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Abstract: The current methods for missing link prediction in social networks focus on using data
from overlapping users from two social network sources to recommend links between unconnected
users. To improve prediction of the missing link, this paper presents the use of information from
non-overlapping users as additional features in training a prediction model using a machine-learning
approach. The proposed features are designed to use together with the common features as extra
features to help in tuning up for a better classification model. The social network data sources used
in this paper are Twitter and Facebook where Twitter is a main data for prediction and Facebook
is a supporting data. For evaluations, a comparison using different machine-learning techniques,
feature settings, and different network-density level of data source is studied. The experimental
results can be concluded that the prediction model using a combination of the proposed features
and the common features with Random Forest technique gained the best efficiency using percentage
amount of recovering missing links and F1 score. The model of combined features yields higher
percentage of recovering link by an average of 23.25% and the F1-measure by an average of 19.80%
than the baseline of multi-social network source.

Keywords: Social Network; missing link; link prediction; machine learning

1. Introduction

A Social Network (SN) is an online service enables users to interact and communicate
with each other free of charge. With the increasing number of usages of social media plat-
forms, the large amount of data associated with social networks has been used in research
for many topics such as studying user relationships for product recommendation [1,2],
mental disorder analysis via user interaction [3,4], sentimental analysis [5–7], and analysis
for social relationship [8,9]. Among the topics in social network analysis, link prediction,
which is a task to identify missing links (or future links) between users, has been studied
to recommend a social interaction between social network users. The task is to estimate
the likelihood of link formation between each pair of users for those users who yet relate.
The task thus is used to recommend for friend relationships in online SN platforms. For
linking prediction in SN, relationships and users are defined into a structure of links and
nodes while nodes refer to SN users, and links indicate a relationship between users.

The task of social network link prediction has been studied and developed catego-
rizable into two main approaches as matrix-calculation and machine learning. For the
works [2,10] from the matrix-calculation approach, they represent the link from a node
to another node in a form of a matrix. Then, a calculation is made to predict the missing
link using the data of links between nodes within a generated matrix. These works how-
ever did not apply information from node profile features to support the link prediction.
The machine-learning approach applies the existing relationship between nodes and links
from a dataset to create a classification model. There are several works [11–21] in this
approach but with different machine-learning techniques and SN sources. To increase
an efficiency of the link prediction, some works exploit user profile features such as age,
gender, and current city along with graph-based relationships as training features.
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Unfortunately, the limited information from a single SN source may not be sufficient
to cover all possible missing links. In addition, there is a study result [18] indicating that
using a single SN source with a low network-density could lower a prediction perfor-
mance. Hence, some studies [10,15,17,20] suggested to use multiple SN sources to increase
amount of informative data resulting in the higher efficiency of predicting the missing links.
Commonly in using multiple SN sources, only overlapping nodes referring to the same
users in two or more SN are considered in classification process while information from
the non-overlapping nodes is ignored. However, these non-overlapping nodes contain
informative data that may improve the prediction results.

This paper thus aims to improve the efficiency of the linking prediction using multiple
SN sources for both overlapping and non-overlapping data. Various features from non-
overlapping nodes are designed to widen the scope informative feature resulting in higher
performance to the link prediction. In this work, the targeted SN for link prediction is
Twitter while the selected SN sources for training are Facebook and Twitter. The rest of the
paper is organized as follows. Section 2 provides a summary of related works. Section 3
describes the proposed methodology including data source description, and the design of
features for training a link prediction model. Then, experimental results and discussion are
provided in Section 4. Last, Section 5 gives conclusions and remarks of the paper.

2. Literature Reviews

Since the aim of this paper is to improve the task of linking prediction using a machine-
learning method from multiple SN sources, we review and provide a summary of existing
works in the same approach.

Hristova et al. [15] proposed a method to solve link prediction from Twitter and
Foursquare data. The work considered the social relationship and geographical data as
features of the users that existed in both SN sources. In their experiments, comparison
between applying single and multiple SN sources was studied. The results of this study
signify that using data from multiple SN sources could noticeably improve the performance
of the missing link prediction.

As with the aforementioned work, Jalili et al. [17] developed a link prediction method
using multiple social media networks by considering user data that appear from both
Twitter and Foursquare. Three machine-learning techniques including Bayes classification
(BC), Support Vector Machine (SVM), and k-nearest neighbor (kNN) were applied to
compare the prediction performance to predict the links in Foursquare network. Their
prediction results show that the cross-SN information significantly improves the prediction
performance for all used techniques, and their SVM classifier yielded the best performance
with 89.

Mendal et al. [20] performed a link prediction task using multiple SN sources with
data from common users on Twitter and Foursquare. They compared the efficiency of
several predictive techniques using graph-based features. The study results indicated that
many common neighbors or a high ratio of common neighbors increase the efficiency of a
link prediction. Thus, their results can be concluded that considering the similarities in
geography could increase the accuracy of the link prediction.

Sirisup and Songmuang [18] investigated the performance of link prediction tech-
niques by comparing various widely used prediction techniques including SVM, kNN,
Decision Tree, Artificial Neural Networks (ANN), Naïve Bayes (NB), Logistic Regression
(LR), and Random Forest (RF). The work used two OSN datasets which representing high-
density and low density of network. Their results show that RF gave the best performance
in predicting missing links. Furthermore, the experimental results also pointed out that a
training data with a network with low density may cause the relatively lower performance
of the prediction.

From the results of these work, we learn that using multiple SN sources can signif-
icantly improve the performance of predicting missing links in a social network. Un-
fortunately, the considered data for [15,17,20] were those overlapping user data in both
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applied SN sources, and the non-overlapping data were discarded. Furthermore, the result
from [18] indicates that the network-density of the source plays a crucial part in predic-
tion performance. Thus, further investigation of an effect on network-density from SN
sources should be studied and analyzed. In this work, we hence focus on making use
of non-overlapping data as additional features to improve a prediction performance and
analyzing an effect of network-density from SN sources towards a prediction performance.

3. Research Methodology

The main aims of this work are to exploit non-overlapping nodes from multiple SN
sources to improve the efficiency of missing link prediction in SNs. Additionally, we plan to
study an effect of the density of network in SN sources in terms of link prediction efficiency.
This section thus provides details of data sources using for training the prediction model,
a design of features in training, measurement methods, and experimental design.

3.1. Data Sources

Two popular SNs including Facebook and Twitter are used as our dataset. The Twitter
data are the main SN for both training and predicting while the Facebook data are used to
support the prediction. We gather the data sources from their provided data access service
through an Application Programming Interface (API). The collected data sources consist of
data features and data structures as follows.

1. Facebook network structure can be divided into two parts as follows :

(a) A node represents a user with features including personal information.
(b) Non-directional link shows friends in the network.

2. Twitter structure of the network is divided into two parts as follows:

(a) A node represents a user with features including personal information, tweet
messages, hashtags, and referring node.

(b) Directional link shows the user following status and followed status in the network.

With two different SN sources, we assimilate the data from both networks to become
uniformed. A transformation of a directional link in Twitter into a non-directional link
in Facebook is conducted by applying a criterion that if two nodes follow each other on
Twitter, they are considered to be friends and are assigned with a non-directional link [15].

3.2. Basic Link Prediction Features

From the literature reviews, several features are used in the studies [15,17,20] for link
prediction, and they are capable of providing reasonable efficiency. Hence, we consider
using the features as our basic features. The basic features are categorized into two types
as graph-based features and node features. Their details are as follows.

3.2.1. Graph-Based Features

Graph-based features denote features for network data in a form of a graph. The graph
is represented by the symbol G(V, E), where G refers to a graph, V refers to a set of nodes
or users of an SN, and E refers to a set of links between nodes. If node i connects to node j
with a link, node j is considered to be a neighbor of node i. The set of neighbors (Γ) of each
node i is considered to be shown in Equation (1),

Γi = {j ∈ V : e(i, j) ∈ E}, (1)

where V is the set of nodes, E is the set of links, and e(i, j) is the link between i and j.
The graph-based features in this work are:
(1) Common Neighbors (CN) between two nodes are defined as the number of neigh-

bors that are common to both nodes. Two nodes with many common neighbors are
considered to be linked or known [14]. This can be calculated from Equation (2),

CNij = |Γi ∩ Γj|, (2)
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where Γi is the set of neighbors of node i and Γj is the set of neighbors of node j.
(2) Jaccard similarity (J_sim) is applied to calculate the similarity between two nodes,

considering the ratio of the number of common neighbors between the two nodes to the
total number of neighbors of the two nodes [20], where i and j are the nodes considered,
as shown in Equation (3),

J_simij =
|Γi ∩ Γj|
|Γi ∪ Γj|

. (3)

(3) Adamic/Adar similarity (AA_sim) is a calculation for the similarity between
nodes, considering the popularity of common neighbors between the two nodes [15,22].
The concept is that many common neighbors are likely to show a low probability of there
being a missing link between the considering nodes. On the other hand, a smaller number
of common neighbors may be considered for a higher probability of missing links, as shown
in Equation (4),

AA_simij = ∑
z∈Γi∩Γj

1
log(|Γz|)

, (4)

where Γz is the set of neighbors of Node z.
(4) Friend measure (FM) is the consideration that when two considered nodes have

more connections to their common neighbors, there is a higher possibility that the two
nodes have a link [23]. This can be calculated using Equation (5):

FMij = ∑
x∈Γi

∑
y∈Γj

δ(x, y), (5)

where x is a member in the neighbor set of node i, y is a member in the neighbor set of
node j, and δ(x, y) can be calculated as shown in Equation (6):

δ(x, y) =

{
1 if x = y or e(x, y) ∈ E,
0 otherwise,

(6)

where e(x, y) is the link between x and y.
(5) Friend Of Similar (FOS) is a concept to detect nodes that share a set of common

neighbors. When the considered nodes i and j have many common neighbors, node i may
likely be friends with other friends of node j, and node j might also likely be friends with
other friends of node i.

When we have a large SN dataset, we might have many nodes that link to a few
nodes and may become a noise-causing ambiguity to the prediction model. We thus
apply Ahmed et al. [14]’s method to reduce the number of nodes that might provide
information for FOS calculation by setting a threshold of 10 as a minimum number of
common neighbors. (FOS) feature can be calculated from Equation (7):

FOSij = ∑
x∈Γi

1, (7)

where CNix > 10, j ∈ Γx, j /∈ CNix, and CNix is the number of common neighbors between
nodes i and node x. This means that node j is the common neighbor of node x. When
the two considered nodes share many nodes x, FOS increases and the probability of a
relationship between the two nodes also increases.

3.2.2. Qualitative Features

The qualitative features of nodes are based on the selected SN source, with each
SN source using different features. There are two considered data sources in this paper,
including Facebook and Twitter. Therefore, the features of the nodes are divided into two
sections as follows.
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(1) Features for each node on Facebook, including personal features, are described
as follows.

Facebook latent (FL) is the most effective feature from the linking prediction research
proposed by Han et al. [12]. The principle of this feature is to consider the possibility of
a relationship between two nodes by considering the profile features from the first-order
neighbors compared with the profile features of the other considered nodes. The profile
features include age, gender, school, university, hometown, current location, workplace,
favorite music, movies, and television programs. If the latent relationship score is high,
both nodes would have a high probability of being friends.

Figure 1 shows the example of user i and user j being friends if user i and users j1
and j2, who are friends of user j, have many similar profile features. The figure shows four
similarities (solid line) and four different profile features (dashed line). The Facebook latent
relationship between nodes i and j can be calculated using Equation (8),

FLij =
1

1 + e−β(r−αq)
, (8)

where r is the number of similar features (the number of latent links), q is the number
of different features (the number of disconnections), β is an exponential regulator, and α
is a regulator for punishing value [24]. According to Han et al. [12], β equals 0.05 and α
equals 0.05.

Figure 1. Facebook latent feature.

(2) When considering the qualitative features of nodes on Twitter, the features of each
node on Twitter consist of data that each node tweets, which contains hashtag data and
the mentioned users. Previous studies [14,15] have suggested guidelines for considering
features on Twitter as follows:

1. Hashtag overlap (HTO) is the similarity between nodes on Twitter that is detected
through interest topics in the form of hashtags. The number of hashtags commonly
used between two users on Twitter [15] is calculated as shown in Equation (9),

HTOij = |HTi ∩ HTj|, (9)

where HTi is the set of tweeted hashtags of node i and HTj is the set of tweeted
hashtags of node j.

2. Mention overlap (MNO) is the feature that allows Twitter users to mention other
users on Twitter with tweets and retweets, regardless of whether they know each
other or not [15], which can be calculated from Equation (10),

MNOij = |MNi ∩MNj|, (10)
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where MNi and MNj are the sets of nodes mentioned by node i and node j, respectively.
3. The mention frequency (MNF) between the two considering nodes is used to indicate

the relationship. Many mentions between two nodes are considered to be a high
probability that the two nodes will know each other [14]. This can be calculated from
Equation (11),

MNFij = ∑ MNij, (11)

where MNij=1, in case when node i mentions node j.
4. Reply frequency (RPF) is the number of responses between the considering nodes [14].

RPF explains the probability that two nodes will know each other when many re-
sponses are between two nodes. This can be calculated from Equation (12),

RPFij = ∑ RPij, (12)

where RPij = 1, when node i responses to node j.

These basic features are from overlapping nodes of two SN sources, as shown in the
dotted circle in Figure 2, to predict a missing link in SN1. The remaining information from
non-overlapping nodes in SN2 then will be explained in the later section as this work newly
designed features.

Figure 2. Social networks with overlapping nodes.

4. Proposed Features

This set of features is newly invented features aiming to improve link prediction using
more information from non-overlapping nodes to predict the missing link. As shown in
Figure 2, when we predict a missing link in SN1, we use the information from overlapping
nodes represented in the dotted circle and non-overlapping nodes from SN1 and SN2.
However, the remaining non-overlapping nodes from SN2 are not treated as first-order
neighbors of the considering nodes i and j in SN1.

Therefore, we propose two new features for improving link prediction using non-
overlapping nodes which concern second-order neighbors. Moreover, we improve the FOS
to increase the information from several types of datasets, and we propose a latent feature
for gathering more information from Twitter data. The proposed features are divided into
graph-based features and qualitative node features with the following details.

4.1. Graph-Based Features

Graph-based features are applied from the latent relationship features. We apply the
mentioned equation with the graph-based features by changing the profile features of the
considering nodes to graph-based features as follows.
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4.1.1. Node Latent

Node latent (NL) relationship is used to apply the latent relationships by considering
the common neighbors between the first-order neighbors of the considering node and the
second-order neighbors of the other considering node. For example, Figure 3 presents the
node latent relationship between users i and j where nodes j1 and j2 are the first-order
neighbors of node j. Neighbors of nodes j1 and j2, excluding node j, are the second-order
neighbors of node j. We use the information from the common neighbors between node i
and nodes j1 or j2 to calculate NL. The latent relationship is shown in Equation (13):

NLij =
1

(1 + e−β(NR−αQ))
, (13)

where β and α are numerical controls set equal to 0.05 and 0.05 according to our empirical
investigation. NR is a node relationship which is the similarities of friend members calcu-
lated from the sum of common neighbor ratios between node i and first-order neighbors of
node j, as shown in Equation (14):

NR = ∑
y∈Γj

riy, (14)

where riy is calculated using Equation (3), which is the Jaccard similarity between node i
and node y, and Q is the sum of the different neighbor ratios between node i and first-order
neighbors of node j, which is calculated from Equation (15):

Q = ∑
y∈Γj

(1− riy). (15)

Figure 3. Node latent relationship.

4.1.2. Jaccard Similarity of Second-Order Neighbor

The Jaccard similarity of the second-order neighbor (J_sim′) is developed from Equation (3),
which considers only the common neighbors of the first-order considered node. However,
we propose the equation considering the Jaccard similarity of the second-order neighbors
as shown on the right-hand side of Figure 4. Many common friends in the second-order
neighbors are assumed to have a higher possibility of being friends as well, which can be
calculated from Equation (16):

J_sim′ij =
|CN′ij|
|ΓCNij |

(16)

where CN′ij is the set of common friends of CNij, excluding i and j.
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Figure 4. Jaccard similarity of the second-order neighbor.

4.1.3. Enhanced Friend of Similar

Enhanced friend of similar (EFOS) is an adjustment to the friend similarities from
Equation (7) as the original equation requires more than ten common neighbor nodes to
pass the defined threshold before calculating friend similarities. In case of low network-
density, the threshold thus lower the trainable data and may affect the prediction efficiency.

To sensibly adjust the amount of information to be calculated in FOS, we change
the fix threshold conditions from CNix > 10 in Equation (7) to CNix ≥ v, where v is a
variable parameter setting based on network-density level. For SN source with a very high
network-density, v can be set to a high number to help in control feeding amount of data
to calculate for friend similarities. On the other hand, v should be set to a low number to
allow some data to be fed to calculation. From preliminary testing, v is set to 1 in this work
since the chosen SN sources in this work lacking common neighbors for calculating for
friend similarities.

4.2. Node Qualitative Feature

The node qualitative feature from the Facebook latent relationship is a feature that
affects prediction performance and can also be applied with Twitter data for increased
prediction efficiency. Thus, we present the features as follows.

Twitter latent (TL) is the relationship between the two nodes of Twitter considering
two features as hashtags and the mentioned users with common friends as illustrated in
Figure 5.

Figure 5. Twitter latent.
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Figure 5 presents the example of the possibility that user i and user j will be friends
if user i and friends of user j have two features of similarities. The features on Twitter
that can be considered to be latent relationships consist of hashtags and mentioned nodes,
and can be used to calculate the latent relationship from Equation (17):

TLij =
1

(1 + e−β(RT−αQRT))
(17)

where β is a numerical control, and α is the numerical control. We set β and α to be equal
to 0.05 according to empirical investigation, and RT is the similarities of friends that can be
calculated from Equation (18),

RT = ∑
y∈Γj

rHTiy + rMNiy (18)

QRT is the non-similarities of friends that can be calculated from Equation (19):

QRT = ∑
y∈Γj

(1− rHTiy) + (1− rMNiy) (19)

where rHTiy can be calculated as shown in Equation (20), and rMNiy can be calculated as
shown in Equation (21):

rHTiy =

0 if |HTi ∪ HTy| = 0,
|HTi∩HTy |
|HTi∪HTy | otherwise,

(20)

where HTi is the hashtag set that node i tweets, HTy is the hashtag set that node y tweets.

rMNiy =

0 if |MNi ∪MNy| = 0,
|MNi∩MNy |
|MNi∪MNy | otherwise,

(21)

where MNi is the set of nodes that node i mentions and MNy is the set of nodes that node
y mentions.

5. Experiment

To test the potential of the proposed method, we design an experiment to compare
the prediction efficiency from three setups as (1) data from a single SN source, (2) data
from multiple SN sources without the newly proposed features, and (3) data from multiple
SN sources without the newly proposed features. Furthermore, we also plan to study an
effect of the network-density of SN as low density and high density by comparing the
performance using different density of SN sources.

5.1. Network Density

To realize network-density of a data source, we calculate to find the ratio between the
number of nodes in the network and the number of links [25,26], which range from 0 to 1,
and the network-density (D) can be calculated as presented in Equation (22):

D =
2M

N(N − 1)
, (22)

where M is the number of links, and N is the number of nodes.

5.2. Data Collection

Although there are several opened datasets of SNs available for training [27–29], they
contain only nodes and links representing network structures without profile information
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which is a necessary feature in the proposed method. Therefore, we collect datasets
including node links and profile information from Twitter and Facebook specifically for this
experiment. To inform of overlapping nodes and non-overlapping nodes, we specifically
annotate the data of users who belong to both SNs and who belong to one SN.

The details of the collected datasets from two sources are as follows.

1. Dataset from Facebook: two datasets with different network densities. Dataset 1
contains a low network-density of 0.01, and dataset 2 contains a high network-density
of 0.03, which is three times higher than the density of dataset 1.

2. Dataset from Twitter: one dataset with a network-density of 0.01.

In the prediction, the dataset from Twitter is the main SN while one of the datasets
from Facebook is acted as the support SN source in prediction process. For experiment
setting, details are given in Table 1.

Table 1. Experiment setting with different datasets and their network-density details.

Dataset SN Sources N M D

1 Twitter (Single-SN) 200 265 0.01
2 Twitter and Facebook with low density (Multi-SN-low) 305 449 0.01
3 Twitter and Facebook with high density (Multi-SN-high) 305 823 0.02

Experiment setting with different datasets are as follows:

1. Dataset 1, Twitter dataset, which represents a single SN source with a network-density
of 0.01 (Single-SN);

2. Dataset 2, Twitter and Facebook datasets with a low network-density that represent
multiple SN sources with a low network-density of 0.01 (Multi-SN-low); and

3. Dataset 3, Twitter and Facebook datasets with a high network-density represent
multiple SN sources with a high network-density of 0.02 (Multi-SN-high).

5.3. Evaluation Metrics

Two efficiency measures as the percentage of recovered links and F1-measure are
used to evaluate the prediction results. The percentage of the recovered links indicates the
missing link prediction efficiency, which is the number of recovered links compared to the
total number of deleted links. The percentage of covered links can be calculated as shown
in Equation (23):

% Recovered Links =
Number of Recovered Links

Total Number of Deleted Links
× 100. (23)

F1-measure is chosen as another measurement metric. F1-measure is the harmonic
mean of Precision and Recall in which represents as a good measure of the incorrectly
classified cases. F1-measure is calculated using TP (True Positive), FP (False Positive),
and FN (False Negative). TP refers to a case that the method returns a link matching to
the link given in the reference SN dataset. FP refers to when the method returns a link,
but the link does not exist in the reference SN dataset. On the other hand, FN refers the
method does not return a link, but the link exists in the reference SN dataset. In this
classification problem, TN (true negative) is not applied for measurement calculation.
With the imbalance nature of training SN datasets, a number of negative items are much
higher as they will result in the extreme values of TN compared to TP, FP, and FN. Thus,
this will lower the importance of found FP and FN that are a crucial error in classification
measurement metric.

5.4. Link Prediction Techniques and Features

For training the prediction model, three commonly used classification technique,
k-nearest neighbor (kNN), Artificial Neural Networks (ANN), and Random Forest (RF)
are used.
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We divide the experiment into two parts as follows.

1. For each technique, it is necessary to specify the parameters for model creation. There-
fore, we conduct an experiment to find the suitable parameters for data classification
techniques. There are three classification techniques used in the experiment: speci-
fying parameter k for kNN [30,31], specifying hidden layer parameters and hidden
node for ANN [32,33], and specifying parameters of the number of trees for RF [34,35].
We develop the program for this experiment to train and test the prediction models
written using Scikit-learn and Python.

2. An experiment is set to compare the prediction efficiency between data usage from
a single SN source and multiple SN sources by considering overlapping and non-
overlapping nodes via three data classification techniques: kNN, RF, and ANN.

We develop the experiment program for training and testing the prediction models
using Scikit-learn and Python. The parameters are set following the results from previous
experiment results.

Moreover, we also experimented to compare the network-density of the considered
social networks to see the effects on link prediction efficiency. We use three datasets,
as shown in Table 1. This paper compares the efficiency of the features when used for data
classification, where the feature sets used in the experiment consist of ten basic features
and combined features including nine basic features and four proposed features, as shown
in Table 2.

To create the missing link in SNs, we randomly delete 15% of the links that appeared in
all three testing datasets. 10-fold cross-validation is applied, and we calculate the percentage
to measure the number of returned links generated from the method and F1-Measure to
compare the link prediction efficiency. Additionally, we repeat the experiment 100 times to
confirm the measurement results. The experimental results are described in the next section.

Table 2. The set of features used in the experiment.

No. Basic Features Combined Features

1 Common neighbor Common neighbor
2 Jaccard similarity Jaccard similarity
3 Adamic/Adar similarity Adamic/Adar similarity
4 Friend measure Friend measure
5 Friend of similarity Enhanced friend of similarity *
6 Facebook latent Facebook latent
7 Common hashtag Common hashtag
8 Common user mentioned Common user mentioned
9 Frequency of user mentioned Frequency of user mentioned

10 Response frequency Response frequency
11 Node latent *
12 Jaccard similarity of the second-order neighbor *
13 Twitter latent *

* The proposed features.

6. Results
6.1. Prediction Model Parameter Investigation Result

In this experiment, we aim to find the suitable parameters with data classification
techniques. The experimental results indicate that kNN with parameter k equal to 3 gave
the highest F1-Measure efficiency. For ANN, the experimental result shows that the first
hiding layer of 10 hidden nodes yielded the highest F1-Measure efficiency. Lastly, RF with
100 trees generated the classification with the highest F1-Measure efficiency.

6.2. Link Prediction Techniques and Features Evaluation Result

This experiment is to test a potential of the proposed features of non-overlapping data.
The comparison is made to show prediction performance of applying a single SN source,
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multiple SN sources with only basic features (Basic features), and multiple SN sources with
combining basic features with the proposed features (Combined features). For training
techniques, the three techniques for dataset classification, kNN, RF, and ANN are used
for classification.

Table 3 shows the percentage of the number of recovered links of data classification
techniques in each setting. From Table 3, RF gains the highest percentage of recovered links
for all datasets and all features. When considered the percentage trend of recovered links,
compared with the overall datasets, RF is the most effective technique.

Table 3. The percentage of the recovered links of data classification techniques in each dataset using different features.

Data Classification Techniques Single-SN Multi-SN-Low Multi-SN-High
Basic Features Combined Features Basic Features Combined Features Basic Features Combined Features

kNN 73.23 68.31 71.41 74.46 70.95 91.79
ANN 75.38 66.67 77.36 81.18 75.46 90.03

RF 79.38 95.46 77.85 96.62 79.08 99.15

In terms of applying the basic features with kNN and RF, the percentage of recovered
links tends to decrease when using multiple SN sources with low network-density com-
pared to using a single SN source. On the other hand, the percentage of recovered links
tends to decrease when using multiple SN sources with high network-density in the case
of kNN, but the results are similar to using a single SN source for ANN and RF.

This shows that using the basic features regardless of multiple SN sources returned
lower performance than using a single SN resource. According to the result in Table 3, we
can conclude that the basic features with multiple SN sources are well-aligned for the task.

For the results of using the combined features for all prediction techniques, multi-
ple SN sources with high network-density obtained the highest percentages, followed
by a single SN source, and finally, multi-sources SN with low network-density has the
lowest percentages.

According to the 100 repeated experiments to confirm the efficiency measurement,
when statistically tested with Student’s t-test, the percentage of recovered links tend to
increase with a statistical significance at 0.05.

From the result in Table 3, we can say that the combined basic and proposed features
are suitable for using multiple SN sources.

Figure 6 shows that considering the percentage of recovered links via RF using the
combined basic and proposed features is more efficient than RF using the basic features
in every dataset. When considering the increasing percentage of recovered links of each
dataset, we can conclude that RF using the combined features is more efficient than using
the basic features alone, with an average percentage of 23.25%. This verified the usefulness
of the combined features and showed that the proposed features help to improve the
efficiency of the basic features.

Figure 6. The relationship between datasets and percentage of recovered links via the link predic-
tion features.
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Table 4 presents the F1-Measure of data classification techniques in each dataset using
different features. From Table 4, we can notice that RF gains the highest F1-Measure in
all datasets and all features. When comparing the trend of F1-Measure with all datasets
by considering only RF as the most effective technique, in both cases using basic features
and the case using the combined features, F1-Measure tends to increase continuously in
each dataset. For more details, multiple SN sources with high network-density have the
highest efficiency percentage, followed by multiple SN sources with low network-density,
and finally, a single SN source has the lowest efficiency value.

Table 4. F1-Measure of data classification techniques in each dataset using different sets of features.

Data Classification Techniques Single-SN Multi-SN-Low Multi-SN-High
Basic Features Combined Features Basic Features Combined Features Basic Features Combined Features

kNN 0.66 0.67 0.69 0.63 0.69 0.86
ANN 0.73 0.74 0.73 0.63 0.76 0.84

RF 0.73 0.74 0.75 0.86 0.89 0.91

When we use multiple SN sources with a high network-density, kNN and ANN using
the combined basic and proposed features perform well in predicting links compared to
using the basic features. However, when considering the use of multiple SN sources with a
low network-density, although kNN and ANN are applied with the combined basic and
proposed features, the results of F1-Measure are lower than those found using a single
SN source. Since a multiple SN source with low network-density is the most imbalanced
dataset with the lowest ratio between the numbers of link and non-link relationships,
the efficient prediction technique must be tolerant with this problem, such as RF.

Additionally, the results from 100-repeated experiments to confirm efficiency measure-
ments after statistically tested with Student’s t-test found that with the combined basic and
proposed features for every dataset of RF, F1-Measure tends to increase with a statistical
significance of 0.05.

According to Figure 7, when considering the trends of F1-Measure, the efficiency of
RF using the combined basic and proposed features is more effective than RF using the
basic features in every dataset. When considering the percentage of the F1-Measure of each
dataset, it could be concluded that RF using the combined basic and proposed features is
more effective than RF using the basic features, with an average percentage of 19.80%.

Figure 7. The relationship between datasets and F1-Measure of link prediction features.

7. Conclusions

This paper presents newly invented features of non-overlapping node data in using
multiple social network sources to improve a performance of the missing link prediction.
The invented features are designed to obtain information from the data appearing only on
supporting source in which are normally ignored in the existing methods. The proposed
features together with basic features commonly used in the task show the promising
results in predicting missing link in terms of recovering missing link and F1 measurement.
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Moreover, we also study an effect of network-density from the training social media sources
towards performance of the prediction.

For evaluation, we set experiments to compare results in various aspects. The first
aspect is three machine-learning techniques including k-nearest neighbor (kNN), Artificial
Neural Networks (ANN), and Random Forest (RF). Second aspect is three data source
settings as single SN source, multiple SN sources with low network-density, and multiple
SN sources with high-network-density. Last, third aspect is the used features as commonly
used features and combination of the features and newly invent features. The evaluation
results indicate that RF gives the highest link prediction efficiency in all datasets and
all features in both measurement of the percentage of recovered links and F-Measure.
When focusing on the RF classifier as the most effective technique, the model from using
the combined basic and proposed features on multiple SN sources with high-network-
density yields the best percentage of recovering missing links and highest F1-Measure in
all testing dataset with a statistical significance of 0.05. This signifies that the proposed
non-overlapping node features assist the classification task to become more efficient in
predict missing links using two different SN sources as the combined features increase
the efficiency percentage of recovering link by an average of 23.25% compared to using
basic features alone. Furthermore, the model from the combined features also increases the
F1-Measure by an average of 19.80% compared to the multi-source baseline.

Therefore, we conclude that the prediction model trained with multiple SN sources by
considering overlapping and non-overlapping nodes between networks with the combined
basic and proposed features through RF yields the best link prediction efficiency. The
prediction efficiency can also be further enhanced by the sources of SN data with a high
network-density. For future works, more features from non-overlapping data will be
invented. Moreover, a solution to improve efficiency for imbalanced social network data
that may affect classification problem will be developed. Last, a method for predicting
missing links from at least three SN sources will be studied since they are expectable that
the complexity of graph-based features will be exponent.
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