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Abstract: A reasonable grasping strategy is a prerequisite for the successful grasping of a target, and
it is also a basic condition for the wide application of robots. Presently, mainstream grippers on the
market are divided into two-finger grippers and three-finger grippers. According to human grasping
experience, the stability of three-finger grippers is much better than that of two-finger grippers.
Therefore, this paper’s focus is on the three-finger grasping strategy generation method based on the
DeepLab V3+ algorithm. DeepLab V3+ uses the atrous convolution kernel and the atrous spatial
pyramid pooling (ASPP) architecture based on atrous convolution. The atrous convolution kernel
can adjust the field-of-view of the filter layer by changing the convolution rate. In addition, ASPP can
effectively capture multi-scale information, based on the parallel connection of multiple convolution
rates of atrous convolutional layers, so that the model performs better on multi-scale objects. The
article innovatively uses the DeepLab V3+ algorithm to generate the grasp strategy of a target and
optimizes the atrous convolution parameter values of ASPP. This study used the Cornell Grasp
dataset to train and verify the model. At the same time, a smaller and more complex dataset of 60 was
produced according to the actual situation. Upon testing, good experimental results were obtained.

Keywords: semantic segmentation; grasp strategies; atrous convolutions; three-finger gripper

1. Introduction

The generation of a grasping strategy is the first step in robot grasping, and it is also
an important step [1]. The traditional grasping strategy is mostly used for determining the
location and type of targets, and certain grasping points are artificially set as the grasping
strategy. With the miniaturization and precision of control motors, the maturity of control
modules, such as single-chip microcomputers, and the development and application of
artificial intelligence technology [2], including the types of grasping targets and grasping
positions, will become more diversified in future applications of grasping robots. A robot
generates reasonable grasping strategies for different targets in different positions to make
subsequent grasping operations more reliable and successful. Operating as information
input, images obtain a larger amount of information with a lower amount of data in a
short time; thus, images represent the most suitable choice for informational input in the
generation of a grasp strategy. Only by generating a reasonable grasp strategy based on the
target image collected by the camera can a robot accurately and rapidly grasp targets [3,4].

Due to the great potential and advantages of deep learning in semantic segmentation
and target recognition [5,6], research on the direction of grasping strategy generation has
gradually adopted deep learning as the core means of solving problems associated with
grasping strategy prediction [4,7–9]. Deep learning can eliminate the large number of
kinematics, dynamics, and geometry calculations [10] and directly accept images that need
to be detected. After the convolution and pooling process of the neural network, the grasp
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strategy is generated on the image to achieve end-to-end processing, which is faster and
more accurate [10,11].

In recent years, thanks to the pixel-level representation of semantic segmentation and
the analysis of the entire content of the image, the application of semantic segmentation in
robot grasping has primarily focused on using 3D point cloud data to achieve 3D object
pose estimation and data segmentation of the target; it then generates a grasp strategy for
the target [12–14]. This algorithm is suitable for location and grasp detection in a chaotic
environment in where a target is occluded. However, when the scene is relatively simple
in artificial processing terms, such as in a factory, this algorithm has problems with the
large amount of calculation and low accuracy. On the other hand, the grasping detection
algorithm primarily focuses on the realization of a target generation grasping strategy
based on target recognition and detection algorithms [15–17], which have a small number
of parameters and calculations and can meet the requirements for the real-time generation
of target-grasping strategies in simple scenarios.

This paper inherits the advantages of the previous research [1,3,12–19] regarding the
pixel-level representation of the semantic segmentation algorithm, the detection ability
for small objects, and the real-time operation and high accuracy of the grasp detection
algorithm. Thus, this paper builds a neural network model with semantic segmentation as
the core, generates some reasonable grasping strategies for the target [7,18], and divides
the surface of the object into the part that can be grasped and the part that cannot be
grasped. When the grasp point falls on the position that can be grasped, the grasp point is
considered to be correct and is supplemented by the appropriate width and angle; only
then is the generated grasp strategy is considered to be successful. This idea is similar to
semantic segmentation, and the pixel-level output of semantic segmentation has a higher
ability to recognize a given target. In general, this paper proposes a neural network based
on DeepLab V3+, which can be used as the robot’s brain to generate grasping strategies
for known or unknown targets that need to be grasped in a scene in real time and that can
guide the robot to grasp them.

Our work offers two main contributions:

1. It proposes a grasp strategy generation neural network (grasp network with atrous
convolution) based on the idea of semantic segmentation and, based on DeepLab V3+
with atrous spatial pyramid pooling (ASPP), it achieves a good grasp accuracy rate
and outputted pixel-level results in the current research;

2. It explores the effect of different rates of the atrous space convolution pooling pyramid
on the recognition of the images in Cornell Grasp dataset, and analyzes the value of
the rates of ASPP for different targets.

This paper is organized as follows. Section 2 discusses the difference between con-
volution kernel and atrous convolution kernel, the structure of DeepLab V3+, the neural
network structure proposed in this article, and the difference between the commonly used
five-dimensional representation and the oriented base-fixed triangle representation used in
this paper. Section 3 introduces the experimental details and results, Section 4 discusses
the results, and Section 5 offers some conclusions and future prospects.

2. Materials and Methods
2.1. Theoretical Analysis

As mentioned above, an advantage of semantic segmentation is that its output result
operates at a pixel level, and it has good recognition ability for a global scene. Given its
good performance in the field of semantic segmentation, DeepLab V3+ adopts an encoder–
decoder structure and converts its convolution kernel into ASPP with different rates of
atrous convolution. With high recognition speed and recognition accuracy, it can precisely
process different sizes of objects in the background at the same time without a high amount
of calculation. In this paper, the DeepLab V3+ model [20] is used as the feature extractor.
The output of the DeepLab V3+ model is processed by the convolutional layer and the
upsampling layer to generate the final grasp strategy, which represented by the pixel-level
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representation and the oriented base-fixed triangle. In the structure of the feature extractor,
the structure of ASPP consists of the atrous convolution kernel, and the encoder–decoder is
the key. This article will examine the atrous convolution, DeepLab V3+, and the structure
of GNAC in detail.

2.1.1. Convolution Kernel

A convolution kernel is one of the core elements of a neural network. The structure and
function of an ordinary convolution kernel is shown in Figure 1a. When processing images,
the result of a weighted average of the pixel values of a small area in a given input image
is used as a corresponding pixel in the output image. This process is called convolution,
where the weight is defined by a function; this function is called the convolution kernel.
The convolutional kernel is developed from a single large 13 × 13 convolution kernel used
in AlexNet [21]. Neural networks contain convolution kernels of different sizes. Under
the action of the entire neural network, the depth of the feature map and the information
contained in a single pixel will be improved.

Figure 1. (a) The work process of ordinary convolution. (b) The work process of atrous convolution.
(c) The size of ordinary convolution kernel. (d) The size of atrous convolution kernel.

After multiple convolutions, the receptive field of the feature map will rapidly de-
crease, resulting in a decrease in the final accuracy. In order to improve the receptive field
of the feature map after convolution without increasing the parameters and the amount
of calculation, we use the following hypothesis: the pixels that are closely adjacent to the
target are almost the same, and all of them are included in the convolution operation,
which will lead to excessive redundancy. It is better to skip one or more pixels to take
information. It has been proposed to insert zero points in the adjacent parameters of the
convolution kernel, which is called atrous convolution [22], as shown in Figure 1b. The use
of atrous convolution kernels instead of some ordinary convolution kernels can improve
the receptive field of the feature map with the same amount of calculation, and the overall
trend of the feature map after convolution is consistent. As shown in Figure 1c,d, one
should set the size of the input feature map as h1, the output feature map size as h2, the
size of the convolution kernel as k, stride as s, padding as p, the rate of atrous convolution
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kernel as r, and the equivalent convolution kernel of the atrous convolution kernel as ke.
From those parameters, we can calculate the size of the equivalent convolution kernel as:

ke = k + (k− 1)(r− 1) (1)

For the calculation of the same 9 significant figures, it is clear that the ordinary
convolution kernel can only obtain the content of a 3 × 3 area, while the atrous convolution
kernel with 9 significant figures can obtain the information of areas larger than 3 × 3. The
latter can be obtained by Formula (1):

k =
ke + r− 1

r
(2)

The size of the convolution kernel determines the amount of calculation during
convolution, at least to a certain extent. As shown in Figure 1, when rate = 2 while
performing a 5 × 5 convolution, and k= 5 for ordinary convolution and ke = 5 for atrous
convolution, the receptive field is the same, but the amount of calculation can be reduced
when controlled.

2.1.2. DeepLab V3+ NETWORK

The emergence of neural networks solves some image processing problems, such as
target recognition and semantic segmentation. However, the multiple convolutions of deep
convolutional neural networks reduce the size of the feature map and make the feature
map too small, limiting the size and accuracy of the feature map and restricting the effect of
model. The DeepLab series [20,23–25], researched by Google, replaces ordinary convolution
with hole convolution and improves the size and accuracy of the feature map without
increasing the amount of calculation, thereby improving the model’s hierarchical reliability,
computing power, and ability to acquire micro-frame details. Aiming at the problem of
detecting objects of different scales, atrous spatial pyramid pooling has been proposed
(ASPP), as shown in Figure 2a. ASPP can obtain multi-scale image text information by
performing different rates of atrous convolution on the picture at the same time, thus
improving the ability to obtain different targets. In order to better obtain the information of
all targets in the images, DeepLab V3+ [20] takes the encoder–decoder as the main structure,
as shown in Figure 2b. The encoder convolution adopts atrous separation convolution,
which can significantly reduce the computational complexity of the model and maintain
similar convolution performance. Moreover, the last layer of convolution is replaced with
ASPP, and the high-level feature device analyzes global semantics to facilitate the use of the
atrous separation convolutional layer to extract features at any resolution. Then, through
the decoder for two consecutive quadruple upsamplings, the boundary information is
gradually restored and semantic segmentation is realized. The overall structure is shown
in Figure 2c. The DeepLab series introduces the atrous convolution kernel, constructs
atrous spatial pyramid pooling, and uses it in the encoder–decoder structure to perform
semantic segmentation on images with different size and color targets with a low amount
of calculation. The research on target capture strategy generation not only requires the
algorithm model to have the ability to accurately identify and segment a target’s details,
but it also requires the model to have a faster calculation speed. From people’s grasp
experience, we know that tiny details greatly influence grasp strategy and success. On
the other hand, each target has its own characteristics, and the algorithm model needs
to quickly output a reasonable strategy. The DeepLab V3+ algorithm has high semantic
segmentation accuracy, low calculation volume, and fast running speed; thus, it has great
application potential in the field of target capture strategy generation.
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Figure 2. The structure of DeepLab V3+ and relative networks.

The grasping strategy of this article divides the entire surface area of the target to
be grasped into a graspable and a non-graspable area, and converts the problem into
a semantic segmentation problem. Additionally, based on the excellent performance of
DeepLab V3+ in semantic segmentation, this paper applies DeepLab V3+ to the generation
of grasping strategy by adjustments and training, and finally realizes the prediction of the
target grasping strategy.

2.1.3. Network Architecture

The network structure of this article consists of two parts. The first is the convolution
feature extraction layer, which is based on the structure of DeepLab V3+, that takes a
320× 320 pixel RGB picture as input. After convolution and spatial pyramid pooling, a
feature map with a size of 80× 80 and a channel of 304 is generated. This feature map is
used as the input for the second component of the prediction. As shown in Figure 3, the
network structure designed in this paper is composed of a CNN layer, an ASPP layer, a
pooling layer, a connected layer, and an upsampling layer.

Figure 3. The construction of GNAC.

The CNN layer is composed of 4 convolution groups. The images that have passed
through the CNN layer are input to the ASPP layer, which comprises a parallel 1× 1 convo-
lution, three 3 × 3 convolution layers with rates of 2, 4, 6, and a pooling layer. The output
of this parallel layer is combined to perform 1 × 1 convolution and, finally, to perform
an upsampling value of 4 to obtain the feature map. Simultaneously, the output of the
CNN layer is connected to the 1 × 1 convolutional feature map and the upsampling feature
map to obtain the final feature map. The grasping strategy consists of three output values
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(grasp confidence, angle, and width), but DeepLab V3+ only outputs one predicted value,
the semantic segmentation image. As such, the network model in this paper adjusts the
prediction part that performs the 80 × 80 feature map with channel 304, and it does so
simultaneously through 3 parallel CNN layers and 4 upsampling layers to output the final
prediction. The CNN layer composed of two parallel 3 × 3 convolution groups generated
the prediction of grasp confidence, angle, and width.

The neural network proposed in this paper outputs three predictors: grasp confi-
dence, width, and angle. The grasp confidence predictor produces two output values—the
possibility of being grasped and the possibility of not being grasped. In this series of
grasp confidence, the highest possibility of being grasped, oriented base-fixed triangle
representation, is the final output. The angle predictor will generate k output values,
where the ith value represents the probability that the ith grasp angle can be grasped, and
the output width predictor will output a value that is the graspable width. These three
predictors also adopt different loss functions because of different predicted values and
defined positive labels. The label of grasping confidence divides all areas of the target
into graspable and non-graspable positions, so the prediction of confidence is a binary
classification problem. Predicting grasp confidence Lossabl adopts a softmax cross-entropy
function as a loss function:

Lossabl =
N

∑
n=1

pnlog2
1
pn

(3)

pn = −logxn (4)

with xn denoting the grasp confidence. Predicting the grasp angle is a multi-label, multi-
classification problem, so loss function for predicting the grasp angle (Lossang) takes a
sigmoid cross-entropy function as the loss function:

Lossang = − 1
N

N

∑
n=1

[pn log( p̂n) + (1− pn) log(1− p̂n)] (5)

pn = sigmod(xn) =
1

1 + e−xn
(6)

Predicting grasp width is a regression problem, so the mean square error function is
selected as the loss function (Losswid).

Losswid =
1
N

N

∑
n=1

(xn − x̂n)
2 (7)

with N denoting the number of the predicted grasp angle, xn denoting the nth predicted
angle, and x̂nth denoting the ground truth label. The sum of loss (Lossall) is:

Lossall = Lossabl + w1 × Lossang + w2 × Losswid (8)

2.2. Generating Grasp Strategy

In the past, most research on grasp detection has been based on target recognition and
target classification using RGB images as input, thus generating a grasp rectangular frame
on the image.

The neural network established by Joseph Redmon et al. [26] makes adjustments in
AlexNet [21] and establishes a network that directly return to the grasp detection through
RGB-D images, and can directly output coordinates, such as width, height, and angle.
Based on YOLO, Xu et al. [18] divided the entire input image into small 13 × 13 small,
returning the center of each target to a small 13 × 13 small and using the point in the small
grid as the center to return to a circle, with a calibrated diameter as the grasp trajectory;
this method achieved target detection at the same time as the grasp strategy was generated.
The research of these scholars has opened the way for grasping strategy prediction with
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deep learning, and has greatly improved the prediction speed and accuracy of grasping
strategy generation. In the past, scholars’ research mostly used the five-dimensional grasp
representation [4], as shown in Figure 4a:

G = {x, y, θ, h, w} (9)

with (x, y) representing the coordinates of the graspable center position, θ representing
the angle between the grasp and the horizontal line, h representing the height of the grasp
rectangle, and w representing the width of the grasp rectangle. The parallel plate gripper is
represented by the rectangle [4,7].

Figure 4. Grasp representation.

When the parallel plate gripper actually grasps the target, as in grasping a sphere,
contact with the target theoretically occurs on only two points, and it only generates force in
two directions or two points. Overall, the grasp stability is poor, and the five-dimensional
representation used above is a region-level representation, which does not provide enough
accuracy. In response to this problem, we used an asymmetric three-finger gripper to grip
the target. Compared to the parallel plate gripper, the asymmetric three-finger gripper was
more stable and practical, and it was divided into two ends: one finger at one end and two
fingers at the other end. It could be used for a smaller location on one side of the target and
a larger location on the other side of the target. There were also more applicable scenarios
for this gripper. The parallel plate gripper had a symmetrical structure, so its grasp angle
was [0, π], while the three-finger gripper was not symmetrical in structure, so the range of
the grasp angle was [0,2π]. The three-finger gripper had three action points, which could
be completely expressed by pixel-level representation and the oriented base-fixed triangle;
thus, the directional triangle representation was used as the representation method, as
shown in Figure 5.

G = {x, y, θ, d, w} (10)

where (x, y) represents the position coordinate of oriented base-fixed triangle, θ is the angle
between the vertical line of the triangle and the horizontal line, d represents the width of
the two finger directions, and w represents the position of the horizontal line connected by
the two fingers from the vertex.
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Figure 5. The difference between the IOU of the rectangle (left) and the IOU of the triangle (right) at
the same grasping point.

2.3. Experiment Setup
2.3.1. Dataset

We used the Cornell Grasp dataset as a benchmark to train and verify the model. The
Cornell Grasp dataset includes 885 RGB-D images, 5110 human-labeled positive labels, and
2909 negative labels. The label of the Cornell Grasp dataset is oriented to neural networks
that use five-dimensional representation, and the label is multiple rectangles at positions
that can be grasped on the image. This kind of label was not suitable for the asymmetric
three-finger gripper used in this article. As the blueprint, we adopted the dataset used by
Wang et al. [1] from the Cornell Grasp dataset, and we modified it to the oriented base-fixed
triangle labeled dataset.

Since the Cornell Grasp dataset only includes 885 RGB images, it is relatively small
compared to other deep learning datasets. In order to solve this problem, we adopted
two methods. The first used data enhancement technology to expand the dataset, such as
random rotation and cropping of the images in the dataset, which allowed us to enlarge or
reduce picture size and adjust the picture to 320 × 320 pixels. The second used ResNet-101
pretrained by ImageNet as the feature extractor to reduce the training scale.

2.3.2. Implementation Details

For training and testing, our models ran on a laboratory workstation (CPU:i9-9900X,
GPU:2080Ti*2, RAM:128G, ROM:512G SSD+6T HHD). Due to the memory limitation of
the GPU, the batch size was set to 8, and each model was trained end-to-end for 1500
epochs. We used the Adam optimizer to optimize GNAC, and the learning rate (lr) was
0.001. Moreover, lr decayed stepwise at a rate of 0.5 times in the range [200, 500, 800, 1000]
of epochs.

2.3.3. Test Methods Metric

The general benchmark consisted of intersection over union (IOU) and the difference
between the predicted grasping angle and the ground grasping angle. When the IOU value
was greater than 0.25, and the difference between the predicted grasping angle and the
ground grasping angle was less than 30◦, the predicted grasping strategy was considered
correct. IOU is shown in Formula (11):

IOU =
SR ∩ GT
SR ∪ GT

(11)
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SR represents the predicted grasp area and GT represents the ground grasp area.
As shown in Figure 5, when the positions of the action points were roughly similar, the
asymmetric three-finger gripper used in this article had a smaller IOU value.

As in the past grasp detection methods, we randomly selected 75% of the data in the
dataset as a training set and the remaining data as a test set. There were two test methods:

1. Image-wise split (IW): The image dataset was randomly divided into a test set and
a training set. This method was mainly used to test the neural network’s ability to
recognize previously seen targets in new positions and new directions;

2. Object-wise split (OW): We divided the dataset at an object instance level. All the
images of an instance were put into the same set. This method was mainly used to
test the neural network’s ability to recognize new targets.

3. Results

In the feature extraction component of the neural network, we found that the atrous
convolution value in ASPP determined the ability to obtain the features of differently
sized targets in the image, and determined the ability of the neural network to obtain and
analyze the small edges of the target. In order to apply the ability of ASPP in the generation
of grasping strategies more appropriately, this paper experimented with multiple sets of
different values of ASPP for training, and the final model was obtained and tested with
two different standards. As different ASPP values had the same calculation amounts, their
speeds were all the same and could not be repeated. The results are shown in Table 1. The
neural network with different ASPP ratios was trained, and the total loss value and the
changes in the three sub-loss values during the training process are shown in Figure 6.
Among them, 2 × n represented the atrous convolution ratio in ASPP [1,2,4,6], 3 × n
represented [1,3,6,9], 6 × n represented [1,6,12,18], and NO_ASPP represented the skipping
of the ASPP module; the loss value of the neural network with different ratio values had
the same trend and value in the training process. The total loss value and the three sub-loss
values (grasp confidence, grasping width, and grasping angle) all steadily decreased with a
certain shock. We knew that when the training was performed for 500 epochs, the decrease
in the loss value slowed down. We also knew that when the training period was performed
for 1400 cycles, the differential decrease in the loss value approached 0. During the training
process, the real-time test results of the model and the loss value trend were roughly the
same. When the training reached 500 epochs, the speed of the grasp strategy increased but
the accuracy generated by the model decreased. The models trained under the three sets of
rates gradually reached a peak of about 1500 epochs. Among them, the neural network
with the ratio of [1,2,4,6] after 1470 epochs of training reached the best test accuracy of 0.97,
and the result was also the best in the subsequent verification experiments. It is worth
noting that the loss value of the neural network that skipped the ASPP module during the
training process was significantly lower than the training loss value of the neural network
with the ASPP module.

Table 1. Grasp accuracy of different rates of ASPP.

The Rates of
ASPP

500 Epochs 1500 Epochs

IW (%) OW (%) IW (%) OW (%)

[NO_ASPP] 92.27 94.06 95.45 94.97

[1,2,4,6] 91.74 89.54 97.71 96.82

[1,3,6,9] 91.32 90.00 96.35 96.82

[1,6,12,18] 90.41 90.00 95.43 95.00
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Figure 6. (a) The change process of the total loss value of different rates of ASPP; (b) the change process of the three sub-loss
values of different rates of ASPP; (c) the training model test result in the training process of different rates of ASPP.

After a later verification experiment, as shown in Table 1, the research showed that,
when the convolution ratio of the rate of ASPP was [1,2,4,6], the results obtained were the
best. The result of the image-wise split was 97.71% and the result of the object-wise split
was 96.82%.

4. Discussion

As shown in Table 1 above, we have adopted multiple sets of ASPP with different
ratios. It can be seen that, in the later test, [1,2,4,6] had the best effect. We suggest that a
reason for this is that the target of the Cornell Grasp dataset is large, as shown in Figure 7.
Furthermore, the overall background is relatively simple. The object in the Cornell Grasp
dataset is shown in Figure 7. The overall background is relatively simple, and the object
belongs to the big object. When using the ASPP ratio [1,2,4,6], which was not too large,
the atrous convolution value could make the neural network have a suitable receptive
field, and it could achieve a better recognition effect. The effect of the atrous convolution
is mentioned in Section 2. It can increase the receptive field without a large amount of
calculation but, when the ratio of the selected ASPP is too large, it will cause the atrous
convolution kernel to become a 1 × 1 convolution kernel. By adding too many 0 values
to the convolution kernel, the numerical trend of the feature map could also be affected
after convolution, resulting in a reduction in the accuracy of the generated grasp strategy.
After 500 epochs of training, the neural network that trained without an ASPP module
had the best test result, and its total loss was also relatively small, as shown in Figure 6a;
however, after 1500 cycles of training, the model test result was not satisfactory. Our
analysis suggests that this result is due to the fact that, because there was no ASPP module,
the overall parameter was smaller, meaning a certain amount of overfitting resulted in
a low loss value. That said, the effects of training and testing in the later test were poor.
Different values of ASPP had different feature analyses and acquisition capabilities for
targets of different sizes. In practical applications, the object may be large or small in a
given scene. Further research needs to be carried out in this area. ASPP with an adaptive
scale value can achieve a better grasping prediction accuracy for targets of different sizes
in real time.
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Figure 7. Grasp detections in the Cornell Grasp dataset. The first column is the label image and the second column is the
predicted grasp strategy.

The final model trained in this paper was evaluated by the two detection standards
noted above. A comparison between the test accuracy of the training model in this paper
and the test accuracy of previous studies is shown in Table 2. The test results obtained in
this article were compared with previous studies. This paper primarily uses the semantic
segmentation algorithm as its core, and produces pixel-level results, which are clearer than
the region-level output studied in the past; thus, this paper improves the accuracy of grasp
detection. In this paper, the semantic segmentation of 3D point cloud data was mainly
applied to grasp detection in relation to image grasp strategy generation, which broadens
the way for future investigations into grasp strategies.

Table 2. Test results on the Cornell Grasp dataset.

Approach Year
Grasp

Representation Algorithm
Accuracy (%) Speed (ms)

IW OW

Jiang [4] 2011

Five-dimensional
representation

Fast Search 60.5 58.3 5000
Lenz [7] 2015 SAE, struct.reg 73.9 75.6 1350
Guo [3] 2017 ZF-net 93.2 89.1 -

Zhang [19] 2019 ROI-GD,
ResNet-101 93.6 93.5 39.75

Chu [17] 2018 ResNet-50,
Deep Grasp 96.5 96.1 20

Kumra [16] 2020 GR-ConvNet-
RGB-D 97.7 96.6 20

Yanan [15] 2020 ResNet-
50(RGD) 95.6 97.1 -

Wang [1] 2020 Oriented base-fixed
triangle

SGDN 96.8 92.27 19.4

OURS 2021 GNAC 97.71 96.82 19.1

The research in this article was based on an asymmetric three-finger gripper. When
using this model, there were three points of action on the target and, when facing a target
with a curved surface, the gripping stability and practicability of the three-finger gripper
were both stronger. In addition, as shown in Figure 5 above, when the points of action
were similar, the IOU of the directional triangle grasp notation used in this article was
smaller. Due to this disadvantage, the accuracy of GNAC still had to be improved in its
two judgments. At the same time, the 19.1ms grasp strategy generation speed also met the
requirements for image processing during the actual grasping. As it uses a three-finger
gripper, which is different from mainstream grippers, as well as pixel-level oriented base-
fixed triangle representation, this representation is only used in the Cornell Grasp dataset.
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The main defect of this article is its lack of training and verification regarding datasets. For
instance, Jacquard datasets and Dex-Net datasets could also have been used. Secondly,
further experiments at a later period, as shown in Figure 8, show that our model struggled
to generate a successful grasping strategy due to the interference of light when facing
transparent bottles, stainless steel, and other objects that reflect or transmit light.

Figure 8. The above eight images are visualizations of detection in more realistic and complex scenes.

As shown in Figure 7, we demonstrated some of the grasp strategies that predicted
success, namely the behavior label map and the second behavior model, both of which
generated grasp strategies. Compared with the previous networks that used regression as
their main idea, the grasping strategies generated by the model trained in this article were
more focused on a target area suitable for grasping rather than a number of locations. At
the same time, the grasping strategy was not only applicable to the position of the main
body of the target, but it also successfully generated a suitable grasping strategy in relation
to the target’s artificially accustomed grasping position; shoelaces are a good example of
this. The idea and advantages of semantic segmentation were successfully transferred to
the robot grasping strategy.

In order to test the generalization ability of our model on an object-wise split in a
complex environment, in which some targets were partially contacted, fully contacted, or
partially covered, we collected some everyday objects for use in a dataset and tested them.
Figure 8 shows the partially successful result. From Figure 8, we can see that our model
can successfully generate grasp strategies for objects that are not available in the Cornell
Grasp dataset. When the capture target had a small area of occlusion, the model in this
paper still worked.

5. Conclusions

Compared with previous grasp detection algorithms based on object recognition
algorithms and five-dimensional representations, this paper proposed a grasp detection
algorithm based on semantic segmentation, and further explored ASPP with different ratios.
An asymmetric three-finger gripper and an oriented base-fixed triangle representation—
one that could cope with more grasping situations—achieved a more stable and accurate
grasping effect on the target, realized the robot’s grasping of multiple targets in different
positions, and improved the intelligence, stability, and accuracy of the grasping robot. It
promoted the development of grasping robots facing a variety of industrial products.

Although the current grasp strategy generation algorithm has good predictive ac-
curacy, it mostly generates a predicted grasp position for a single object under a simple
background. In actual application scenarios, there may be situations in which the grasped
target is occluded, and there are multiple targets in the scene. Pertinent research in this
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area can promote greater development of grasp detection strategies. As is commonly
understood in this field, the reasonable use of multi-finger grippers can greatly improve the
stability and applicability of a gripping action. This article is aimed at the development of
three-finger grippers. The grasp detection of four-finger and five-finger humanoid grippers
may be a future research direction.
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