3. The Impact of k

In the following, we continue to investigate the influence of the parameter k on the
decision results. We use different values of k in our proposed method and present the
decision results in Table 7 and Figure 6.

Table 7. Ranking results by the proposed method when q = 3, λ1 = λ2 = · · · = λk = 1 for different
values of the parameter k.

k Score Values S(αi)(i=1,2,3,4) Ranking Orders

k = 1 S(α1) = 0.4471, S(α2) = 0.4565, S(α3) = 0.4373,
S(α4) = 0.4511 A2 � A4 � A1 � A3

k = 2 S(α1) = 0.4487, S(α2) = 0.4575, S(α3) = 0.4440,
S(α4) = 0.4523 A2 � A4 � A1 � A3

k = 3 S(α1) = 0.4496, S(α2) = 0.4578, S(α3) = 0.4448,
S(α4) = 0.4502 A2 � A4 � A1 � A3

k = 4 S(α1) = 0.4503, S(α2) = 0.4578, S(α3) = 0.4443,
S(α4) = 0.4437 A2 � A1 � A3 � A4
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Figure 6 shows the score values and ranking orders of alternatives with different
values of k in the IVq-ROFPWGMSM operator, when q = 3 and λ1 = λ2 = · · · = λk = 1. It
is easy to find out that different score values and ranking orders of alternatives are obtained
when we use different values of k in the IVq-ROFPWGMSM operator. Hence, it is necessary
to determine a proper value of k. Basically, when k = 1, our proposed method does not
consider the interrelationship between attributes. When k = 2 or k = 3, then our method
has the capability of capturing the interrelationship among any two or three attributes.
In addition, when k = 4, then our method takes the interrelationship among all the four
attributes into account. Therefore, the proposed novel MAGDM method is effective for
its ability to capture the interrelationship among attributes and it is suitable for handling
realistic MAGDM problems, as in most decision-making problems attributes are usually
interrelated. In MAGDM problems, decision-makers can determine a proper value of k
according to actual needs.
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5.3. Comparison Analysis

This subsection conducts comparison analysis. Through comparison analysis, the
advantages and merits of our proposed method can be better demonstrated.

5.3.1. Compared with Power Bonferroni Mean Based Decision-Making Method

First of all, we compare our method with that based on the PBM operator. More
specifically, we compare our proposed method with that developed by Liu and Li [32] based
on the interval-valued intuitionistic fuzzy weighted power Bonferroni mean (IVIFWPBM)
operator. We use both Liu and Li’s [32] method and our proposed method to solve the
air quality evaluation problem presented in [32]. (The original decision matrices can be
found in Tables 1–3 in [32]). Score values and the final ranking orders derived by the two
methods are presented in Table 8.

Table 8. Decision making results of the air quality evaluation problem presented in [32] by using Liu
and Li’ [32] method and our proposed method.

Method Score Values Ranking Orders

Liu and Li’s [32] method
(x = y = 1 )

S(r̃1) = −0.1143,
S(r̃2) = −0.0809,
S(r̃3) = 0.0433,
S(r̃4) = 0.1410

z4 � z3 � z2 � z1

Our proposed method
(k = 2 , q = λ1 = λ2 = 1)

S(r̃1) = −0.1021,
S(r̃2) = 0.0526,
S(r̃3) = 0.1087,
S(r̃4) = 0.2143

z4 � z3 � z2 � z1

As seen from Table 8, the score values derived by the two methods are different
whereas the ranking orders are the same. This also indicates the validity of our proposed
method. Although the final ranking orders of alternatives are the same, our proposed
method has obvious advantages over Liu and Li’s [32] approach. First, the fuzzy set used
in Liu and Li’s [32] method is interval-valued intuitionistic fuzzy set (IVIFS), which is only
a special case of IVq-ROFS (when q = 1). IVq-ROFS has laxer constraint, which means that
our proposed method provides larger information space and more freedom for decision-
makers to express their evaluation values. Second, Liu and Li [32] use PBM operator to
aggregate decision information. It can handle interrelationship between attributes which is
same as our method. However, the PBM fails to handle the interrelationship among more
than two attributes. In other words, if the interrelationship exists among multiple attributes,
then Liu and Li’s [32] method is powerless to handle such a problem. Contrary, our method
is more useful and powerful due to its ability of considering the interrelationship among
multiple attributes. Hence, our method is more powerful than that developed by Liu and
Li [32].

5.3.2. Compared with Power Heronian Mean Based Decision-Making Method

Second, we compare our proposed method with that developed by Liu [34] based
on the interval-valued intuitionistic fuzzy power weighted Heronian mean (IVIFPWHM)
operator. We use Liu’s [34] method and our novel MAGDM method to solve a management
information system selection problem presented in reference [34] (The original decision
matrices are listed in Tables 3–5 in reference [34]). The score values and ranking orders
derived by the two methods are presented in Table 9.
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Table 9. Decision making results of the management information system selection problem presented
in [34] by using Liu’s [34] method and our proposed method.

Method Score Values Ranking Orders

Liu’s [34] method
(p = q = 2 )

S(z̃1) = 0.0719,
S(z2) = 0.1090,
S(z̃3) = 0.2846,
(z̃4) = 0.3022

A4 � A3 � A2 � A1

Our proposed method
(q = 1 ; k = λ1 = λ2 = 2)

S(z̃1) = 0.1278,
S(z2) = 0.1021,
S(z̃3) = 0.2784,
S(z̃4) = 0.2957

A4 � A3 � A1 � A2

It can be found from Table 9 that the score values derived by the two methods
are different. In addition, we notice that although the ranking orders produced by the
two methods are slightly different, the optimal alternatives are the same. This result
shows the effectiveness of our proposed method. However, our proposed method still
has advantages over Liu’s [34] MAGDM method. This is because that Liu’s [34] method
is based on IVIFSs, which have limited information space. Our method is based on
IVq-ROFSs, which provide decision-makers enough space to express their evaluation
information. In addition, Liu’s [34] method can only consider the interrelationship between
any two attributes, whereas our proposed method not only considers the interrelationship
between any two attributes, but also has the capability of taking the interrelationship
among multiple attributes into account. Therefore, our method is more powerful and
flexible than Liu’s [34] method.

5.3.3. Compared with Power Maclaurin Symmetric Mean Based Decision-Making Methods

Third, we compare our method with those based on PMSM operator. More specific,
we compare our method with that developed by Liu et al. [57] based on the weighted
interval-valued intuitionistic fuzzy power Maclaurin symmetric mean (WIVIFPMSM) and
that put forward by Mu et al. [58] based on the weighted interval-valued Pythagorean fuzzy
power Maclaurin symmetric mean (WIVPFPMSM) operator. We use these three methods
to solve the partner country selection problem presented in [57] and list the decision results
in Table 10 (The original decision matrices are listed in Tables 1–3 in reference [57]).

Table 10. Decision-making results of the the partner country selection problem presented in [54] by
using Liu et al.’s [57] method, Mu et al.’s [58] method and the new MAGDM method in this paper.

Method Score Values S(
~
ai)(i=1,2,3,4) Ranking Orders

Liu et al.’s [57] method
(k = 2 )

S(α̃1) = 0.3410,
S(α̃2) = 0.2156,
S(α̃3) = 0.1845,
(α̃4) = 0.1805

x1 � x2 � x3 � x4

Mu et al.’s [58] method
(k = 2 )

S(α̃1) = 0.3212,
S(α̃2) = 0.2014,
S(ã3) = 0.1541,
S(ã4) = 0.1247

x1 � x2 � x3 � x4

Our proposed method
(k = 2 ;

q = λ1 = λ2 = 1)

S(α̃1) = 0.3317,
S(α̃2) = 0.2147,
S(ã3) = 0.1075,
S(ã4) = 0.1304

x1 � x2 � x4 � x3

As seen from Table 10, the three methods generate different score values, and ranking
orders of alternatives are slightly different. In addition, the optimal alternatives derived
by the three methods are the same. The advantages of our method over Liu et al.’s [57]
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method and Mu et al.’ [58] method are two-folds: (1) Our method is based on IVq-ROFSs.
The method of Liu et al. [57] is based on IVIFSs, and the method of Mu et al. [58] is based
on interval-valued Pythagorean fuzzy sets (IVPFSs). It is noted that both IVIFS and IVPFS
are special cases of IVq-ROFS. Compared with IVIFSs and IVPFSs, IVq-ROFSs provide
decision-makers more freedom to express their evaluation values. (2) The methods of Liu
et al. [57] and Mu et al. [58] are based on PMSM operator, which is a special case of our
proposed PGMSM operator. In other word, the methods of Liu et al. [57] and Mu et al. [58]
do not consider the importance of aggregated values. Hence, our proposed method is more
powerful and flexible than those developed by Liu et al. [57] and Mu et al. [58].

6. Conclusions

This paper presents a novel MAGDM method under IVq-ROFS decision-making
environment. In order to do this, we firstly put forward a novel compound AO, called
PGMSM operator, by integrating PA with GMSM operators. Afterwards, we generalized
the PGMSM operator into IVq-ROFSs and introduced a new series of AOs for IVq-ROFNs.
Considering it is important to investigate the properties of an AO, we studied the desirable
properties of the newly developed AOs. Based on these AOs, we introduced a novel
MAGDM method under IVq-ROFSs decision-making situations. Finally, we applied the
proposed method in an online education platform performance evaluation problem, which
helps decision-makers choose the optimal platform. In future works, we plan to continue
our work from two aspects. First, we will investigate more MAGDM methods under IVq-
ROFSs situations and study their applications in real problems. Second, we will generalize
the PGMSM operator into more decision-making environments, such as probabilistic dual
hesitant Pythagorean fuzzy sets [59], q-rung orthopair linguistic sets [60], q-rung orthopair
uncertain linguistic sets [61], linguistic q-rung orthopair fuzzy sets [62], etc. By so doing,
more novel AOs and corresponding MAGDM methods can be obtained.
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