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Abstract: Wavelet transform is a well-known multi-resolution tool to analyze the time series in the
time-frequency domain. Wavelet basis is diverse but predefined by manual without taking the data
into the consideration. Hence, it is a great challenge to select an appropriate wavelet basis to separate
the low and high frequency components for the task on the hand. Inspired by the lifting scheme in
the second-generation wavelet, the updater and predictor are learned directly from the time series
to separate the low and high frequency components of the time series. An adaptive multi-scale
wavelet neural network (AMSW-NN) is proposed for time series classification in this paper. First,
candidate frequency decompositions are obtained by a multi-scale convolutional neural network in
conjunction with a depthwise convolutional neural network. Then, a selector is used to choose the
optimal frequency decomposition from the candidates. At last, the optimal frequency decomposition
is fed to a classification network to predict the label. A comprehensive experiment is performed
on the UCR archive. The results demonstrate that, compared with the classical wavelet transform,
AMSW-NN could improve the performance based on different classification networks.

Keywords: wavelet transform; lifting scheme; time series classification

1. Introduction

In recent years, the research on time series classification has achieved unprecedented
prosperity [1]. Time series data from the accelerometers, gyroscopes, or magnetic field
sensors is used to recognize the human activity recognition [2]. Data recorded by the
electroencephalogram (EEG) is important to help the doctor to study brain function and
neurological disorders [3]. Mid-infrared spectroscopy analysis is also useful to discriminate
the freshness of food [4]. To better compare different researches for time series classification,
UCR archive [5] is built and there are at least one thousand published papers making use
of at least one dataset from this archive.

The methods for time series classification can be divided into two categories:time-
domain methods and frequency-domain methods [6]. Time-domain methods such as
shapelets [7] and elastic distance measures [8] consider the shape of time series is important
to the classification. Compared with the time-domain methods, frequency-domain methods
such as Bag-of-SFA-Symbols [9] and Word Extraction for Time Series Classification [10]
predict the label of the time series by analyzing the spectrum.

In the last few years, with the development of deep learning, the process of time series
classification has been further advanced. Convolutional Neural Network (CNN) such as
Fully Convolutional Network (FCN) and Residual Network [11] achieve the competitive
performance with traditional methods. Recently, an Inception network suitable for time
series called Inceptiontime [12] is proposed and achieves the state-of-the-art performance
on the UCR archive. Most of the published methods learn discriminative features directly
from the time domain. There are some attempts to combine the frequency representation of
the time series with deep learning [5,13]. Wavelet transform is a widely used time-frequency
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analysis tool that has superior time-frequency localization as compared with the Discrete
Fourier Transform and Short Time Fourier Transform [14]. Wavelet transform decomposes
the time series into low and high frequency components by the wavelet basis. A variety of
the wavelet bases such as Harr, Morlet, and Daubechies have been proposed. Despite the
remarkable achievement of the wavelet transform, there is still room for improvement. In
the classical wavelet transform, the wavelet basis is artificially predefined which could be
inappropriate for the task on the hand. To overcome this limitation, the second-generation
wavelet emerged [15]. A lifting scheme is proposed to extract the low and high frequency
components from the time series adaptively.

Inspired by the lifting scheme, an adaptive multi-scale wavelet neural network
(AMSW-NN) is proposed in this paper. Instead of separating the low and high frequency
components by the predefined polynomials, a multi-scale combined with a depthwise CNN
is used in the AMSW-NN to obtain the candidate frequency decompositions, an optimal
frequency decomposition is selected from the candidates. The primary contributions of
this paper are concluded as follows:

• A multi-scale combined with a depthwise CNN is proposed to learn the candidate
frequency decompositions of the time series.

• The optimal frequency decomposition is selected from the candidates by a selector.
• The experiments performed on the UCR archive [5] demonstrate that the AMSW-

NN could achieve a better performance based on different classification networks
compared with the classical wavelet transform.

The remainder of this paper is organized as follows. Background is reviewed in
Section 2. In Section 3, AMSW-NN is proposed to extract the low and high frequency
components from the time series. Next, the extensive experiments are performed on
the UCR archive, and the results and discussions are presented in Section 4. Finally, a
conclusion is provided in Section 5.

2. Background

This section briefly introduces the lifting scheme in the second-generation wavelet
which is the building block of the proposed method.

2.1. Lifting Scheme

The second-generation wavelet is known as the lifting wavelet [16]. Compared with
the classical wavelet (also called the first-generation wavelet), the lifting wavelet does not
rely on the Fourier transform. Hence, a lifting scheme could be applied in the situation
where the Fourier transform is unavailable [17]. The lifting scheme is usually divided into
three steps including split, prediction, and update. The order of prediction and update
can be reversed. The update-first structure is used in the proposed method due to the
stability [18] and described in this section.

The overall flowchart of the lifting scheme is shown in Figure 1. A time series
X = (x1, x2, . . . , xN) is split into the even component Xe and odd component Xo as pre-
sented in Equation (1):

Xe[n] = X[2k− 1],

Xo[n] = X[2k],
(1)

where k = 1, 2 . . . , bn/2c.
After the split, the information contained in the time series X is decomposed into the

even component Xe and odd component Xo. The low frequency component Xc of the time
series X is approximated by the running average as shown in Equation (2):

Xc[n] = Xe[n] + U(Xo[n]), (2)

where U() is an update filter.
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When the low frequency component Xc is obtained, the high frequency component
Xd could be predicted by the Xc and Xo as presented in Equation (3):

Xd[n] = Xo[n]− P(Xc[n]), (3)

where P() is a prediction filter.

SplitX

Xe

Xo

Xc

Updater Predictor

Xc

Xd

+

_

Figure 1. The flowchart of the lifting scheme.

2.2. Adaptive Lifting Scheme

The predictor and updater in the original lifting scheme are constructed by the prede-
fined polynomials which is a suboptimal solution. Consider the excellent mapping and
self-learning ability of the Back Propagation (BP) network. The predictor and updater in
the adaptive lifting scheme are constructed by the BP networks [19]. The loss function loss
of the adaptive lifting scheme consists of two parts as shown in Equation (4):

loss = lossl + lossh, (4)

The first part is low frequency loss lossl which maintains the coarse coefficients as
Equation (5):

lossl = ∑n=1(Xo[n]− P(Xc[n]))2 (5)

The second part is high frequency loss lossh which minimizes the detail coefficients as
Equation (6) [16]:

lossh = ∑n=1(Xo[n]− Xe[n]−U(Xo[n]))2. (6)

3. Adaptive Multi-Scale Wavelet Neural Network (AMSW-NN)

In this section, the proposed AMSW-NN is introduced. Compared with the BP network
in the adaptive lifting scheme for one-dimensional signal, the updater and predictor in the
AMSW-NN are based on a multi-scale CNN and a depthwise CNN [20]. The flowchart
of the AMSW-NN is presented in Figure 2. From Figure 2, AMSW-NN consists of a
frequency decomposition network (FD-Network) and a classification network (C-Network).
FD-Network contains an updater, a predictor, and a selector which would be detailed
introduced in the following. C-Network could be a CNN such as FCN and ResNet.

3.1. Updater

For the adaptive lifting scheme, Xe[n] is updated by a fixed order polynomial. A prede-
fined neighborhood is not always an optimal solution due to the noise and data distribution.
To better obtain the low frequency component Xc[n], a multi-scale neighborhood is con-
sidered in the AMSW-NN. The structure of the updater is presented in Figure 3. Similar
to [16], reflection padding is first applied to the Xo[n] instead of the zero padding. Then, an
Inception-like module is proposed to update the Xe[n] in the multiple scales. It consists of
the 1 ∗ 1, 3 ∗ 1 and 5 ∗ 1 convolution kernels followed by the Rectified Linear Unit (ReLU)
activation and the 1 ∗ 1 depthwise convolution (DWConv) kernels followed by the hyper-
bolic tangent (Tanh) activation. Xc[n] could be obtained from the output of updater and
Xe[n] as Equation (2).
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Figure 2. The flowchart of the AMSW-NN.

The rationale behind this design is that each branch of the updater models the re-
lationship between Xe[n] and Xo[n] with polynomials of different orders. The different
convolution kernels in each branch model this relationship with polynomials of differ-
ent coefficients. DWConv guarantees the channel-dependent update without coupling.
Meanwhile, DWConv could effectively reduce the number of parameters.

Xo[n]

Padding

Conv 1*1

ReLU

Padding

Conv 3*1

ReLU

Padding

Conv 5*1

ReLU

DWConv 1*1

Tanh

DWConv 1*1

Tanh

DWConv 1*1

Tanh

Figure 3. The structure of the updater. Padding in the updater denotes the reflection padding.

3.2. Predictor

When the Xc[n] is updated, the predictor is applied to obtain the Xd[n]. The structure
of the predictor is presented in Figure 4. It contains the reflection padding with 1 ∗ 1, 3 ∗ 1
and 5 ∗ 1 DWConv kernels followed by the ReLU activation and the 1 ∗ 1 DWConv kernels
followed by the Tanh activation. Xd[n] could be predicted by the output of predictor and
Xc[n] as Equation (3). DWConv is also used to guarantee the channel-dependent prediction.
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Xc[n]
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Tanh
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Tanh
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Figure 4. The structure of the predictor. Padding in the predictor denotes the reflection padding.

3.3. Selector

The frequency decomposition of the time series is determined after the update and
prediction in the original lifting scheme. However, the Inception-like module used in the
updater and predictor results in a multi-channel feature map as Figure 2. Each channel
of the feature map could be considered as a candidate frequency decomposition of the
time series. The function of the selector is to choose the optimal frequency decomposition
from the candidates. The structure of the selector is presented in Figure 5. A squeeze-and-
excitation module [21] is applied to put the channel attention on each channel and select
the optimal channel from the candidates. Given the candidate frequency decompositions
{D1, D2, . . . , DM}, a global average pooling (GAP) layer combined with a two-layer Multi-
layer Perceptron (MLP) as Equation (7) is used to learn the importance of each candidate
frequency decomposition.

si = σ(W2δ(W1Di)), (7)

where W1 ∈ RM
r ×M and W2 ∈ RM×M

r are the weights of the two-layer MLP. σ() and δ()
are the ReLU and sigmoid function, respectively.

Candidates

Attention 

Value

GAP+Two Layer MLP

X

Optimal

Figure 5. The structure of the selector.

3.4. Loss Function

The loss function used to train the AMSW-NN is shown in Equation (8) which is
similar to [16]. It includes a cross-entropy loss, a detail loss and a mean loss. Detail loss
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prefers low-magnitude detailed coefficients and mean loss promotes the Xc[n] to maintain
coarse coefficients,

loss = −
K

∑
i=1

yilog(pi) + λ1H(D) + λ2(mXc −mX)
2, (8)

where K is the number of categories, H() is the Huber norm. λ1 and λ2 are the hyperparameters.

4. Experiment

In this section, extensive experiments are performed to validate the effectiveness of
the AMSW-NN. This section is divided into four parts including experimental settings,
experimental results, ablation studies and complexity analysis.

4.1. Experimental Settings

In this section, the dataset used to evaluate the performance is first introduced. Then,
the compared method and evaluation metric are presented. Finally, the parameter settings
are provided.

4.1.1. Dataset

One of the most famous datasets for time series classification is the UCR archive. UCR
archive is first introduced in 2002 [5] and updated many times. It contains time series data
from different applications such as ECG and HAR. In this paper, the UCR archive including
85 datasets is used which is consistent with many published papers.

4.1.2. Compared Methods

As the discussion in Section 2, consists of a FD-Network and a C-Network. The struc-
ture of the C-Network could be designed according to the application. In this experiment,
FCN, ResNet, and Inception are chosen because FCN, ResNet [11] and Inception [12] are the
strong baselines and the superior methods on the UCR archive, respectively. The advantage
of AMSW-NN is data-adaptive frequency decomposition. To demonstrate the performance
of the FD-Network, FD-Network is replaced by a Daubechies-4 (db4) decomposition as [6]
to build the compared methods.

4.1.3. Evaluation Metrics

The evaluation metrics used in this experiments include Number of Win, Average
Arithmetic Ranking (AVG-AR), Average Geometric Ranking (AVG-GR) and Mean Per-
Class Error (MPCE). The definitions of AVG-AR, AVG-GR, and MPCE are presented in
Equations (9)–(11):

AVG− ARi = 1
K ∑ rk, (9)

AVG− GRi = K
√

∏ rk, (10)

PCEk =
ek
ck

,

MPCEi =
1
K ∑ PCEk,

(11)

where k is the index of different datasets and i is the index of different methods, K is the
number of datasets, rk, ck, and ek are the rank, the number of categories, and error rates for
the kth dataset, respectively.

The critical difference defined by Equation (12) is also tested to statistically compare
different methods over multiple datasets [22].
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Critical Di f f erence = qα

√
Nc(Nc + 1)

6K
(12)

where critical value qα is the studentized range statistic divided by
√

2, Nc is the number of
methods. α is set to 0.05 in the experiments.

4.1.4. Parameter Settings

AMSW-NN consists of FD-Network and C-Network. The parameter settings for
FD-Network and training are listed in Table 1 and the parameter settings of C-Network is
the same as [11,12]. The number of the channel used for each branch in the updater and
predictor is 32, Hence, the number of the candidate frequency decomposition is 96. The
ratio r in the selector is 8. AMSW-FCN is trained for 2000 epochs, and AMSW-ResNet and
AMSW-Inception are trained for 1500 epochs. The Adam optimizer is employed to train the
AMSW-NN with an initial learning rate lr = 0.001, β1 = 0.9, β2 = 0.999, and ε = 1× 10−8.
λ1 and λ2 in the loss function is set to 0.01 and 0, respectively. The model with minimum
training loss is used to evaluate the performance on each dataset.

Table 1. Parameter settings for FD-Network and training.

Parameter Value

Kernel size 5, 3, 1

FD channel 32

Ratio 8

Training epoch 1500/2000

Learning rate 0.001

λ1 0.01

λ2 0

4.2. Experimental Results

In this section, the performance of the AMSW-NN on the UCR archive is reported.
The accuracy rates and evaluation metrics of the AMSW-NN and compared method are
shown in Table 2. DW-FCN, DW-ResNet, and DW-Inception are the abbreviations of db4
decomposition with FCN, ResNet, and Inception, respectively. To mitigate the influence of
the random initialization, the evaluation is performed five times on each dataset and the
average is reported to compare different methods. From Table 2, AMSW-Inception achieves
the highest performance on 25 datasets and the lowest AVG-GR. AMSW-ResNet achieves
the lowest AVG-AR and the second best MPCE which is just a little difference between
the ResNet. Figure 6 shows the critical difference comparison of DW-FCN, DW-ResNet,
DW-Inception, FCN used for the C-Network in AMSW-NN(AMSW-FCN), ResNet used for
the C-Network in AMSW-NN(AMSW-ResNet), and Inception used for the C-Network in
AMSW-NN(AMSW-Inception) on the UCR archive. AMSW-ResNet obtains the smallest
rank compared to the other methods. Moreover, a pairwise comparison is presented in
Figure 7. Compared with the DW-FCN, AMSW-FCN is better on 47 datasets and worse
on 35 datasets. AMSW-ResNet is better on 47 datasets and worse on 33 datasets than DW-
ResNet. AMSW-Inception is much better than DW-Inception which wins on 51 datasets
and loses on 29 datasets. It proves that no matter what C-Network is selected, FD-Network
obtains a better frequency decomposition than db4 decomposition.

Furthermore, it could be observed that no model could achieve the best performance
on all datasets from the results listed in Table 2. However, an empirical guidance could be
summarized. AMSW-Inception adopts the Inception architecture to discover the patterns
in the different scales. Hence, AMSW-Inception obtains the highest accuracy on the
datasets such as “CricketX” and “UWaveGestureLibraryX” which have the large intra-class
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difference because a single-scale convolution is insufficient to extract the discriminative
pattern on these datasets. In contrast, AMSW-FCN and AMSW-ResNet are more suitable
for the datasets such as “Beef” and “Meat”which have the small intra-class difference.

Table 2. Accuracy rates and evaluation metrics of the DW-FCN (DWF), DW-ResNet (DWR), DW-Inception (DWI), AMSW-
FCN (AMSWF), AMSW-ResNet (AMSWR), and AMSW-Inception (AMSWI) on the UCR archive. The accuracy rate listed in
this Table for each dataset is the average of five evaluations on the testing set. For each evaluation, the model corresponding
to the minimum training loss is used to predict the label and calculate the accuracy on the testing set. The accuracy rates
keep three decimal places for clariy. The highest value (bold) in each dataset is actually based on the original results.

Dataset DWF AMSWF DWR AMSWR DWI AMSWI

Adiac 0.849 0.850 0.838 0.837 0.765 0.770
ArrowHead 0.867 0.864 0.848 0.853 0.834 0.838

Beef 0.760 0.800 0.747 0.780 0.713 0.727
BeetleFly 0.890 0.900 0.910 0.910 0.780 0.810

BirdChicken 0.900 0.910 0.920 0.890 0.880 0.860
Car 0.903 0.930 0.907 0.920 0.910 0.917
CBF 0.982 0.974 0.989 0.968 0.996 0.997

ChlorineConcentration 0.796 0.785 0.835 0.801 0.856 0.824
CinCECGTorso 0.852 0.866 0.837 0.841 0.844 0.855

Coffee 1.000 1.000 1.000 1.000 1.000 1.000
Computers 0.774 0.785 0.764 0.768 0.748 0.738

CricketX 0.774 0.769 0.811 0.818 0.838 0.838
CricketY 0.773 0.779 0.810 0.827 0.841 0.843
CricketZ 0.798 0.791 0.843 0.843 0.845 0.855

DiatomSizeReduction 0.907 0.917 0.939 0.941 0.931 0.944
DistalPhalanxOutlineAgeGroup 0.706 0.714 0.725 0.725 0.747 0.695

DistalPhalanxOutlineCorrect 0.773 0.761 0.785 0.766 0.778 0.778
DistalPhalanxTW 0.660 0.694 0.676 0.691 0.653 0.642

Earthquakes 0.757 0.731 0.744 0.748 0.737 0.741
ECG200 0.904 0.894 0.882 0.896 0.898 0.902

ECG5000 0.940 0.941 0.934 0.937 0.944 0.944
ECGFiveDays 0.996 0.978 1.000 1.000 0.999 0.999

ElectricDevices 0.662 0.657 0.666 0.660 0.661 0.662
FaceAll 0.878 0.867 0.825 0.818 0.824 0.808

FaceFour 0.932 0.930 0.955 0.955 0.927 0.932
FacesUCR 0.954 0.948 0.962 0.964 0.956 0.956
FiftyWords 0.705 0.711 0.765 0.766 0.831 0.818

Fish 0.981 0.976 0.987 0.985 0.986 0.983
FordA 0.940 0.931 0.961 0.948 0.957 0.958
FordB 0.822 0.825 0.826 0.826 0.848 0.857

GunPoint 0.996 1.000 1.000 0.999 0.992 0.992
Ham 0.722 0.709 0.754 0.752 0.670 0.678

HandOutlines 0.869 0.887 0.929 0.931 0.959 0.964
Haptics 0.523 0.527 0.571 0.550 0.535 0.545
Herring 0.644 0.697 0.588 0.603 0.688 0.700

InlineSkate 0.400 0.441 0.411 0.377 0.518 0.461
InsectWingbeatSound 0.453 0.498 0.597 0.602 0.638 0.638
ItalyPowerDemand 0.959 0.949 0.960 0.944 0.960 0.948

LargeKitchenAppliances 0.910 0.901 0.909 0.889 0.890 0.891
Lightning2 0.738 0.754 0.721 0.797 0.770 0.800
Lightning7 0.838 0.803 0.833 0.814 0.833 0.819

Mallat 0.964 0.965 0.965 0.966 0.959 0.959
Meat 0.860 0.933 0.977 0.977 0.957 0.947

MedicalImages 0.761 0.766 0.765 0.773 0.783 0.769
MiddlePhalanxOutlineAgeGroup 0.490 0.516 0.460 0.535 0.490 0.516

MiddlePhalanxOutlineCorrect 0.751 0.800 0.764 0.814 0.792 0.790
MiddlePhalanxTW 0.512 0.534 0.487 0.531 0.512 0.547

MoteStrain 0.906 0.921 0.910 0.922 0.877 0.885
NonInvasiveFetalECGThorax1 0.961 0.951 0.952 0.941 0.962 0.958
NonInvasiveFetalECGThorax2 0.958 0.943 0.957 0.950 0.958 0.958
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Table 2. Cont.

Dataset DWF AMSWF DWR AMSWR DWI AMSWI

OliveOil 0.693 0.720 0.867 0.853 0.727 0.740
OSULeaf 0.979 0.983 0.964 0.976 0.926 0.929

PhalangesOutlinesCorrect 0.804 0.815 0.807 0.825 0.810 0.824
Phoneme 0.299 0.309 0.302 0.304 0.290 0.285

Plane 1.000 1.000 1.000 1.000 1.000 1.000
ProximalPhalanxOutlineAgeGroup 0.841 0.825 0.860 0.827 0.844 0.842
ProximalPhalanxOutlineCorrect 0.892 0.888 0.918 0.899 0.903 0.902

ProximalPhalanxTW 0.787 0.771 0.771 0.777 0.755 0.759
RefrigerationDevices 0.522 0.479 0.528 0.523 0.508 0.474

ScreenType 0.598 0.550 0.572 0.534 0.535 0.536
ShapeletSim 0.833 0.736 0.966 0.711 0.853 0.669

ShapesAll 0.912 0.910 0.920 0.931 0.916 0.923
SmallKitchenAppliances 0.777 0.759 0.732 0.759 0.757 0.782
SonyAIBORobotSurface1 0.953 0.892 0.963 0.942 0.859 0.780
SonyAIBORobotSurface2 0.950 0.938 0.919 0.947 0.905 0.895

StarLightCurves 0.975 0.975 0.973 0.977 0.978 0.978
Strawberry 0.982 0.982 0.984 0.984 0.982 0.979

SwedishLeaf 0.965 0.967 0.958 0.952 0.962 0.952
Symbols 0.983 0.985 0.979 0.979 0.971 0.969

SyntheticControl 0.991 0.969 0.993 0.982 0.994 0.973
ToeSegmentation1 0.963 0.978 0.939 0.944 0.956 0.959
ToeSegmentation2 0.925 0.911 0.922 0.928 0.945 0.948

Trace 1.000 1.000 1.000 1.000 1.000 1.000
TwoLeadECG 0.992 0.995 0.999 0.998 0.963 0.983
TwoPatterns 0.915 0.956 1.000 1.000 1.000 1.000

UWaveGestureLibraryAll 0.867 0.857 0.885 0.891 0.963 0.964
UWaveGestureLibraryX 0.769 0.778 0.793 0.791 0.822 0.824
UWaveGestureLibraryY 0.669 0.674 0.707 0.706 0.764 0.767
UWaveGestureLibraryZ 0.731 0.734 0.739 0.745 0.766 0.771

Wafer 0.998 0.998 0.999 0.998 0.997 0.997
Wine 0.596 0.730 0.674 0.789 0.785 0.796

WordSynonyms 0.618 0.621 0.664 0.671 0.740 0.753
Worms 0.779 0.805 0.753 0.764 0.795 0.771

WormsTwoClass 0.722 0.730 0.719 0.730 0.751 0.745
Yoga 0.885 0.872 0.889 0.883 0.917 0.912

Number of win 13 16 23 16 16 25
AVG-AR 3.824 3.729 3.153 3.082 3.271 3.141
AVG-GR 3.297 3.138 2.612 2.658 2.765 2.536

MPCE 0.047 0.046 0.044 0.044 0.045 0.046

123456

DW-FCN
AMSW-FCN

DW-Inception DW-ResNet
AMSW-Inception
AMSW-ResNet

Figure 6. Critical difference diagram showing statisitical difference comparison of DW-FCN, DW-
ResNet, DW-Inception, AMSW-FCN, AMSW-ResNet, and AMSW-Inception on the UCR archive.
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(a)

(b)

(c)

Figure 7. The results of the pairwise comparison. (a) shows the accuracy of AMSW-FCN against
DW-FCN, (b) shows the accuracy of AMSW-ResNet against DW-ResNet, (c) shows the accuracy of
AMSW-Inception against DW-Inception.
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4.3. Ablation Studies

In this section, the effectiveness of the multi-scale structure and hyperparameters
of loss function are analyzed. To validate the superiority of the multi-scale updater and
predictor for AMSW-NN, a single-scale version of AMSW-FCN called ASSW-FCN is
designed. Compared to the AMSW-FCN, ASSW-FCN only applies the 1 ∗ 3 convolution
kernel size to update and predict. The pairwise comparison between AMSW-FCN and
ASSW-FCN is shown in Figure 8. Compared to the ASSW-FCN, AMSW-FCN achieves
a better performance on the UCR archive which proves the effectiveness of the multi-
scale structure.
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Figure 8. The pairwise comparison between AMSW-FCN and ASSW-FCN.

The loss function for training the AMSW-NN contains the detail loss and mean loss as
presented in Equation (8). In Section 4.1, λ2 is set to 0 which means the high frequency is
not suppressed. In this section, λ2 is set to 0.01 as [16] to suppress the detailed coefficients.
AMSW-FCN with this loss function called AMSW-FCN(L) is trained on the UCR archive
again. The pairwise comparison between AMSW-FCN and AMSW-FCN(L) is shown in
Figure 9.
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Figure 9. The pairwise comparison between AMSW-FCN and AMSW-FCN(L).
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As shown in Figure 9, the performance of AMSW-FCN is slightly better than AMSW-
FCN(L). The reasonable explanation is that AMSW-FCN suppresses the high frequency
and AMSW-FCN(L) does not. If the high frequency is noise rather than detail, it is expected
that AMSW-FCN is better than AMSW-FCN(L), and vice versa. For instance, AMSW-FCN
achieves the higher accuracy on the “CricketX”, “CricketY” and “CricketZ”. Figure 10
presents some training samples from the “CricketX”, “CricketY” and “CricketZ”. It indi-
cates that high frequency noise exists.

Figure 10. The training samples from the “CricketX”, “CricketY” and “CricketZ”. The samples from
the same class are listed in the same row. High frequency noise could be observed in the red circle.

4.4. Complexity Analysis

AMSW-NN is composed of the FD-Network and C-Network. Compared with the
DW-NN, the extra computational complexity is from the FD-Network. It is proportional
to the number of the convolution kernel of the updater and predictor. Moreover, it is also
proportional to the ratio r for the selector. Compared with the C-Network, the parameter
learnt in the FD-Network is relatively small because the DWConv is used. The number of
the learnable parameters for FD-Network and different classification networks is shown in
Table 3.
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Table 3. The number of the learnable parameters for AMSW-NN.

Component Parameter Amount

FD-Network 3564

FCN 271,154

ResNet 526,964

Inception 426,642

5. Conclusions

In this paper, an adaptive multi-scale wavelet neural network called AMSW-NN for
Time Series Classification is proposed. Compared with the frequency decomposition by the
predefined wavelet basis, AMSW-NN adopts the multi-scale and depthwise convolution
with the squeeze-and-excitation module to build the learnable updater, predictor and selec-
tor to adaptively separate the low frequency component and high frequency component
from the time series which has a better generalization performance. Extensive experiments
on the UCR archive show that the AMSW-NN indeed achieves a better performance than
the classical wavelet decomposition combined with the neural network. In future work,
we will attempt to extend the AMSW-NN to more complex applications. First, we want to
modify the AMSW-NN to classify multivariate time series. Furthermore, second, we hope
to find an adaptive strategy to better split the time series before the update.

Author Contributions: Methodology, K.O.; supervision, Y.H. and S.Z.; writing—original draft, K.O.;
writing—review and editing, Y.H. and Y.Z. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was funded by the National Natural Science Foundation of China under Grant
No.61903373.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used in this study is from the UCR archive which can be
found here: http://www.timeseriesclassification.com/, accessed on 16 June 2021.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liu, C.L.; Hsaio, W.H.; Tu, Y.C. Time series classification with multivariate convolutional neural network. IEEE Trans. Ind.

Electron. 2018, 66, 4788–4797. [CrossRef]
2. Ordóñez, F.J.; Roggen, D. Deep convolutional and lstm recurrent neural networks for multimodal wearable activity recognition.

Sensors 2016, 16, 115. [CrossRef] [PubMed]
3. Übeyli, E.D. Wavelet/mixture of experts network structure for EEG signals classification. Expert Syst. Appl. 2008, 34, 1954–1962.

[CrossRef]
4. Al-Jowder, O.; Kemsley, E.; Wilson, R.H. Detection of adulteration in cooked meat products by mid-infrared spectroscopy. J. Agric.

Food Chem. 2002, 50, 1325–1329. [CrossRef] [PubMed]
5. Dau, H.A.; Bagnall, A.; Kamgar, K.; Yeh, C.C.M.; Zhu, Y.; Gharghabi, S.; Ratanamahatana, C.A.; Keogh, E. The UCR time series

archive. IEEE/CAA J. Autom. Sin. 2019, 6, 1293–1305. [CrossRef]
6. Wang, J.; Wang, Z.; Li, J.; Wu, J. Multilevel wavelet decomposition network for interpretable time series analysis. In Proceedings

of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018;
pp. 2437–2446.

7. Ye, L.; Keogh, E. Time series shapelets: a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Paris, France, 28 June–12 July 2009; pp. 947–956.

8. Lines, J.; Bagnall, A. Time series classification with ensembles of elastic distance measures. Data Min. Knowl. Discov. 2015,
29, 565–592. [CrossRef]

9. Schäfer, P. The BOSS is concerned with time series classification in the presence of noise. Data Min. Knowl. Discov. 2015,
29, 1505–1530. [CrossRef]

http://www.timeseriesclassification.com/
http://doi.org/10.1109/TIE.2018.2864702
http://dx.doi.org/10.3390/s16010115
http://www.ncbi.nlm.nih.gov/pubmed/26797612
http://dx.doi.org/10.1016/j.eswa.2007.02.006
http://dx.doi.org/10.1021/jf0108967
http://www.ncbi.nlm.nih.gov/pubmed/11878997
http://dx.doi.org/10.1109/JAS.2019.1911747
http://dx.doi.org/10.1007/s10618-014-0361-2
http://dx.doi.org/10.1007/s10618-014-0377-7


Information 2021, 12, 252 14 of 14

10. Schäfer, P.; Leser, U. Fast and accurate time series classification with weasel. In Proceedings of the 2017 ACM on Conference on
Information and Knowledge Management, Singapore, 6–10 November 2017; pp. 637–646.

11. Wang, Z.; Yan, W.; Oates, T. Time series classification from scratch with deep neural networks: A strong baseline. In Proceedings
of the 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017; pp. 1578–1585.

12. Fawaz, H.I.; Lucas, B.; Forestier, G.; Pelletier, C.; Schmidt, D.F.; Weber, J.; Webb, G.I.; Idoumghar, L.; Muller, P.A.; Petitjean, F.
Inceptiontime: Finding alexnet for time series classification. Data Min. Knowl. Discov. 2020, 34, 1936–1962. [CrossRef]

13. Li, D.; Bissyandé, T.F.; Klein, J.; Traon, Y.L. Time series classification with discrete wavelet transformed data. Int. J. Softw. Eng.
Knowl. Eng. 2016, 26, 1361–1377. [CrossRef]

14. Akansu, A.N.; Haddad, P.A.; Haddad, R.A.; Haddad, P.R. Multiresolution Signal Decomposition: Transforms, Subbands, and Wavelets;
Academic Press: Cambridge, MA, USA, 2001.

15. Sweldens, W. The lifting scheme: A construction of second generation wavelets. SIAM J. Math. Anal. 1998, 29, 511–546. [CrossRef]
16. Rodriguez, M.X.B.; Gruson, A.; Polania, L.; Fujieda, S.; Prieto, F.; Takayama, K.; Hachisuka, T. Deep adaptive wavelet network.

In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikola, HI, USA, 5–9 January 2021;
pp. 3111–3119.

17. Sweldens, W. Wavelets and the lifting scheme: A 5 minute tour. Zamm-Z. Angew. Math. Mech. 1996, 76, 41–44.
18. Ma, H.; Liu, D.; Xiong, R.; Wu, F. iWave: CNN-Based Wavelet-Like Transform for Image Compression. IEEE Trans. Multimed.

2019, 22, 1667–1679. [CrossRef]
19. Zheng, Y.; Wang, R.; Li, J. Nonlinear wavelets and BP neural networks adaptive lifting scheme. In Proceedings of the 2010

International Conference on Apperceiving Computing and Intelligence Analysis Proceeding, Chengdu, China, 17–19 December
2010; pp. 316–319.

20. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258.

21. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141.

22. Demšar, J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7, 1–30.

http://dx.doi.org/10.1007/s10618-020-00710-y
http://dx.doi.org/10.1142/S0218194016400088
http://dx.doi.org/10.1137/S0036141095289051
http://dx.doi.org/10.1109/TMM.2019.2957990

	Introduction
	Background
	Lifting Scheme
	Adaptive Lifting Scheme

	Adaptive Multi-Scale Wavelet Neural Network (AMSW-NN)
	Updater
	Predictor
	Selector
	Loss Function

	Experiment
	Experimental Settings
	Dataset
	Compared Methods
	Evaluation Metrics
	Parameter Settings

	Experimental Results
	Ablation Studies
	Complexity Analysis

	Conclusions
	References

