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Abstract: This paper considers the information bottleneck (IB) problem of a Rayleigh fading multiple-
input multiple-out (MIMO) channel with an oblivious relay. The relay is constrained to operating
without knowledge of the codebooks, i.e., it performs oblivious processing. Moreover, due to the
bottleneck constraint, it is impossible for the relay to inform the destination node of the perfect
channel state information (CSI) in each channel realization. To evaluate the bottleneck rate, we first
provide an upper bound by assuming that the destination node can obtain a perfect CSI at no cost.
Then, we provide four achievable schemes, where each scheme satisfies the bottleneck constraint
and gives a lower bound to the bottleneck rate. In the first and second schemes, the relay splits the
capacity of the relay–destination link into two parts and conveys both the CSI and its observation to
the destination node. Due to CSI transmission, the performance of these two schemes is sensitive to
the MIMO channel dimension, especially the channel input dimension. To ensure that it still performs
well when the channel dimension grows large, in the third and fourth achievable schemes, the relay
only transmits compressed observations to the destination node. Numerical results show that, with
simple symbol-by-symbol oblivious relay processing and compression, the proposed achievable
schemes work well and can demonstrate lower bounds that come quite close to the upper bound on
a wide range of relevant system parameters.

Keywords: information bottleneck (IB); oblivious relay; Rayleigh fading; source coding; quantization

1. Introduction

For a Markov chain X → Y → Z and an assigned joint probability distribution pX,Y,
consider the following information bottleneck (IB) problem:

max
pZ|Y

I(X; Z) (1a)

s.t. I(Y; Z) ≤ C, (1b)

where C is the bottleneck constraint parameter and the optimization is with respect to the
conditional probability distribution pZ|Y of Z given Y. Formulation (1) was introduced
by Tishby in [1] and has found remarkable applications in supervised and unsupervised
learning problems such as classification, clustering, prediction, etc. [2–7]. From a more
fundamental information theoretic viewpoint, the IB arises from the classical remote source
coding problem [8–10] under logarithmic distortion [11].

An interesting application of the IB problem in communications consists of a source
node, an oblivious relay, and a destination node, which is connected to the relay via an error-
free link with capacity C. The source node sends codewords over a communication channel
and an observation is made at the relay. X and Y are, respectively, the channel input from
the source node and output at the relay. The relay is oblivious in the sense that it cannot
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decode the information message of the source node itself. This feature can be modeled
rigorously by assuming that the source and destination nodes make use of a codebook
selected at random over a library, while the relay is unaware of such random selection.
For example, in a cloud radio access network (C-RAN), each remote radio head (RRH)
acts as a relay and is usually constrained to implement only radio functionalities while
the baseband functionalities are migrated to the cloud central processor [12]. Considering
the relatively simple structure of the RRHs, it is usually prohibitive to let them know the
codebooks and random encoding operations, particularly as the network size becomes
large. The fact that the relay cannot decode is also supported by secrecy demands, which
means that the codebooks known to the source and destination nodes are to be considered
absolutely random, as done here.

Due to the oblivious feature, the relaying strategies that require the codebooks to be
known at the relay, e.g., decode-and-forward, compute-and-forward, etc. [13–15], cannot
be applied. Instead, the relay has to perform oblivious processing, i.e., employ strategies
in the form of compress-and-forward [16–19]. In particular, the relay must treat X as a
random process with distribution induced by random selection over the codebook library
(see [12] and references therein) and has to produce some useful representation Z by simple
signal processing and to convey it to the destination node subject to the link constraint C.
Then, it makes sense to find Z such that I(X; Z) is maximized.

The IB problem for this kind of communication scenario has been studied in [12,20–26].
In [20], the IB method was applied to reduce the fronthaul data rate of a C-RAN network.
References [21,22], respectively, considered Gaussian scalar and vector channels with IB
constraint and investigated the optimal tradeoff between the compression rate and the
relevant information. In [23], the bottleneck rate of a frequency-selective scalar Gaussian
primitive diamond relay channel was examined. In [24,25], the rate-distortion region of
a vector Gaussian system with multiple relays was characterized under the logarithmic
loss distortion measure. Reference [12] further extended the work in [25] to a C-RAN
network with multiple transmitters and multiple relays and studied the capacity region
of this network. However, all of References [12,20–25] considered block fading channels
and assumed that the perfect channel state information (CSI) was known at both the relay
and the destination nodes. In [26], the IB problem of a scalar Rayleigh fading channel
was studied. Due to the bottleneck constraint, it was impossible to inform the destination
node of the perfect CSI in each channel realization. An upper bound and two achievable
schemes were provided in [26] to investigate the bottleneck rate.

In this paper, we extend the work in [26] to the multiple-input multiple-out (MIMO)
channel with independent and identically distributed (i.i.d.) Rayleigh fading. This model
is relevant for the practical setting of the uplink of a wireless multiuser system where
K users send coded uplink signals to a base station. The base station is formed by an
RRH with M antennas, connected to a cloud central processor via a digital link of rate C
(bottleneck link). The RRH is oblivious to the user codebooks and can apply only simple
localized signal processing corresponding to the low-level physical layer functions (i.e.,
it is an oblivious relay). In current implementations, the RRH quantizes both the uplink
pilot symbols and the data-bearing symbols received from the users on each “resource
block” (This corresponds roughly to a coherence block of the underlying fading channel
in the time-frequency domain) and sends the quantization bits to the cloud processor via
the digital link. Here, we simplify the problem, and instead of considering a specific pilot-
based channel estimation scheme, we assume that the channel matrix is given perfectly
to the relay (remote radiohead), i.e., that the CSI is perfect but local at the relay. Then,
we consider an upper bound and specific achievability strategies to maximize the mutual
information between the user transmitted signals and the message delivered to the cloud
processor, where we allow the relay to operate local oblivious processing as an alternative
to direct quantization of both the CSI and the received data-bearing signal.

Intuitively, the relay can split the capacity of the relay-destination link into two parts
and convey both the CSI and its observation to the destination node. Hence, in the first



Information 2021, 12, 155 3 of 42

and second achievable schemes, the relay transmits the compressed CSI and observation
to the destination node. Specifically, in the first scheme, the relay simply compresses
the channel matrix as well as its observation and then forwards them to the destination
node. Roughly speaking, this is what happens today in “naive” implementation of RRH
systems. Therefore, this scheme can be seen as a baseline scheme. However, the capacity
allocated for conveying the CSI to the destination in this scheme is proportional to both
the channel input dimension and the number of antennas at the relay. To reduce the
channel use required for CSI transmission, in the second achievable scheme, the relay first
obtains an estimate of the channel input using channel inversion and then transmits the
quantized noise levels as well as the compressed noisy signal to the destination node. In
contrast to the first scheme, the capacity allocated to CSI transmission in this scheme is
only proportional to the channel input dimension.

Due to the explicit CSI transmission through the bottleneck, the performance of the first
and second achievable schemes is sensitive to the MIMO channel dimension, especially the
channel input dimension. To ensure that it still performs well when the channel dimension
grows large, in the third and fourth achievable schemes, the relay does not convey any
CSI to the destination node. In the third scheme, the relay first estimates the channel input
using channel inversion and then transmits a truncated representation of the estimate to
the destination node. In the fourth scheme, the relay first produces the minimum mean-
squared error (MMSE) estimate of the channel input and then source-encodes this estimate.
Numerical results show that, with simple symbol-by-symbol oblivious relay processing
and compression, the lower bounds obtained by the proposed achievable schemes can
come close to the upper bound on a wide range of relevant system parameters.

The rest of this paper is organized as follows. In Section 2, a MIMO channel with
Rayleigh fading is presented and the IB problem for this system is formulated. Section 3
provides an upper bound to the bottleneck rate. In Section 4, four achievable schemes are
proposed, where each scheme satisfies the bottleneck constraint and gives a lower bound
to the bottleneck rate. Numerical results are presented in Section 5 before the conclusions
in Section 6.

Throughout this paper, we use the following notations. R and C denote the real space
and the complex space, respectively. Boldface upper (lower) case letters are used to denote
matrices (vectors). IK stands for the K× K dimensional identity matrix and 0 denotes the
all-zero vector or matrix. Superscript (·)H denotes the conjugated-transpose operation, E[·]
denotes the expectation operation, and [·]+ , max(·, 0). ⊗ and �, respectively, denote the
Kronecker product and the Hadamard product.

2. Problem Formulation

We consider a system with a source node, an oblivious relay, and a destination node as
shown in Figure 1. For convenience, we call the source–relay channel “Channel 1” and the
relay–destination channel “Channel 2”. For Channel 1, we consider the following Gaussian
MIMO channel with i.i.d. Rayleigh fading:

y = Hx + n, (2)

where x ∈ CK×1 and n ∈ CM×1 are, respectively, zero-mean circularly symmetric complex
Gaussian input and noise with covariance matrices IK and σ2 IM, i.e., x ∼ CN (0, IK) and
n ∼ CN (0, σ2 IM). H ∈ CM×K is a random matrix independent of both x and n, and the
elements of H are i.i.d. zero-mean unit-variance complex Gaussian random variables, i.e.,
H ∼ CN (0, IK ⊗ IM). Let ρ = 1

σ2 denote the signal-to-noise ratio (SNR). Let z denote a
useful representation of y produced by the relay for the destination node. x→ (y, H)→ z
thus forms a Markov chain. We assume that the relay node has a direct observation of the
channel matrix H while the destination node does not since we consider a Rayleigh fading
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channel and a capacity-constrained relay–destination link. Then, the IB problem can be
formulated as follows:

max
p(z|y,H)

I(x; z) (3a)

s.t. I(y, H; z) ≤ C, (3b)

where C is the bottleneck constraint, i.e., the link capacity of Channel 2. In this paper,
we call I(x; z) the bottleneck rate and I(y, H; z) the compression rate. Obviously, for
a joint probability distribution p(x, y, H) determined by (2), problem (3) is a slightly
augmented version of IB problem (1). In our problem, we aim to find a conditional
distribution p(z|y, H) such that bottleneck constraint (3b) is satisfied and the bottleneck
rate is maximized, i.e., as much information on x can be extracted from representation z.

( | , )p y x HSource
x

State

H

Relay
y z

Destination

Figure 1. Block diagram of the considered information bottleneck (IB) problem.

3. Informed Receiver Upper Bound

As stated in [26], an obvious upper bound to problem (3) can be obtained by letting
both the relay and the destination node know the channel matrix H. We call the bound
in this case the informed receiver upper bound. The IB problem in this case takes on the
following form:

max
p(z|y,H)

I(x; z|H) (4a)

s.t. I(y; z|H) ≤ C. (4b)

In Reference [21], the IB problem for a scalar Gaussian channel with block fading has been
studied. In the following theorem, we show that, for the considered MIMO channel with
Rayleigh fading, (4) can be decomposed into a set of parallel scalar IB problems and the
informed receiver upper bound can be obtained based on the result in [21].

Theorem 1. For the considered MIMO channel with Rayleigh fading, the informed receiver upper
bound, i.e., the optimal objective function of IB problem (4), is

Rub = T
∫ ∞

ν
ρ

[log(1 + ρλ)− log(1 + ν)] fλ(λ)dλ, (5)

where T = min{K, M}, λ is identically distributed as the unordered positive eigenvalues of HHH ;
its probability density function (pdf), i.e., fλ(λ), is given in (A17); and ν is chosen such that the
following bottleneck constraint is met:∫ ∞

ν
ρ

(
log

ρλ

ν

)
fλ(λ)dλ =

C
T

. (6)

Proof. See Appendix A.
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Lemma 1. When M → +∞ or ρ → +∞, upper bound Rub tends asymptotically to C. When
C → +∞, Rub approaches the capacity of Channel 1, i.e.,

Rub → I(x; y, H)

= T
∫ ∞

0
log(1 + ρλ) fλ(λ)dλ. (7)

Proof. See Appendix B.

4. Achievable Schemes

In this section, we provide four achievable schemes, where each scheme satisfies the
bottleneck constraint and gives a lower bound to the bottleneck rate. In the first and second
schemes, the relay transmits both its observation and partial CSI to the destination node.
In the third and fourth schemes, to avoid transmitting CSI, the relay first estimates x and
then sends a representation of the estimate to the destination node.

4.1. Non-Decoding Transmission (NDT) Scheme

Our first achievable scheme assumes that, without decoding x, the relay simply source-
encodes both y and H and then sends the encoded representations to the destination node.
It should be noticed that this scheme is actually reminiscent of the current state-of-the-art
in remote antenna head technology, where both the pilot field (corresponding to H) and
the data field (corresponding to y) are quantized and sent to the central processing unit.

Let h denote the vectorization of matrix H, and z1 and z2 denote the representations
of h and y, respectively. From the definition of H in (2), it is known that h ∼ CN (0, IKM).
Since the elements in h are i.i.d., in the best case, where I(h; z1) is minimized for a given
total distortion, representation z1 introduces the same distortion to each element of h.
Denote the distortion of each element quantization by D. It can then be readily verified
by using ([27], Theorem 10.3.3) that the rate distortion function of source h with total
squared-error distortion KMD is given by

R(D) = min
f (z1|h): E[d(h,z1)]≤KMD

I(h; z1)

= KM log
1
D

, (8)

where 0 < D ≤ 1 and d(h, z1) = (h− z1)
H(h− z1) is the squared-error distortion mea-

sure. Let e1 denote the error vector of quantizing h, i.e., e1 = h− z1. z1 and e1 are the
vectorizations of Z1 and E1. Hence, H = Z1 + E1. Note that z1 ∼ CN (0, (1− D)IKM),
e1 ∼ CN (0, DIKM), and z1 is independent of e1. Hence,

E
[

Z1ZH
1

]
= K(1− D)IK,

E
[

E1EH
1

]
= KDIK. (9)

In ([27], Theorem 10.3.3), the achievability of an information rate for a given distortion,
e.g., (8), is proven by considering a backward Gaussian test channel. However, the back-
ward Gaussian test channel does not provide an expression of z1 or e1. Though the specific
formulations of z1 and e1 are not necessary for the analysis in this section, since we are
providing an achievable scheme, we still give a feasible z1 that satisfies (8) here to make the
content more complete. By adding an independent Gaussian noise vector r ∼ CN (0, εIKM)
with ε = D

1−D , to h, we get
h̃ = h + r. (10)
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Obviously, h̃ ∼ CN
(

0, 1
1−D IKM

)
. A representation of h can then be obtained as follows:

z1 =
1

1 + ε
h̃

=
1

1 + ε
h +

1
1 + ε

r

= (1− D)h + (1− D)r, (11)

which is actually the MMSE estimate of h obtained from (10). The error vector is then
given by

e1 = h− z1

= Dh− (1− D)r. (12)

It can be readily verified that z1 provided in (11) satisfies (8), z1 ∼ CN (0, (1− D)IKM),
e1 ∼ CN (0, DIKM), and z1 is independent of e1.

To meet the bottleneck constraint, we have to ensure that

I(h, y; z1, z2) ≤ C. (13)

Using the chain rule of mutual information,

I(h, y; z1, z2) =I(h, y; z1) + I(h, y; z2|z1)

=I(h; z1) + I(y; z1|h) + I(y; z2|z1) + I(h; z2|z1, y). (14)

Since z1 is a representation of h, y and z1 are conditionally independent given h. Similarly,
since z2 is a representation of y, h and z2 are conditionally independent given y. Hence,

I(y; z1|h) = 0,

I(h; z2|z1, y) = 0. (15)

From (8), (14), and (15), it is known that, to guarantee constraint (13), I(y; z2|z1), which is
the information rate at which the relay quantizes y (given z1), should satisfy

I(y; z2|z1) ≤ C− R(D). (16)

Obviously, C− R(D) > 0 has to be guaranteed, which yields D > 2−
C

KM . Hence, in this
section, we always assume 2−

C
KM < D ≤ 1.

We then evaluate I(y; z2|z1). Since H = Z1 + E1, y in (2) can be rewritten as

y = Hx + n

= Z1x + E1x + n. (17)

For a given Z1, the second moment of y is E
[
yyH |Z1

]
= Z1ZH

1 + (KD + σ2)IM. Denote
the eigendecomposition of Z1ZH

1 by ŨΩŨH and

ỹ = ŨHy

= ŨHZ1x + ŨHE1x + ŨHn. (18)

The second moment of ỹ is E
[
ỹỹH |Z1

]
= Ω + (KD + σ2)IM. Since E1 is unknown, ỹ is not

a Gaussian vector. To evaluate I(y; z2|z1), we define a new Gaussian vector

yg = ŨHZ1x + ng, (19)
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where ng ∼ CN (0, (KD + σ2)IM). For a given Z1, yg ∼ CN (0, Ω + (KD + σ2)IM). The
channel in (19) can thus be seen as a set of parallel sub-channels. Let zg denote a represen-
tation of yg, and consider the following IB problem:

max
p(zg |yg)

I(x; zg|Z1) (20a)

s.t. I(yg; zg|Z1) ≤ C− R(D), (20b)

2−
C

KM < D ≤ 1. (20c)

Obviously, for a given feasible D, problem (20) can be similarly solved as (4) by following
the steps in Appendix A. We thus have the following theorem.

Theorem 2. For a given feasible D, the optimal objective function of IB problem (20) is

Rlb1 = T
∫ ∞

ν
γ

[log(1 + γλ)− log(1 + ν)] fλ(λ)dλ, (21)

where γ = 1−D
KD+σ2 ; the pdf of λ, i.e., fλ(λ), is given by (A17); and ν is chosen such that the

following bottleneck constraint is met:∫ ∞

ν
γ

(
log

γλ

ν

)
fλ(λ)dλ =

C− R(D)

T
. (22)

Proof. See Appendix C.

Since for a given Z1, (19) can be seen as a set of parallel scalar Gaussian sub-channels,
according to ([21], (16)), the representation of yg, i.e., zg, can be constructed by adding
independent fading and Gaussian noise to each element of yg. Denote

zg = Ψyg + n′g

= ΨŨHZ1x + Ψng + n′g, (23)

where Ψ is a diagonal matrix with nonnegative and real diagonal entries, and n′g ∼
CN (0, IM). Note that yg in (19) and its representation zg in (23) are only auxiliary variables.
What we are really interested in is the representation of y and the corresponding bottleneck
rate. Hence, we also add fading Ψ and Gaussian noise n′g to ỹ in (18) and obtain the
following representation:

z2 = Ψỹ + n′g

= ΨŨHZ1x + ΨŨHE1x + ΨŨHn + n′g. (24)

In the following lemma, we show that, by transmitting representations z1 and z2 to the
destination node, Rlb1 is an achievable lower bound to the bottleneck rate and the bottleneck
constraint is satisfied.

Lemma 2. If the representation of h, i.e., z1 resulting from (8), is forwarded to the destination node
for each channel realization, with observations y and yg in (17) and (18) and representations z2
and zg in (24) and (23), we have

I(y; z2|Z1) ≤ I(yg; zg|Z1), (25)

I(x; z2|Z1) ≥ I(x; zg|Z1), (26)

where (25) indicates that I(y; z2|Z1) ≤ C− R(D) and (26) gives I(x; z2|Z1) ≥ Rlb1.

Proof. See Appendix D.
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Lemma 2 shows that, by representing h and ỹ using z1 and z2 in (11) and (24),
respectively, lower bound Rlb1 is achievable and the bottleneck constraint is satisfied.

Lemma 3. When M→ +∞,

Rlb1 → T
[

log(1 + γM)− log
(

1 + γM2−
C−R(D)

T

)]
. (27)

When ρ → +∞, Rlb1 tends to a constant, which can be obtained by letting γ = 1−D
KD and

using (21). In addition, when C → +∞, there exists a small D such that Rlb1 approaches the
capacity of Channel 1, i.e.,

Rlb1 → I(x; y, H)

= T
∫ ∞

0
log(1 + ρλ) fλ(λ)dλ. (28)

Proof. See Appendix E.

Remark 1. Denote the limit in (27) by Rlb1
0 = T

[
log(1 + γM)− log

(
1 + γM2−

C−R(D)
T

)]
for

convenience. It can be readily verified that 0 ≤ Rlb1
0 ≤ C. From (8), it is known that R(D) is also a

function of M. Moreover, as stated after (16), we always assume 2−
C

KM < D ≤ 1 in this section
such that C − R(D) > 0. Hence, when M → +∞, D approaches 1 and γ tends to 0. All this
makes it difficult to obtain further concise expression of Rlb1

0 . We investigate the effect of M on Rlb1

in Section 5 by simulation.

4.2. Quantized Channel Inversion (QCI) Scheme When K ≤ M

In our second scheme, the relay first obtains an estimate of the channel input using
channel inversion and then transmits the quantized noise levels as well as the compressed
noisy signal to the destination node.

In particular, we apply the pseudo inverse matrix of H, i.e., (HH H)−1HH , to y and
obtain the zero-forcing estimate of x as follows:

x̃ = (HH H)−1HHy

= x + (HH H)−1HHn

, x + ñ. (29)

For a given channel matrix H, ñ ∼ CN (0, A), where A = σ2(HH H)−1. Let A = A1 + A2,
where A1 and A2, respectively, consist of the diagonal and off-diagonal elements of A, i.e.,
A1 = A� IK and A2 = A− A1. If H could be perfectly transmitted to the destination
node, the bottleneck rate could be obtained by following similar steps in Appendix A.
However, since H follows a non-degenerate continuous distribution and the bottleneck
constraint is finite, as shown in the previous subsection, this is not possible. To reduce the
number of bits per channel use required for informing the destination node of the channel
information, we only convey a compressed version of A1 and consider a set of independent
scalar Gaussian sub-channels.

Specifically, we force each diagonal entry of A1 to belong to a finite set of quantized
levels by adding artificial noise, i.e., by introducing physical degradation. We fix a finite
grid of J positive quantization points B = {b1, · · · , bJ}, where b1 ≤ b2 ≤ · · · ≤ bJ−1 < bJ ,
bJ = +∞, and define the following ceiling operation:⌈

a
⌉
B = arg min

b∈B
{a ≤ b}. (30)

Then, by adding a Gaussian noise vector ñ′ ∼ CN (0, diag
{⌈

a1
⌉
B − a1, · · · ,

⌈
aK
⌉
B − aK

})
,

which is independent of everything else, to (29), a degraded version of x̃ can be obtained
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as follows:

x̂ = x̃ + ñ′

= x + ñ + ñ′

, x + n̂, (31)

where n̂ ∼ CN
(
0, A′1 + A2

)
for a given H and A′1 , diag

{⌈
a1
⌉
B , · · · ,

⌈
aK
⌉
B
}

. Obviously,
due to A2, the elements in noise vector n̂ are correlated.

To evaluate the bottleneck rate, we consider a new variable

x̂g = x + n̂g, (32)

where n̂g ∼ CN
(
0, A′1

)
. Obviously, (32) can be seen as K parallel scalar Gaussian sub-

channels with noise power
⌈

ak
⌉
B for each sub-channel. Since each quantized noise level⌈

ak
⌉
B only has J possible values, it is possible for the relay to inform the destination node

of the channel information via the constrained link. Note that, from the definition of A
in (29), it is known that ak, ∀ k ∈ K , {1, · · · , K} are correlated. The quantized noise levels⌈

ak
⌉
B , ∀ k ∈ K are thus also correlated. Hence, we can jointly source-encode

⌈
ak
⌉
B , ∀ k ∈ K

to further reduce the number of bits used for CSI transmission. For convenience, we define
a space Ξ = {(j1, · · · , jK)| ∀ jk ∈ J , k ∈ K}, where J = {1, · · · , J}. It is obvious that there
are a total of JK points in this space. Let ξ = (j1, · · · , jK) denote a point in space Ξ and
define the following probability mass function (pmf):

Pξ = Pr
{⌈

a1
⌉
B = bj1 , · · · ,

⌈
aK
⌉
B = bjK

}
. (33)

The joint entropy of
⌈

ak
⌉
B , ∀ k ∈ K, i.e., the number of bits used for jointly source-encoding⌈

ak
⌉
B , ∀ k ∈ K, is thus given by

Hjoint = ∑
ξ∈Ξ

−Pξ log Pξ . (34)

Then, the IB problem for (32) takes on the following form:

max
p(ẑg |x̂g)

I(x; ẑg|A′1) (35a)

s.t. I(x̂g; ẑg|A′1) ≤ C− Hjoint, (35b)

where ẑg is a representation of x̂g.
Note that, as stated above, there are a total of JK points in space Ξ. The pmf Pξ thus has

JK possible values, and it becomes difficult to obtain the joint entropy Hjoint from (34) (even
numerically) when J or K is large. To reduce the computational complexity, we consider
the (slightly) suboptimal but far more practical entropy coding of each noise level

⌈
ak
⌉
B

separately and obtain the following sum of individual entropies:

Hsum =
K

∑
k=1

Hk, (36)

where Hk denotes the entropy of
⌈

ak
⌉
B or the number of bits used for informing the desti-

nation node of noise level
⌈

ak
⌉
B . In Appendix F, we show that ak, ∀k ∈ K are marginally

identically inverse chi squared distributed with M− K + 1 degrees of freedom and that
their pdf is given in (A44). Hence,
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Hsum = KH0

= −K
J

∑
j=1

Pj log Pj, (37)

where Pj = Pr
{⌈

a
⌉
B = bj

}
can be obtained from (A45) and a follows the same distribution

as ak. Since Pj only has J possible values, the computational complexity of calculating Hsum
is proportional to J. Using the chain rule of entropy and the fact that conditioning reduces
entropy, we know that Hjoint ≤ Hsum. In Section 5, the gap between Hjoint and Hsum is
investigated by simulation. Replacing Hjoint in (35b) with Hsum, we get the following:
IB problem

max
p(ẑg |x̂g)

I(x; ẑg|A′1) (38a)

s.t. I(x̂g; ẑg|A′1) ≤ C− KH0. (38b)

The optimal solution of this problem is given in the following theorem.

Theorem 3. If A′1 is conveyed to the destination node for each channel realization, the optimal
objective function of IB problem (38) is

Rlb2 =
J−1

∑
j=1

KPj
[
log
(
1 + ρj

)
− log(1 + ρj2

−cj)
]
. (39)

where ρj =
1
bj

, cj =
[
log

ρj
ν

]+
, and ν is chosen such that the following bottleneck constraint is met:

J−1

∑
j=1

KPjcj = C− KH0. (40)

Proof. See Appendix F.

Since (32) can be seen as K parallel scalar Gaussian sub-channels, according to
([21], (16)), the representation of x̂g, i.e., ẑg, can be constructed by adding independent
fading and Gaussian noise to each element of x̂g. Denote

ẑg = Φx̂g + n̂′g
= Φx + Φn̂g + n̂′g, (41)

where Φ is a diagonal matrix with positive and real diagonal entries, and n̂′g ∼ CN (0, IK).
Note that, similar to yg and zg in the previous subsection, x̂g in (32) and its representation
ẑg in (41) are also auxiliary variables. What we are really interested in is the representation
of x̂ and the corresponding bottleneck rate. Hence, we also add fading Φ and Gaussian
noise n̂′g to x̂ in (31) and obtain its representation as follows:

z = Φx̂ + n̂′g
= Φx + Φn̂ + n̂′g. (42)

In the following lemma, we show that, by transmitting quantized noise levels
⌈

ak
⌉
B , ∀k ∈

K and representation z to the destination node, Rlb2 is an achievable lower bound to the
bottleneck rate and the bottleneck constraint is satisfied.

Lemma 4. If A′1 is forwarded to the destination node for each channel realization, with signal
vectors x̂ and x̂g in (31) and (32), and their representations z and ẑg in (42) and (41), we have
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I(x̂; z|A′1) ≤ I(x̂g; ẑg|A′1), (43)

I(x; z|A′1) ≥ I(x; ẑg|A′1), (44)

where (43) indicates that I(x̂; z|A′1) ≤ C− KH0 and (44) gives I(x; z|A′1) ≥ Rlb1.

Proof. See Appendix G.

Lemma 5. When M → +∞ or ρ→ +∞, we can always find a sequence of quantization points
B = {b1, · · · , bJ} such that Rlb2 → C. When C → +∞,

Rlb2 → KE
[

log
(

1 +
1
a

)]
≤ I(x; y, H), (45)

where the expectation can be calculated by using the pdf of a in (A44) and I(x; y, H) is the capacity
of Channel 1.

Proof. See Appendix H.

For the sake of simplicity, we may choose the quantization levels as quantiles such
that we obtain the uniform pmf Pj =

1
J . The lower bound (39) can thus be simplified as

Rlb2 =
J−1

∑
j=1

K
J
[
log
(
1 + ρj

)
− log(1 + ρj2

−cj)
]
, (46)

and the bottleneck constraint (40) becomes

J−1

∑
j=1

[
log

ρj

ν

]+
=

JC
K
− JB, (47)

where B = log J can be seen as the number of bits required for quantizing each diagonal
entry of A1. Since ρ1 ≥ · · · ≥ ρJ−1, from the strict convexity of the problem, we know that
there must exist a unique integer 1 ≤ l ≤ J − 1 such that [28]

l

∑
j=1

log
ρj

ν
=

JC
K
− JB,

ρj ≤ ν, ∀ l + 1 ≤ j ≤ J − 1. (48)

Hence, ν can be obtained from

log ν =
l

∑
j=1

log ρj

l
− JC

lK
+

JB
l

, (49)

and Rlb1 can be calculated as follows:

Rlb2 =
l

∑
j=1

K
J
[
log
(
1 + ρj

)
− log(1 + ν)

]
. (50)

Then, we only need to test the above condition for l = 1, 2, 3, · · · until (48) is satisfied. Note
that, to ensure Rlb2 > 0, JC

K − JB in (47) has to be positive, i.e., B < C
K . Moreover, though

choosing the quantization levels as quantiles makes it easier to calculate Rlb2, the results in
Lemma 5 may not hold in this case since the choice of quantization points B = {b1, · · · , bJ}
is restricted.
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4.3. Truncated Channel Inversion (TCI) Scheme When K ≤ M

Both the NDT and QCI schemes proposed in the preceding two subsections require
that the relay transmits partial CSI to the destination node. Specifically, in the NDT scheme,
channel matrix H is compressed and conveyed to the destination node. Hence, the channel
use required for transmitting compressed H is proportional to K and M. In contrast,
the number of bits required for transmitting quantized noise levels in the QCI scheme is
proportional to K and B. Due to the bottleneck constraint, the performances of the NDT and
QCI schemes are thus sensitive to the MIMO channel dimension, especially K. To ensure
that it still performs well when the channel dimension is large, in this subsection, the relay
first estimates x using channel inversion and then transmits a truncated representation of
the estimate to the destination node.

In particular, as in the previous subsection, we first obtain the zero-forcing estimate of
x using channel inversion, i.e.,

x̃ = (HH H)−1HHy

= x + (HH H)−1HHn. (51)

As given in Appendix A, the unordered eigenvalues of HH H are λk, ∀ k ∈ K. Let
λmin = min{λk, ∀ k ∈ K}. Note that, though the interfering terms can be nulled out by
a zero-forcing equalizer, the noise may be greatly amplified when the channel is noisy.
Therefore, we put a threshold λth on λmin such that zero capacity is allocated for states
with λmin < λth.

Specifically, when λmin < λth, the relay does not transmit the observation, while when
λmin ≥ λth, the relay takes x̃ as the new observation and transmits a compressed version
of x̃ to the destination node. The information about whether to transmit the observation is
encoded into a 0− 1 sequence and is also sent to the destination node. Then, we need to
solve the source coding problem at the relay, i.e., encoding blocks of x̃ when λmin ≥ λth.
For convenience, we use ∆ to denote event “λmin ≥ λth”. Here, we choose p(z|x̃, ∆) to be a
conditional Gaussian distribution:

z =

{
x̃ + q, if ∆
∅, otherwise

, (52)

where q ∼ CN (0, DIK) is independent of the other variables. It can be easily found
from (52) that I(x; z|λmin < λth) = 0 and I(x̃; z|λmin < λth) = 0. Hence, we consider the
following modified IB problem:

max
D

Pth I(x; z|∆) (53a)

s.t. Pth I(x̃; z|∆) ≤ C− Hth, (53b)

where Pth = Pr{∆} and Hth is a binary entropy function with parameter Pth.
Since we assume K ≤ M in this subsection, as stated in Appendix A, HH H ∼

CWK(M, IK). Then, according to ([29], Proposition 2.6) and ([29], Proposition 4.7), Pth
is given by

Pth =
det ψ

∏K
k=1(M− k)! ∏K

k=1(K− k)!
, (54)

where

ψ =

 ψ0 · · · ψK−1
...

. . .
...

ψK−1 · · · ψ2K−2

 =
[(

ψi+j−2
)]

,

ψi+j−2 =
∫ ∞

λth

µM−K+i+j−2e−µdµ. (55)
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When K = M, using ([30], Theorem 3.2), a more concise expression of Pth can be obtained
as follows:

Pth =
∫ ∞

2λth

K
2

e−µK/2dµ

= e−λthK. (56)

Note that, in (56), the lower bound of the integral is 2λth rather than λth. This is because,
in this paper, the elements of H are assumed to be i.i.d. zero-mean unit-variance complex
Gaussian random variables, while in [30], the real and imaginary parts of the elements in
H are independent standard normal variables.

Given condition ∆, let x̃g denote a zero-mean circularly symmetric complex Gaussian
random vector with the same second moment as x̃, i.e., x̃g ∼ CN

(
0,E

[
x̃x̃H |∆

])
, and

z̃g = x̃g + q. Pth I(x̃g; z̃g|∆) is then achievable if Pth I(x̃g; z̃g|∆) ≤ C− Hth. Hence, let

Pth I(x̃g; z̃g|∆) = Pth log det
(

IK +
1
D
E
[

x̃x̃H |∆
])

= C− Hth. (57)

To calculate D from (57), we denote the eigendecomposition of HH H by VΛ̃V H , where
V is a unitary matrix in which the columns are the eigenvectors of HH H, Λ̃ is a diagonal
matrix in which the diagonal elements are unordered eigenvalues λk, ∀ k ∈ K, and V and
Λ̃ are independent. Then, from (51),

E
[

x̃x̃H |∆
]
= IK + σ2E

[
(HH H)−1|∆

]
,

= IK + σ2E
[
VΛ̃−1V H |∆

]
,

= IK + σ2E
[

1
λ
|∆
]

IK. (58)

Based on [31], the joint pdf of the unordered eigenvalues λk, ∀ k ∈ K under condition ∆ is
given by

f (λ1, · · · , λK|∆) =
1

PthK!

K

∏
i=1

e−λi λM−K
i

(K− i)!(M− i)!

K

∏
i<j

(λi − λj)
2. (59)

The marginal pdf of one of the eigenvalues can thus be obtained by integrating out all the
other eigenvalues. Taking λ1 for example, we have

fλ1(λ1|∆) =
∫ ∞

λth

· · ·
∫ ∞

λth

f (λ1, · · · , λK|∆)dλ2 · · · dλK. (60)

Then,

E
[

1
λ
|∆
]
= E

[
1

λ1
|∆
]

=
∫ ∞

λth

1
λ1

fλ1(λ1|∆)dλ1. (61)

Combining (57), (58), and (61), D can be calculated as follows:

D =
1 + σ2E

[
1
λ |∆

]
2

C−Hth
PthK − 1

. (62)

Remark 2. Note that we show in Appendix I that, when K = M and λth = 0, the integral in (61)
diverges. E

[
1
λ |∆

]
thus does not exist in this case. Therefore, without special instructions, the
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results derived in this subsection are for the cases with K = M and λth > 0 or with K < M and
λth ≥ 0.

With (57), rate Pth I(x̃g; z̃g|∆) is achievable. Due to the fact that Gaussian input maxi-
mizes the mutual information of a Gaussian additive noise channel, we have I(x̃; z|∆) ≤
I(x̃g; z̃g|∆). Pth I(x̃; z|∆) is thus also achievable.

The next step is to evaluate the resulting achievable bottleneck rate, i.e., I(x; z). To this
end, we first obtain the following lower bound to I(x; z|∆) from the fact that conditioning
reduces differential entropy,

I(x; z|∆) =h(z|∆)− h(z|x, ∆)

≥h(z|H, ∆)− h(z|x, ∆). (63)

Then, we evaluate the differential entropies h(z|H, ∆) and h(z|x, ∆). From (51) and (52), it
is known that z is conditionally Gaussian given H and ∆. Hence,

h(z|H, ∆) =E
[
log(πe)K det

(
IK + σ2(HH H)−1 + DIK

)
|∆
]

=E
[
log(πe)K det

(
IK + σ2Λ̃−1 + DIK

)
|∆
]

=KE
[

log(πe)
(

1 + D +
σ2

λ

)
|∆
]

. (64)

On the other hand, using the fact that Gaussian distribution maximizes the entropy over
all distributions with the same variance ([27], Theorem 8.6.5), we have

h(z|x, ∆) =h(z− x|∆)
=h((HH H)−1HHn + q|∆)

≤ log(πe)K det
(

σ2E
[
(HH H)−1|∆

]
+ DIK

)
=K log(πe)

(
D + σ2E

[
1
λ
|∆
])

. (65)

Substituting (64) and (65) into (63), we can obtain a lower bound to I(x; z), as shown in the
following theorem.

Theorem 4. When K ≤ M, with truncated channel inversion, a lower bound to I(x; z) can be
obtained as follows:

Rlb3 = PthKE
[

log
(

1 + D +
σ2

λ

)
|∆
]
− PthK log

(
D + σ2E

[
1
λ
|∆
])

, (66)

where Pth and D are, respectively, given in (54) and (62), and the expectations can be calculated by
using pdf (60).

Lemma 6. Using Jensen’s inequality on convex function log(1+ 1/x) and concave function log x,
we can get a lower bound to Rlb3, i.e.,

Řlb3 = PthK log
(

1 + D +
σ2

E[λ|∆]

)
− PthK log

(
D + σ2E

[
1
λ
|∆
])

, (67)

and an upper bound to Rlb3, i.e.,

R̂lb3 = PthK log
(

1 + D + σ2E
[

1
λ
|∆
])
− PthK log

(
D + σ2E

[
1
λ
|∆
])

. (68)
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Remark 3. Obviously, Řlb3 is also a lower bound to I(x; z). For R̂lb3, it is not an upper bound
to I(x; z) since it is derived after lower bound Rlb3. However, we can assess how good the lower
bounds Rlb3 and Řlb3 are by comparing them with R̂lb3.

Lemma 7. When M→ +∞, Rlb3, Řlb3, and R̂lb3 all tend asymptotically to C. When ρ→ +∞,
Rlb3, Řlb3, and R̂lb3 all tend asymptotically to C− Hth. In addition, when C → +∞, Rlb3, Řlb3,
and R̂lb3 all approach constants, which can be respectively obtained by setting D = 0 in (66)–(68).

Proof. See Appendix J.

When K < M and λth = 0, it is obvious that Pth = 1, Hth = 0, and E[λ] = M. Since
HH H ∼ CWK(M, IK), (HH H)−1 follows a complex inverse Wishart distribution. Hence,
E
[

1
λ

]
= 1

M−K . Then, from Theorem 4 and Lemma 6, we have the following lemma.

Lemma 8. When K < M and λth = 0,

Rlb3 = KE
[

log
(

1 + D +
σ2

λ

)]
− K log

(
D +

σ2

M− K

)
, (69)

Řlb3 = K log
(

1 + D +
σ2

M

)
− K log

(
D +

σ2

M− K

)
, (70)

and

R̂lb3 = K log
(

1 + D +
σ2

M− K

)
− K log

(
D +

σ2

M− K

)
, (71)

where

D =
1 + σ2

M−K

2
C
K − 1

. (72)

Remark 4. When K < M, λth = 0, and σ2

M−K is small (e.g., when ρ is large, i.e., σ2 is small,
or when M − K is large), R̂lb3 − Řlb3 ≈ 0. In this case, Řlb3 is close to R̂lb3 and is thus also
close to Rlb3. Then, we can use Řlb3 instead of Rlb3 to lower bound I(x; z) since it has a more
concise expression.

4.4. MMSE Estimate at the Relay

In this subsection, we assume that the relay first produces the MMSE estimate of x
given (y, H) and then source-encodes this estimate.

Denote
F =

(
HHH + σ2 IM

)−1
H. (73)

The MMSE estimate of x is thus given by

x̄ = FHy

= FH Hx + FHn. (74)

Then, we consider the following modified IB problem:

max
p(z|x̄)

I(x; z) (75a)

s.t. I(x̄; z) ≤ C. (75b)

Note that, since matrix HHH + σ2 IK in (73) is always invertible, the results obtained in this
subsection always hold no matter K ≤ M or K > M.
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Analogous to the previous subsection, we define

z = x̄ + q,

x̄g ∼ CN
(

0,E
[

x̄x̄H
])

,

z̄g = x̄g + q, (76)

where q has the same definition as in (52), and

E
[

x̄x̄H
]
= E

[
FH HHH F + σ2FH F

]
. (77)

Let

I(x̄g; z̄g) = log det

(
IK +

E
[
x̄x̄H]
D

)
= C. (78)

Then, rate I(x̄g; z̄g) is achievable and D can be calculated from (78). Since I(x̄; z) ≤ I(x̄g; z̄g),
I(x̄; z) is thus also achievable.

In the following, we obtain a lower bound to I(x; z) by evaluating h(z|H) and h(z|x)
separately and then by using

I(x; z) =h(z)− h(z|x)
≥h(z|H)− h(z|x). (79)

First, since z is conditionally Gaussian given H, we have

h(z|H) = E
[
log(πe)K det

(
FH HHH F + σ2FH F + DIK

)]
. (80)

Next, based on the fact that conditioning reduces differential entropy and Gaussian distri-
bution maximizes the entropy over all distributions with the same variance [32], we have

h(z|x) = h(z−E(z|x)|x)

= h
((

FH H −E
[

FH H
])

x + FHn + q|x
)

≤ h
((

FH H −E
[

FH H
])

x + FHn + q
)

≤ log(πe)K det(G), (81)

where

G = E
[(

FH H −E
[

FH H
])(

HH F −E
[

HH F
])

+ σ2FH F
]
+ DIK

= E
[

FH HHH F
]
−E

[
FH H

]
E
[

HH F
]
+ σ2E

[
FH F

]
+ DIK. (82)

Combining (79)–(81), we can get a lower bound to I(x; z) as shown in the following theorem.

Theorem 5. With the MMSE estimate at the relay, a lower bound to I(x; z) can be obtained
as follows:

Rlb4 = TE
[

log
(

λ

λ + σ2 + D
)]

+ (K− T) log D

− K log

{
T
K
E
[

λ

λ + σ2

]
− T2

K2

(
E
[

λ

λ + σ2

])2
+ D

}
, (83)
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where

D =

T
KE
[

λ
λ+σ2

]
2

C
K − 1

, (84)

and the expectations can be calculated by using the pdf of λ in (A17).

Proof. See Appendix K.

Lemma 9. When M→ +∞ or when K ≤ M and ρ→ +∞, lower bound Rlb4 tends asymptoti-
cally to C. When K ≤ M and C → +∞,

Rlb4 → KE
[

log
(

λ

λ + σ2

)]
− K log

{
E
[

λ

λ + σ2

]
−
(
E
[

λ

λ + σ2

])2
}

. (85)

Proof. See Appendix L.

5. Numerical Results

In this section, we evaluate the lower bounds obtained by different achievable schemes
proposed in Section 4 and compare them with the upper bound derived in Section 3. Before
showing the numerical results, we first give the following lemma, which compares the bot-
tleneck rate of the NDT scheme with those of the other three schemes in the C → +∞ case.

Lemma 10. When C → +∞, the NDT scheme outperforms the other three schemes, i.e.,

Rlb1 ≥ max
{

Rlb2, Rlb3, Rlb4
}

. (86)

Proof. See Appendix M.

Remark 5. Besides the proof in Appendix M, we can also explain Lemma 10 from a more intuitive
perspective. When C → +∞, the destination node can obtain perfect y and H from the relay by
using the NDT scheme. The bottleneck rate is thus determined by the capacity of Channel 1. In the
QCI scheme, though the destination node can obtain perfect signal vector and noise power of each
channel, the correlation between the elements of the noise vector is neglected since the off-diagonal
entries of A are not considered. The bottleneck rate obtained by the QCI scheme is thus upper
bounded by the capacity of Channel 1. As for the TCI or MMSE schemes, the destination node
can obtain perfect x̃ or x̄ from the relay. However, the bottleneck rate in these two cases is not only
affected by the capacity of Channel 1 but is also limited by the performance of zero-forcing or MMSE
estimation since the estimation inevitably incurs a loss of information. Hence, the NDT scheme has
a better performance when C → +∞.

In the following, we give the numerical results. Note that, when performing the QCI
scheme, we choose the quantization levels as quantiles for the sake of convenience.

Figure 2 depicts Rlb1 versus distortion D under different configurations of SNR ρ. It
can be found from this figure that Rlb1 first increases and then decreases with D. It is thus
important to find a good D to maximize Rlb1. Since it is difficult to obtain the explicit
expression of (21), it is not easy to strictly analyze the relationship between Rlb1 and D.
However, we can intuitively explain Figure 2 as follows. When using the NDT scheme, the
relay quantizes both h and y. Due to the bottleneck constraint C, there exists a tradeoff.
When D is small, the estimation error of h is small. The destination node can get more
CSI, and Rlb1 thus increases with D. When D grows large, though more capacity in C is
allocated for quantizing y, the estimation error of h is large. Hence, Rlb1 decreases with
D. In the following simulation process, when implementing the NDT scheme, we vary D,
calculate Rlb1 using (21), and then let Rlb1 be the maximum value.



Information 2021, 12, 155 18 of 42

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

D

R
lb

1  (
bi

ts
/c

om
pl

ex
 d

im
en

si
on

)

 

 

ρ = 0 dB
ρ = 10 dB
ρ = 40 dB

Figure 2. Lower bound Rlb1 versus D with K = M = 4 and C = 40 bits/complex dimension.

In Figures 3 and 4, we performed Monte Carlo simulations to obtain joint entropy
Hjoint in (34) and the sum of individual entropies Hsum in (37). Note that, as stated in
Section 4.2, the complexities of calculating Hjoint and Hsum are, respectively, proportional to
JK and J. Hence, when J or K is large, it becomes quite difficult to obtain Hjoint. For example,
when B = 4 and K = 4, we have J = 16 and JK = 65,536, i.e., there are 65,536 points in
space Ξ. To obtain a reliable pmf Pξ for each point, the number of channel realizations has
to be much greater than 65,536.

Figure 3 shows that the gap between Hjoint and Hsum is small. In addition, as
M increases, Hjoint approaches Hsum quickly, indicating that the dependence between⌈
ak
⌉
B , ∀ k ∈ K becomes weak. This can be explained by considering an extreme case

where M→ +∞. Based on the definition of H and the strong law of large numbers, we al-
most surely have HH H−MIK → 0 when M→ +∞. Hence, A− σ2

M IK → 0.
⌈

ak
⌉
B , ∀ k ∈ K

are thus almost independent.
When M = K and K increases, Figure 4 shows that there exists an obvious increase

in the gap between Hjoint and Hsum. Hence, when M = K and K increases, the correlation
between

⌈
ak
⌉
B , ∀ k ∈ K is enhanced. We will thus obtain a gain to Rlb2 if we use Hjoint

instead of Hsum. However, we would like to point out the following: First, it can be found
from Figure 4 that, when M > K, this trend becomes less evident. Second, as shown in the
following results, when K ≥ 4, since the QCI scheme uses a lot of capacity in C to quantize⌈

ak
⌉
B , ∀ k ∈ K, its performance is not as good as the TCI scheme or MMSE scheme. Third,

when K or B is large, it becomes difficult to obtain Hjoint. Therefore, when implementing the
QCI scheme in the following, we obtain Rlb2 by using Hsum, i.e., quantizing

⌈
ak
⌉
B , ∀ k ∈ K

separately.
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Figure 3. Hjoint and Hsum versus M with K = 2.
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Figure 4. Hjoint and Hsum versus K with B = 2 bits and different values of M.

In Figures 5 and 6, we investigate the effect of threshold λth on Rlb3 for the cases with
K = M and K < M, respectively. From these two figures, several observations can be made.
First, when K = M, and ρ or K is small, Rlb3 increases greatly and then decreases with λth,
indicating that the choice of λth has a significant impact on Rlb3. It is thus important to look
for a good λth to maximize Rlb3 in these cases. Second, when K = M, and K as well as ρ
are large or when K < M, Rlb3 first remains unchanged and then monotonically decreases
with Rlb3. In these cases, a small λth is good enough to guarantee a large Rlb3 and a search
for λth can thus be avoided. For example, when K < M, we can set λth = 0, based on
which a simpler expression of Rlb3 is given in (69). For the case with K = M, since E

[
1
λ

]
does not exist when λth = 0, we can set λth to be a fixed small number.
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Figure 5. Lower bound Rlb3 versus λth for the K = M case with C = 40 bits/complex dimension.
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Figure 6. Lower bound Rlb3 versus λth for the K < M case with K = 4 and C = 40 bits/complex
dimension.

In Figures 7 and 8, we compare Rlb3 with its upper bound R̂lb3 and lower bound
Řlb3. As expected, Rlb3, R̂lb3, and Řlb3 all increase with M and ρ. When M or ρ is small,
there is a small gap between Rlb3 and R̂lb3, and a small gap between Rlb3 and Řlb3. As M
and ρ increase, these gaps narrow rapidly and the curves almost coincide, which verifies
Remark 2. As a result, when M− K or ρ is large, we can set λth = 0 and use Řlb3 in (70) to
lower bound I(x; z) since it has a more concise expression.
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Figure 7. Rlb3, Řlb3, and R̂lb3 versus M with K = 4 and C = 40 bits/complex dimension.
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Figure 8. Rlb3, Řlb3, and R̂lb3 versus ρ with K = 4 and C = 40 bits/complex dimension.

In Figures 9 and 10, the upper bound Rub and lower bounds obtained by different
schemes are depicted versus SNR ρ. Several observations can be made from these two
figures. First, as expected, all bounds increase with ρ. Second, when K, M, and ρ are
small, the NDT scheme outperforms the other achievable schemes. However, as these
parameters increase, the performance of the NDT scheme deteriorates rapidly. This is
because, when K, M, and ρ are small, the performance of the considered system is mainly
limited by the capacity of Channel 1, and the NDT scheme works well since the destination
node can extract more information from the compressed observation of the relay and
CSI. However, when K and M increase, the NDT scheme requires too many channel uses
for CSI transmission. Third, the QCI scheme can obtain a good performance when K is
small. Of course, as stated at the beginning of Section 4.3, the number of bits required for
transmitting quantized noise levels in the QCI scheme is proportional to K and B. Hence,
the performance of the QCI scheme varies significantly when K and B change. Moreover,
it is also shown that the performance of the TCI scheme is worse than that of the MMSE
scheme in the low SNR regime while getting quite close to that of the MMSE scheme in the
high SNR regime. When ρ grows large, the lower bounds obtained by the TCI and MMSE
schemes both approach C and are larger than those obtained by the NDT and QCI schemes.
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Figure 9. Upper and lower bounds to the bottleneck rate versus ρ with K = M = 2 and
C = 40 bits/complex dimension.
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Figure 10. Upper and lower bounds to the bottleneck rate versus ρ with K = M = 4 and
C = 40 bits/complex dimension.

In Figures 11 and 12, the effect of the bottleneck constraint C is investigated. From
Figure 11, it can be found that, as C increases, all bounds grow and converge to different
constants, which can be calculated based on Lemmas 1, 3, 5, 7 and 9. Figure 11 also shows
that, thanks to CSI transmission, the NDT and QCI schemes outperform the TCI and
MMSE schemes when C is large. By comparing these two figures, it can be found that,
in Figure 11, no bound approaches C, even for the case with C = 20, while in Figure 12,
it is possible for Rub, Rlb3, and Rlb4 to approach C. For example, when K = M = 4 and
C ≤ 30, Rub, Rlb3, Rlb4 → C. This is because the bottleneck rate is limited by the capacity of
Channel 1 and C. In Figure 11, since K and M are small, the capacity of Channel 1 is smaller
than C. Hence, the bounds of course will not approach C. In Figure 12, more multi-antenna
gains can be obtained due to larger K and M. The capacity of Channel 1 is thus larger than
C in some cases (e.g., K = M = 4 and C ≤ 30). Hence, Rub, Rlb3, and Rlb4 may approach C
in these cases. Note that, as shown in Figure 11, since B < C

K is not satisfied, Rlb4 = 0 when
C ≤ 30.
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Figure 11. Upper and lower bounds to the bottleneck rate versus C with K = M = 2 and ρ = 40 dB.
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Figure 12. Upper and lower bounds to the bottleneck rate versus C with K = M = 4 and ρ = 40 dB.

In Figures 13 and 14, the effect of M is investigated for different configurations of
ρ. These two figures show that Rub, Rlb2, Rlb3, and Rlb4 all increase monotonically with
M and that, as M grows, Rlb3 as well as Rlb4 become very close to Rub. For Rlb1, except
the M = 3 case in Figure 13, Rlb1 monotonically decreases with M since the relay has to
transmit more channel information to the destination node.
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Figure 13. Upper and lower bounds to the bottleneck rate versus M with K = 2, ρ = 10 dB, and
C = 40 bits/complex dimension.
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Figure 14. Upper and lower bounds to the bottleneck rate versus M with K = 2, ρ = 40 dB, and
C = 40 bits/complex dimension.

In Figures 15 and 16, we set K = M and depict the upper and lower bounds versus
K or M. In Figure 15, we fix C to 50, while in Figure 16, we set C = 8K, which makes
sense since the bottleneck constraint should scale with the number of degrees of freedom of
the input signal x. Since we choose the quantization levels as quantiles when performing
the QCI scheme, as stated at the end of Section 4.2, B < C

K should be satisfied. Hence, in
Figures 15 and 16, we only consider B = 1, 2, 4 bits when performing the QCI scheme.
When K = M and they grow simultaneously, the capacity of Channel 1 increases due to
the muti-antenna gains. Hence, for a fixed C, Figure 15 shows that all bounds increase first.
When K or M grows large, Rlb3 and Rlb4 approach the bottleneck constraint C while Rlb2

decreases for all values of B. This is because the number of bits per channel use required
for informing the destination node of A′1 in the QCI scheme is proportional to K while CSI
transmission is unnecessary for the TCI and MMSE schemes. For the NDT scheme, since
the number of bits required for quantizing H is proportional to both K and M, there is only
an increase when K grows from 1 to 2. After that, Rlb1 decreases monotonically and has the
worst performance. In contrast, when C = 8K, the bottleneck rate of the system is mainly
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limited by C. Hence, Figure 16 shows that all bounds except Rlb1 increase almost linearly
with K and that Rub, Rlb3, and Rlb4 are quite close to C.
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Figure 15. Upper and lower bounds to the bottleneck rate versus K or M with K = M, ρ = 40 dB,
and C = 50 bits/complex dimension.
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Figure 16. Upper and lower bounds to the bottleneck rate versus K or M with K = M, ρ = 40 dB,
and C = 8K bits/complex dimension.

6. Conclusions

This work extends the IB problem of the scalar case in [26] to the case of MIMO
Rayleigh fading channels. Due to the information bottleneck constraint, the destination
node cannot obtain a perfect CSI from the relay. Hence, we provide an upper bound to
the bottleneck rate by assuming that the destination node can obtain a perfect CSI at no
cost. Moreover, we also provide four achievable schemes, where each scheme satisfies
the bottleneck constraint and gives a lower bound to the bottleneck rate. Our results
show that, with simple symbol-by-symbol relay processing and compression, we can
obtain a bottleneck rate close to the upper bound on a wide range of relevant system
parameters. Note that tightening the upper bound is a challenge for future studies. In
addition, although we have focused on a MIMO channel with one relay, we plan to
extend the problem to considering the case of multiple parallel relays, which is particularly
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relevant to the centralized processing of multiple remote antennas, as in the so-called
C-RAN architectures.
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Appendix A. Proof of Theorem 1

Before proving Theorem 1, we first consider the following scalar Gaussian channel:

y = sx + n, (A1)

where x ∼ CN (0, 1), n ∼ CN (0, σ2), and s ∈ C is the deterministic channel gain. With
bottleneck constraint C, the IB problem for (A1) has been studied in [21] and the optimal
bottleneck rate is given by

R0 = log
(

1 + ρ|s|2
)
− log

(
1 + ρ|s|22−C

)
. (A2)

In the following, we show that (4) can be decomposed into a set of parallel scalar IB
problems, and (A2) can then be applied to obtain upper bound Rub in Theorem 1.

According to the definition of conditional entropy, problem (4) can be rewritten as

max
p(z|y,H)

∫
I(x; z|H = H)pH(H)dH (A3a)

s.t.
∫

I(y; z|H = H)pH(H)dH ≤ C, (A3b)

where H is a realization of H. Let UΛUH denote the eigendecomposition of HHH , where U
is a unitary matrix in which the columns are the eigenvectors of HHH , and Λ is a diagonal
matrix in which the diagonal elements are the eigenvalues of HHH . Since the rank of
HHH is no greater than T = min{K, M}, there are at most T positive diagonal entries in Λ.
Denote them by λt, where t ∈ T and T = {1, · · · , T}. Let

ŷ = UHy

= UH Hx + UHn. (A4)

Then, for a given channel realization H = H, ŷ is conditionally Gaussian, i.e.,

ŷ|H = H ∼ CN (0, Λ + σ2 IM). (A5)

Since
I(x; y|H = H) = I(x; ŷ|H = H), (A6)

we work with ŷ instead of y in the following.
Based on (A3) and (A5), it is known that MIMO channel p(ŷ|x, H) can be first di-

vided into a set of parallel channels for different realizations of H and that each channel
p(ŷ|x, H = H) can be further divided into T independent scalar Gaussian channels with
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SNRs ρλt, ∀t ∈ T . Accordingly, problem (4) can be decomposed into a set of parallel IB
problems. For a scalar Gaussian channel with SNR ρλt, let cub

t denote the allocation of the
bottleneck constraint C and Rub

t denote the corresponding rate. According to (A2), we have

Rub
t = log(1 + ρλt)− log

(
1 + ρλt2−cub

t
)

. (A7)

Then, the solution of problem (4) can be obtained by solving the following problem:

max
{cub

t }

T

∑
t=1

E
[

Rub
t

]
(A8a)

s.t.
T

∑
t=1

E
[
cub

t

]
≤ C. (A8b)

Assume that λt, ∀t ∈ T are unordered positive eigenvalues of HHH . (Note that, when
deriving the upper and lower bounds in this paper, we consider the unordered positive
eigenvalues of HHH or HH H since it simplifies the analysis. If the ordered positive
eigenvalues of HHH or HH H are considered, it can be readily proven by following similar
steps in ([31], Section 4.2) to arrive at problems equivalent to those in this paper). Then,
they are identically distributed. For convenience, define a new variable λ that follows the
same distribution as λt. The subscript “t” in cub

t and Rub
t can thus be omitted. In order

to distinguish from Rub in (5), we use Rub
0 to denote the bottleneck rate corresponding to

cub, i.e.,
Rub

0 = log(1 + ρλ)− log
(

1 + ρλ2−cub
)

. (A9)

Then, we have

T

∑
t=1

E
[

Rub
t

]
= TE

[
Rub

0

]
,

T

∑
t=1

E
[
cub

t

]
= TE

[
cub
]
. (A10)

Problem (A8) is thus equivalent to

max
cub

E
[

Rub
0

]
(A11a)

s.t. E
[
cub
]
≤ C

T
. (A11b)

This problem can be solved by the water-filling method. Consider the Lagrangian

L = E
[
−Rub

0 + αcub
]
− αC

T
, (A12)

where α is the Lagrange multiplier. The Karush-Kuhn-Tucker (KKT) condition for the
optimality is

∂L
∂cub

{
= 0, if cub > 0
≤ 0, if cub = 0

. (A13)

Then,

cub =

{
log ρλ

ν , if λ > ν
ρ

0, if λ ≤ ν
ρ

, (A14)

where ν = α/(1− α) and it is chosen such that the following bottleneck constraint is met:

E
[

log
ρλ

ν
|λ >

ν

ρ

]
Pr
{

λ >
ν

ρ

}
=

C
T

. (A15)
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The informed receiver upper bound is thus given by

Rub = TE
[

log(1 + ρλ)− log(1 + ν) |λ >
ν

ρ

]
Pr
{

λ >
ν

ρ

}
. (A16)

From the definition of H in (2), it is known that, when K ≤ M (resp., when K > M),
HH H (resp., HHH) is a central complex Wishart matrix with M (resp., K) degrees of
freedom and covariance matrix IK (resp., IM), i.e., HH H ∼ CWK(M, IK) (resp., HHH ∼
CWM(K, IM)) [33]. Since λ can be seen as one of the unordered positive eigenvalues of
HH H or HHH , its pdf is thus given by [31] and ([33], Theorem 2.17):

fλ(λ) =
1
T

T−1

∑
i=0

i!
(i + S− T)!

[
LS−T

i (λ)
]2

λS−Te−λ, (A17)

where S = max{K, M} and the Laguerre polynomials are

LS−T
i =

eλ

i!λS−T
di

dλi

(
e−λλS−T+i

)
. (A18)

Substituting (A17) and (A18) into (A16) and (A15), (5) and (6) can be obtained. Theorem 1
is thus proven.

Appendix B. Proof of Lemma 1

In order to prove that Rub approaches C as M→ +∞, we first look at the special case
with K = 1. In this case, S = M and T = 1. From (A18) and (A17), we have LS−T

0 = 1 and
the pdf of λ

fλ(λ) =
λM−1e−λ

(M− 1)!
, (A19)

which shows that λ follows Erlang distribution with shape parameter M and rate parameter 1,
i.e., λ ∼ Erlang(M, 1). The expectation of λ is thus M. As M → +∞, fλ(λ) becomes a
delta function [34]. Hence, for a sufficiently small positive real number ε,

lim
M→+∞

Pr{|λ−M| ≤ ε} → 1,

lim
M→+∞

Pr{|λ−M| > ε} → 0. (A20)

Then, when M→ +∞, the bottleneck constraint (6)∫ ∞

ν
ρ

(
log

ρλ

ν

)
fλ(λ)dλ = C

→
∫ M+ε

M−ε

(
log

ρλ

ν

)
fλ(λ)dλ

→ log
ρM

ν
, (A21)

based on which we get
ν

M
→ ρ2−C. (A22)

Using (5), (A20), and (A22), it is known that, when M→ +∞,
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Rub =
∫ ∞

ν
ρ

[log(1 + ρλ)− log(1 + ν)] fλ(λ)dλ

→
∫ M+ε

M−ε

(
log

1 + ρλ

1 + ν

)
fλ(λ)dλ

→ log
1 + ρM

1 + ν

→C. (A23)

Next, we consider the general case. For any positive integer K, when M → +∞,
based on the definition of H and the strong law of large numbers, we almost surely have
HH H −MIK → 0. Since HHH and HH H have the same positive eigenvalues, λ−M→ 0
almost surely. (A20) thus also holds for this general case. Then,∫ ∞

ν
ρ

(
log

ρλ

ν

)
fλ(λ)dλ =

C
T

→
∫ M+ε

M−ε

(
log

ρλ

ν

)
fλ(λ)dλ

→ log
ρM

ν
, (A24)

based on which we get
ν

M
→ ρ2−C/T . (A25)

Hence, when M→ +∞,

Rub →T
∫ ∞

ν
ρ

[log(1 + ρλ)− log(1 + ν)] fλ(λ)dλ

→T
∫ M+ε

M−ε

(
log

1 + ρλ

1 + ν

)
fλ(λ)dλ

→T log
1 + ρM

1 + ν

→C. (A26)

Now we prove that Rub approaches C as ρ → +∞. From (6), it can be seen that∫ ∞
ν
ρ

(
log ρλ

ν

)
fλ(λ)dλ reduces with ν. Therefore, when ρ→ +∞, to ensure that constraint (6)

holds, ν becomes large. Then, we have

Rub = T
∫ ∞

ν
ρ

[log(1 + ρλ)− log(1 + ν)] fλ(λ)dλ

→ T
∫ ∞

ν
ρ

[log(ρλ)− log ν] fλ(λ)dλ

= C. (A27)

In addition, when C → +∞, it can be found from (6) that ν → 0. Using (5), we can
get (7), which is the capacity of Channel 1. This completes the proof.

Appendix C. Proof of Theorem 2

For a given Z1, yg ∼ CN (0, Ω + (KD + σ2)IM). Let ω denote the unordered pos-
itive eigenvalue of Z1ZH

1 . Since the elements in Z1 and H, respectively, follow i.i.d.,
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CN (0, 1−D) and CN (0, 1), and λ is the unordered positive eigenvalue of HHH as defined
in Appendix A, ω is thus identically distributed as (1− D)λ. Then, the pdf of ω is

fω(ω) =
1

1− D
fλ

(
ω

1− D

)
, (A28)

where fλ is the pdf of λ and is given in (A17).
For a given feasible D, problem (20) can be similarly solved as (4) by following the

steps in Appendix A and the optimal solution is

Rlb1 = T
∫ ∞

ν(KD+σ2)

[
log
(

1 +
ω

KD + σ2

)
− log(1 + ν)

]
fω(ω)dω, (A29)

where ν is chosen such that the following bottleneck constraint is met:∫ ∞

ν(KD+σ2)

[
log

ω

ν(KD + σ2)

]
fω(ω)dω =

C− R(D)

T
. (A30)

Using (A28), (A29) can be reformulated as

Rlb1 = T
∫ ∞

ν(KD+σ2)

[
log
(

1 +
ω

KD + σ2

)
− log(1 + ν)

]
fω(ω)dω

= T
∫ ∞

ν(KD+σ2)

[
log
(

1 +
ω

KD + σ2

)
− log(1 + ν)

]
1

1− D
fλ

(
ω

1− D

)
dω

λ= ω
1−D

====== T
∫ ∞

ν
γ

[log(1 + γλ)− log(1 + ν)] fλ(λ)dλ, (A31)

where γ = 1−D
KD+σ2 . Analogously, bottleneck constraint (A30) can be transformed to

∫ ∞

ν
γ

(
log

γλ

ν

)
fλ(λ)dλ =

C− R(D)

T
. (A32)

Theorem 2 is thus proven.

Appendix D. Proof of Lemma 2

We first prove inequation (25).

I(y; z2|Z1) =I(ỹ; z2|Z1)

=h(z2|Z1)− h(z2|Z1, ỹ)
(a)
≤E

[
log det

(
ΩΨ2 + (KD + σ2)Ψ2 + IM

)]
=I(yg; zg|Z1), (A33)

where (a) holds since Gaussian distribution maximizes the entropy over all distributions
with the same variance. Then, we prove inequation (26). Since for a Gaussian input,
Gaussian noise minimizes the mutual information ([27], (9.178)), we have

I(x; z2|Z1) ≥ I(x; zg|Z1). (A34)

Since Ψ is optimally obtained when solving IB problem (20), bottleneck constraint (20b) is
thus satisfied and I(x; zg|Z1) = Rlb1. Then, from (A33) and (A34), we have

I(y; z2|Z1) ≤ C− R(D),

I(x; z2|Z1) ≥ Rlb1. (A35)
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This completes the proof.

Appendix E. Proof of Lemma 3

When M→ +∞, as stated in Appendix B, λ−M→ 0 almost surely. Then,∫ ∞

ν
γ

(
log

γλ

ν

)
fλ(λ)dλ =

C− R(D)

T

→ log
γM

ν
, (A36)

based on which we get

ν− γM2−
C−R(D)

T → 0. (A37)

From (21), it is known that, as M→ +∞,

Rlb1 → T
[

log(1 + γM)− log
(

1 + γM2−
C−R(D)

T

)]
. (A38)

It can be readily proven that 0 ≤ T
[
log(1 + γM)− log

(
1 + γM2−

C−R(D)
T

)]
≤ C.

When ρ → +∞, σ2 → 0. Let γ = 1−D
KD . Rlb1 thus tends to a constant and can be

obtained from (21).
When C → +∞, it is possible for the relay to transmit h almost perfectly to the

destination node, i.e., D → 0. Hence, γ = 1−D
KD+σ2 → ρ. In addition, it can be found

from (22) that ν→ 0. Then, from (21),

Rlb1 → T
∫ ∞

0
log(1 + ρλ) fλ(λ)dλ

= I(x; y, H). (A39)

Lemma 3 is thus proven.

Appendix F. Proof of Theorem 3

Since n̂g ∼ CN
(
0, A′1

)
and

⌈
ak
⌉
B has J possible values, i.e., b1, · · · , bJ , the channel

in (32) can be divided into KJ independent scalar Gaussian sub-channels with noise power⌈
ak
⌉
B = bj for each sub-channel. For the sub-channel with noise power

⌈
ak
⌉
B = bj, let ck,j

denote the allocation of the bottleneck constraint C and Rk,j denote the corresponding rate.
According to (A2), we have

Rk,j = log
(
1 + ρj

)
− log

(
1 + ρj2

−ck,j
)
, (A40)

where ρj =
1
bj

. Since bJ = +∞, we let Rk,J = 0 and ck,J = 0. Note that, based on ([21], (16)),
the representation of x̂g, i.e., ẑg, can be constructed by adding independent fading and
Gaussian noise to each element of x̂g in (32). Denote

Pk,j = Pr
{⌈

ak
⌉
B = bj

}
. (A41)

Then, the optimal I(x; ẑg|A′1) is equal to the objective function of the following problem:

max
{ck,j}

K

∑
k=1

J−1

∑
j=1

Pk,jRk,j (A42a)

s.t.
K

∑
k=1

J−1

∑
j=1

Pk,jck,j ≤ C−
K

∑
k=1

Hk, (A42b)

where Hk = −∑J
j=1 Pk,j log Pk,j.
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Since K ≤ M, as stated in Appendix A, HH H ∼ CWK(M, IK). Matrix (HH H)−1 thus
follows complex inverse Wishart distribution and its diagonal elements are identically
inverse chi squared distributed with M− K + 1 degrees of freedom [35]. Let η denote one
of the diagonal element of (HH H)−1. The pdf of η is thus given by

fη(η) =
2−(M−K+1)/2

Γ
(

M−K+1
2

) η−(M−K+1)/2−1e−1/(2η). (A43)

Since A = σ2(HH H)−1, the diagonal entries of A, i.e., ak, ∀k ∈ K, are marginally identically
distributed. Let a denote a new variable with the same distribution as ak. a thus follows
the same distribution as σ2η, and its pdf is given by

fa(a) =
1
σ2 fη

( a
σ2

)
=

(2/σ2)−(M−K+1)/2

Γ
(

M−K+1
2

) a−(M−K+1)/2−1e−σ2/(2a). (A44)

In addition, Pk,j, Rk,j, and ck,j can be simplified to Pj, Rj, and cj by dropping subscript “k”.
Using (A44), Pj can be calculated as follows:

Pj = Pr
{⌈

a
⌉
B = bj

}
= Pr

{
bj−1 < a ≤ bj

}
=
∫ bj

bj−1

fa(a)da. (A45)

Problem (A42) thus becomes

max
{cj}

J−1

∑
j=1

KPjRj (A46a)

s.t.
J−1

∑
j=1

KPjcj ≤ C− KH0, (A46b)

where

Rj = log
(
1 + ρj

)
− log

(
1 + ρj2

−cj
)
,

H0 = −
J

∑
j=1

Pj log Pj. (A47)

Analogous to problem (A11), (A46) can be optimally solved by the water-filling method.
The optimal I(x; ẑg|A′1) is given by

Rlb2 =
J−1

∑
j=1

KPj
[
log
(
1 + ρj

)
− log(1 + ρj2

−cj)
]
. (A48)

where cj =
[
log

ρj
ν

]+
and ν is chosen such that the bottleneck constraint

J−1

∑
j=1

KPjcj = C− KH0, (A49)

is met. Theorem 3 is then proven.
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Appendix G. Proof of Lemma 4

Since Φ is a diagonal matrix with positive and real diagonal entries, it is invertible. Denote

z′ = Φ−1z

= x + n̂ + Φ−1n̂′g,

ẑ′g = Φ−1ẑg

= x + n̂g + Φ−1n̂′g. (A50)

For a given A′1, each element in n̂ is Gaussian distributed with zero mean and variance⌈
ak
⌉
B . However, n̂ is not a Gaussian vector since H is unknown. Hence, z′ is not a Gaussian

vector. For ẑ′g, from (32) and (41), it is known that ẑ′g ∼ CN (0, IK + A′1 + Φ−2).
We first prove inequation (43).

I(x̂; z|A′1) =I(x̂; z′|A′1)
=h(z′|A′1)− h(z′|x̂, A′1)
(a)
≤E

[
log det

(
IK +E

[
n̂n̂H

]
+ Φ−2

)
− log det

(
Φ−2

)]
(b)
≤E

[
log det

(
IK + A′1 + Φ−2

)
− log det

(
Φ−2

)]
=I(x̂g; ẑ′g|A′1)
=I(x̂g; ẑg|A′1), (A51)

where (a) holds since Gaussian distribution maximizes the entropy over all distributions
with the same variance and (b) follows by using Hadamard’s inequality.

Denote x = (x1, · · · , xK)
T , z′ = (z′1, · · · , z′K)

T , ẑ′g = (ẑ′g,1, · · · , ẑ′g,K)
T , and Φ =

diag{ϕ1, · · · , ϕK}. Then, we prove inequation (44). Using the chain rule of mutual information,

I(x; z|A′1) =I(x; z′|A′1)

=
K

∑
k=1

I(xk; z′k|A
′
1) + Q

≥
K

∑
k=1

I(xk; z′k|A
′
1)

(a)
=

K

∑
k=1

I(xk; ẑ′g,k|A
′
1)

(b)
= I(x; ẑ′g|A′1)
=I(x; ẑg|A′1), (A52)

where Q is a nonnegative constant; (a) holds since for a given A′1, both z′k and ẑ′g,k follow

CN
(

0, 1 +
⌈

ak
⌉
B + ϕ−2

k

)
; and (b) follows since the elements in x and ẑ′g are independent.

Since Φ is optimally obtained when solving IB problem (38), bottleneck constraint (38b)
is thus satisfied and I(x; ẑg|A′1) = Rlb2. Then, from (A51) and (A52), we have

I(x̂; z|A′1) ≤ C− KH0,

I(x; z|A′1) ≥ Rlb2. (A53)

This completes the proof.

Appendix H. Proof of Lemma 5

As stated in Appendix B, when M → +∞, HH H −MIK → 0 almost surely. Hence,
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A− σ2

M IK → 0. Let J = 2, b1 = σ2

M + ε, and b2 = +∞, where ε is a sufficiently small positive

real number. Since A− σ2

M IK → 0, we have P1 → 1 and H0 → 0. Then, from (39) and (40),

c1 →
C
K

,

Rlb2 → K
[

log
(

1 +
M
σ2

)
− log

(
1 +

M
σ2 2−

C
K

)]
→ C. (A54)

When ρ → +∞, σ2 → 0 and A → 0. By setting J = 2 and b1 small enough, it can be
proven as above that Rlb2 → C.

When C → +∞, we could choose quantization points B = {b1, · · · , bJ} with suffi-
ciently large J such that the diagonal entries of A1, which are continuously valued, can
be represented precisely using the discretely valued points in B, and the representation
indexes of all diagonal entries can be transmitted to the destination node since C is large
enough. On the other hand, as shown in (41), a representation of x̂g is

ẑg = Φx̂g + n̂′g, (A55)

where Φ is a diagonal matrix with positive and real diagonal entries, and n̂′g ∼ CN (0, IK).
As C → +∞, according to ([21], (17) and (20)), the diagonal entries of Φ

ϕk =

√√√√√ 1⌈
ak

⌉
B

+ 2C

1 +
⌈

ak
⌉
B
− 1⌈

ak
⌉
B

→
√

2C

1 +
⌈

ak
⌉
B

, ∀ k ∈ K. (A56)

Since Φ is a diagonal matrix with positive and real diagonal entries, as in (A50), we can get

ẑ′g = Φ−1ẑg

= x̂g + Φ−1n̂′g. (A57)

From (A56), it is known that the elements in noise vector Φ−1n̂′g have zero mean and very
small (approaches 0) power when C → +∞. Hence, (x, ẑ′g)→ (x, x̂g) in distribution. Then,
based on [36], we have

I(x; x̂g|A′1) ≤ lim inf
C→+∞

I(x; ẑ′g|A′1). (A58)

In addition, since Gaussian noise vector n̂g (defined in (32)) is independent of x and Φ−1n̂′g
in (A57) is independent of both x and n̂g, x → x̂g → ẑ′g forms a Markov Chain. Then,
according to data-processing inequality, we have

I(x; ẑ′g|A′1) ≤ I(x; x̂g|A′1). (A59)

Combining (A59) and (A58), we have

I(x; x̂g|A′1) ≤ lim inf
C→+∞

I(x; ẑ′g|A′1) ≤ I(x; x̂g|A′1), (A60)
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showing that the limit lim inf
C→+∞

I(x; ẑ′g|A′1) exists and that it is equal to I(x; x̂g|A′1). Then,

when C → +∞,

Rlb2 = I(x; ẑg|A′1)
= I(x; ẑ′g|A′1)
→ I(x; x̂g|A′1)
= E

[
log det

(
IK + A′1

)
− log det

(
A′1
)]

→ E[log det(IK + A1)− log det(A1)], (A61)

On the other hand, the capacity of Channel 1 is given by

I(x; y, H) = I(x; y|H)

= E
[
log det

(
HHH + σ2 IM

)
− log det

(
σ2 IM

)]
= E

[
log det

(
HH H + σ2 IK

)
− log det

(
σ2 IK

)]
= E[log det(IK + A)− log det(A)]. (A62)

To prove that (A61) is upper bounded by (A62), we first give and prove the following lemma.

Lemma A1. For any K-dimensional positive definite matrix N, let N1 = N � IK, i.e., N1 consist
of the diagonal elements of N. Then,

log det(IK + N)− log det(N) ≥ log det(IK + N1)− log det(N1). (A63)

Proof. Obviously, (A63) is equivalent to

log det(N1)− log det(N) ≥ log det(IK + N1)− log det(IK + N). (A64)

To prove (A64), we introduce an auxiliary function g1(x) = log det(xIK + N1)− log det(xIK+
N) and show that g1(x) decreases monotonically with respect to x when x ≥ 0. By taking
the first-order derivative to g1(x), we have

g′1(x) = tr
[
(xIK + N1)

−1
]
− tr

[
(xIK + N)−1

]
. (A65)

To prove g′1(x) ≤ 0, we show in the following that, for any positive definite matrix O, we
always have

tr
(

O−1
1

)
≤ tr

(
O−1

)
, (A66)

where O1 consists of the diagonal elements of O, i.e., O1 = O� IK. Denote the diagonal
entries of O (or O1) by o = (o1, · · · , oK)

T and the eigenvalues of O by θ = (θ1, · · · , θK)
T .

Since O is a positive definite matrix, the entries of o and θ are real and positive. In addition,
according to the Schur–Horn theorem, o is majorized by θ, i.e.,

o ≺ θ. (A67)

Define a real vector u = (u1, · · · , uK)
T with uk > 0, ∀ k ∈ K, and function g2(u) = ∑K

k=1
1
uk

.
It is obvious that g2(u) is convex and symmetric. Hence, g2(u) is a Schur-convex function.
Therefore,

g2(o) ≤ g2(θ). (A68)

Using (A68), we have
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tr
(

O−1
1

)
=

K

∑
k=1

1
ok

= g2(o)

≤ g2(θ)

=
K

∑
k=1

1
θk

= tr
(

O−1
)

, (A69)

based on which we get g′1(x) ≤ 0 and (A63) can then be proven.

Then, from (A61), (A62), and Lemma A1, it is known that, when C → +∞,

Rlb2 → E[log det(IK + A1)− log det(A1)]

= KE
[

log
(

1 +
1
a

)]
≤ I(x; y, H), (A70)

where the expectation can be calculated by using the pdf of a in (A44). Lemma 5 is
thus proven.

Appendix I. Proof of Remark 2

In this appendix, we show that, when K = M and λth = 0, E
[

1
λ

]
does not exist.

When K = M, fλ(λ) is given in (A17). From (A18), it is known that, for any 0 ≤ i ≤
K− 1, L0

i can always be expressed as follows:

L0
i =

eλ

i!
di

dλi

(
e−λλi

)
=

i

∑
j=1

ςi,jλ
j + 1, (A71)

where ςi,j is a constant. Accordingly, from (A17),

fλ(λ) =
1
K

K−1

∑
i=0

[
L0

i (λ)
]2

e−λ

=
e−λ

K

2(K−1)

∑
j=1

τjλ
j + e−λ, (A72)

where τj is a constant. Let ε denote a sufficiently small positive real number. Then, when
λth = 0,

E
[

1
λ

]
=
∫ ∞

0

1
λ

fλ(λ)dλ

=
∫ ∞

0

e−λ

K

2(K−1)

∑
j=1

τjλ
j−1dλ +

∫ ∞

0

1
λ

e−λdλ

=
1
K

2(K−1)

∑
j=1

τj(j− 1)!− Ei(−0), (A73)

where we used
∫ ∞

0 e−λλj−1dλ = (j− 1)! and Ei(·) is the exponential integral. As is well-

known, limx→0 − Ei(−x) = ∞. Hence, the integral in (A73) diverges. E
[

1
λ

]
thus does



Information 2021, 12, 155 37 of 42

not exist.

Appendix J. Proof of Lemma 7

As stated in Appendix B, when M→ +∞, HH H −MIK → 0 almost surely. Hence,

1
λ
→ 0,

Pth = Pr{λmin ≥ λth}
→ 1,

Hth → 0,

D → 1

2
C
K − 1

,

1
E[λ|∆] → 0,

E
[

1
λ
|∆
]
→ 0. (A74)

Combining (A74) with (66)–(68), we have

Rlb3, Řlb3, R̂lb3 → K log
(

1 +
1
D

)
→ C. (A75)

When ρ→ +∞, σ2 → 0. Hence,

D → 1

2
C−Hth

PthK − 1
,

Rlb3, Řlb3, R̂lb3 → PthK log
(

1 +
1
D

)
→ C− Hth. (A76)

When C → +∞, it can be found from (62) that D → 0. Then, from (66)–(68), it is
known that Rlb3, Řlb3, and R̂lb3 all approach constants, which can be, respectively, obtained
by setting D = 0 in (66)–(68). Lemma 7 is thus proven.

Appendix K. Proof of Theorem 5

As stated in Appendix A, UΛUH is the eigendecomposition of HHH and λt, ∀t ∈ T
are unordered positive eigenvalues of HHH . To derive Rlb4, we further denote the singular
value decomposition of H by ULV H , where V ∈ CK×K is a unitary matrix and L ∈ RM×K

is a rectangular diagonal matrix. In fact, the diagonal entries of L are the nonnegative
square roots of the positive eigenvalues of HHH . Then, from (73), we have
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FH H =HH
(

HHH + σ2 IM

)−1
H,

=V LH
(

Λ + σ2 IM

)−1
LV H ,

=Vdiag
{

λ1

λ1 + σ2 , · · · ,
λT

λT + σ2 , 0H
K−T

}
V H ,

FH HHH F =V LH
(

Λ + σ2 IM

)−1
Λ
(

Λ + σ2 IM

)−1
LV H ,

=Vdiag

{
λ2

1

(λ1 + σ2)
2 , · · · ,

λ2
T

(λT + σ2)
2 , 0H

K−T

}
V H ,

FH F =V LH
(

Λ + σ2 IM

)−2
LV H ,

=Vdiag

{
λ1

(λ1 + σ2)
2 , · · · ,

λT

(λT + σ2)
2 , 0H

K−T

}
V H , (A77)

where 0K−T is a (K− T)-dimensional all “0” column vector. Based on (A77),

FH HHH F + σ2FH F + DIK

=Vdiag
{

λ1

λ1 + σ2 + D, · · · ,
λT

λT + σ2 + D, D× 1H
K−T

}
V H , (A78)

where 1K−T is a (K− T)-dimensional all “1” column vector. Since Λ is independent of U,
L is independent of U as well as V , and λt, ∀t ∈ T is unordered, we have

E
[
log det

(
FH HHH F + σ2FH F + DIK

)]
=TE

[
log
(

λ

λ + σ2 + D
)]

+ (K− T) log D. (A79)

Then, we calculate G in (82). For this purpose, we have to calculate E
[
FH H

]
, E
[
FH HHH F

]
,

and E
[
FH F

]
. To obtain these expectations, we consider two different cases, i.e., the case

with K ≤ M and the case with K > M. When K ≤ M, from (A77), we have

E
[

FH H
]
= E

[
λ

λ + σ2

]
IK,

E
[

FH HHH F
]
= E

[
λ2

(λ + σ2)2

]
IK,

E
[

FH F
]
= E

[
λ

(λ + σ2)2

]
IK. (A80)

When K > M, denote V = (v1, · · · , vK). Then, from (A77),

FH H = Vdiag
{

λ1

λ1 + σ2 , · · · ,
λM

λM + σ2 , 0H
K−T

}
V H

=

(
λ1

λ1 + σ2 v1, · · · ,
λM

λM + σ2 vM, 0H
K , · · · , 0H

K

)vH
1
...

vH
K


=

M

∑
m=1

λm

λm + σ2 vmvH
m . (A81)
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Since vm is the eigenvector of matrix HH H and is independent of unordered eigenvalue
λm, we have

E
[

FH H
]
=

M

∑
m=1

E
[

λm

λm + σ2

]
1
K

IK

=
M
K
E
[

λ

λ + σ2

]
IK. (A82)

Similarly, we also have

E
[

FH HHH F
]
=

M
K
E
[

λ2

(λ + σ2)2

]
IK,

E
[

FH F
]
=

M
K
E
[

λ

(λ + σ2)2

]
IK. (A83)

Using (A80), (A82), (A83), and (82), G can be calculated as

G = E
[

FH HHH F
]
−E

[
FH H

]
E
[

HH F
]
+ σ2E

[
FH F

]
+ DIK

=

{
T
K
E
[

λ

λ + σ2

]
− T2

K2

(
E
[

λ

λ + σ2

])2
+ D

}
IK. (A84)

Hence,

log det(G) = K log

{
T
K
E
[

λ

λ + σ2

]
− T2

K2

(
E
[

λ

λ + σ2

])2
+ D

}
. (A85)

Substituting (A79) and (A85) into (80) and (81), respectively, and using (79), we can get (83).
We then calculate D in (84). From (77), (A80), and (A83),

E
[

x̄x̄H
]
= E

[
FH HHH F + σ2FH F

]
=

T
K
E
[

λ

λ + σ2

]
IK. (A86)

I(x̄g; z̄g) in (78) can thus be calculated as follows:

I(x̄g; z̄g) = log det

(
IK +

E
[
x̄x̄H]
D

)

= K log
(

1 +
T

DK
E
[

λ

λ + σ2

])
= C, (A87)

based on which (84) can be obtained. Theorem 5 is then proven.

Appendix L. Proof of Lemma 9

When M → +∞, T = K. As stated in Appendix B, HH H −MIK → 0 almost surely.
Hence, λ−M→ 0. From (A87),

I(x̄g; z̄g) = K log
(

1 +
1
D
E
[

λ

λ + σ2

])
= C

→ K log
(

1 +
1
D

)
. (A88)

Combining (83) and (A88), we have
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Rlb4 → K log(1 + D)− K log D

= K log
(

1 +
1
D

)
→ C. (A89)

When K ≤ M and ρ → +∞, T = K and σ2 → 0. Using (A87) and (83), we can also
get (A88) and (A89).

When K ≤ M and C → +∞, it can be found from (84) that D → 0. Then, using (83),
we can get (85). This finishes the proof.

Appendix M. Proof of Lemma 10

As shown in Lemmas 3 and 5, when C → +∞, Rlb1 approaches the capacity of
Channel 1 while Rlb2 is upper bounded by the capacity of Channel 1. Hence,

Rlb1 ≥ Rlb2. (A90)

Moreover, as shown in (52), we quantize x̃ by adding Gaussian noise vector q ∼
CN (0, DIK) when event ∆ happens and obtain its representation z. When C → +∞, it is
known from (62) that D → 0. Hence, (x, z)→ (x, x̃) in distribution, and it can be proven
similarly to (A61) that

Rlb3 ≤ Pth I(x; z|∆)
→ Pth I(x; x̃|∆). (A91)

Using (A39) and (A91), we have

Rlb1 → I(x; y, H)

= h(x)− h(x|y, H)

= h(x)− h(x|y, H, x̃)

≥ h(x)− h(x|x̃)
= I(x; x̃)

≥ Pth I(x; x̃|∆)
→ Pth I(x; z|∆)
≥ Rlb3. (A92)

Analogously, from (76) and (84), it is known that (x, z) → (x, x̄) in distribution when
C → +∞. Hence,

Rlb1 → I(x; y, H)

= h(x)− h(x|y, H)

= h(x)− h(x|y, H, x̄)

≥ h(x)− h(x|x̄)
≥ I(x; x̄)

→ I(x; z)

≥ Rlb4, (A93)

where x̄ is the MMSE estimate of x at the relay, i.e., (74). This completes the proof.
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