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Abstract: In many enterprises and the private sector, the Internet of Things (IoT) has spread globally.
The growing number of different devices connected to the IoT and their various protocols have
contributed to the increasing number of attacks, such as denial-of-service (DoS) and remote-to-local
(R2L) ones. There are several approaches and techniques that can be used to construct attack detection
models, such as machine learning, data mining, and statistical analysis. Nowadays, this technique is
commonly used because it can provide precise analysis and results. Therefore, we decided to study
the previous literature on the detection of IoT attacks and machine learning in order to understand
the process of creating detection models. We also evaluated various datasets used for the models,
IoT attack types, independent variables used for the models, evaluation metrics for assessment of
models, and monitoring infrastructure using DevSecOps pipelines. We found 49 primary studies,
and the detection models were developed using seven different types of machine learning techniques.
Most primary studies used IoT device testbed datasets, and others used public datasets such as
NSL-KDD and UNSW-NB15. When it comes to measuring the efficiency of models, both numerical
and graphical measures are commonly used. Most IoT attacks occur at the network layer according
to the literature. If the detection models applied DevSecOps pipelines in development processes for
IoT devices, they were more secure. From the results of this paper, we found that machine learning
techniques can detect IoT attacks, but there are a few issues in the design of detection models. We
also recommend the continued use of hybrid frameworks for the improved detection of IoT attacks,
advanced monitoring infrastructure configurations using methods based on software pipelines, and
the use of machine learning techniques for advanced supervision and monitoring.

Keywords: DevSecOps; IoT attacks; machine learning; literature review

1. Introduction

In 1999, Kevin Ashton used the term Internet of Things (“IoT”) for the first time in the
supply chain management context, but it is now used from a general perspective [1]. The
Internet of Things (IoT) includes infrastructures of systems, people, interconnected entities,
and information resources integrated with services that manipulate information [2]. IoT
systems are distributed dynamically and incorporate edge, cloud, and fog computing meth-
ods based on the allocation of information and computational resources [3]. IoT devices
should cooperate with each other [4]. IoT devices communicate with each other through
wireless communication systems and transfer information to a centralized system [5].
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According to Statistica [6], there will be approximately 75.44 billion connected IoT
devices by 2025 (see Figure 1) [7]. The high amount of IoT devices can pose a major security
risk—e.g., malicious software can lead to distributed denial-of-service (DDoS) attacks
that target information systems or websites. Mirai malware was used on 21 October 2016
to attack many IoT devices and conducted a major DDoS attack [8,9]. Statistics indicate
that 70% of the devices on the IoT are easy to attack [10,11]. For this reason, IoT attack
detection is a very important research area. A report released by MacAfee in 2020 showed
that cybercriminals are taking advantage of the COVID-19 pandemic, leading to several
increased threats, such as PowerShell malware, IoT malware, and mobile malware. In the
first quarter of 2020, McAfee labs perceived 419 cyberthreats per minute [12]. Blockchain
technology has been used widely in a wide range of applications. Blockchain technology
needs a decentralized data management system for sharing and storing the transactions and
data in the network. Many of the problems with cyber-physical systems in the IoT systems
can be solved by using blockchain technology. Moreover, blockchains help different privacy-
preserving models for IoT systems, such as user privacy, data privacy, privacy-preserving
aggregation, and location privacy [13].
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In addition, IoT devices produce an enormous amount of data [14]. The main method
of dealing with big data today is machine learning [15]. Machine learning pipelines
that conduct feature extraction, data collection, and binary classification for IoT traffic
detection have been developed for many models or systems. Various machine learning
algorithms are used for IoT attack detection, such as Bayesian networks (BNs), decision
trees (DTs), neural networks (NNs), clustering, support vector machines (SVMs), ensemble
learning (EL), and feature selection (FS). Different IoT attacks have also been detected
by such proposed models or systems, such as denial-of-service (DoS), remote-to-local
(R2L), user-to-root (U2R), and probing attacks. Different datasets are publicly accessible to
researchers to use in intrusion detection systems in the IoT, such as KDDCUP99, NSLKDD,
and UNSW-NB15. In order to verify the efficiency of these proposed models, various
types of evaluation metrics are used for assessment, such as accuracy, recall, and precision.
Few studies have analyzed device log traces from IoT devices to identify IoT attacks and
monitor infrastructure using DevSecOps.

Our study concentrates on different areas in the detection of IoT attacks. The aim of
this study is to analyze, summarize, and evaluate the machine learning techniques used in
the detection of IoT attacks. Moreover, we evaluate various datasets used for the models,
IoT attack types, independent variables used for the models, evaluation metrics for the
assessment of models, and monitoring infrastructures using DevSecOps pipelines. We
recommend necessary methods and techniques for upcoming studies.

Darko et al. [16] introduced all studies that used machine learning methods and
techniques to enhance IoT security. The authors identified challenges and ideas for future
research for the enhancement of IoT security. Sanaz et al. [17] performed a systematic
literature review (SLR) of different authentication mechanisms for IoT system security. The
authors reviewed various ways to implement authentication in IoT perimeters to identify
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recommendations for future studies. Francesca et al. [18] surveyed the security risks in
IoT systems and discussed counteractions. Aly et al. [19] performed an SLR and analyzed
the security issues related to IoT based upon various layers. Luqman et al. [20] performed
an SLR based on the privacy of the IoT system. The authors identified challenges with
regard to the privacy of the IoT system exposed, type of attacks occur in the IoT system
and recommendations for future studies. Ihsan et al. [20] performed an SLR based on
IoT-based botnet attacks. The authors evaluated evaluation metrics for assessment of
models, various datasets used for the models, and network forensic methods. Most of
the proposed systematic literature reviews (SLRs) focused on authentication mechanisms,
privacy, botnet attack avoidance or detection, security risks, and security aspects, while
this study aims to (1) analyze, summarize, and evaluate the techniques of machine learning
for analyzing device log trace from IoT devices to identify IoT attacks using DevSecOps
pipelines and (2) monitor the infrastructure that is created and configured automatically.

The rest of this paper is organized as follows: Section 2 discusses the research method-
ology. Section 3 describes and analyzes the selected primary studies. The last section
concludes the paper and provides recommendations for upcoming work.

2. Research Methodology

The systematic literature review (SLR) methodology was selected to study IoT at-
tack detection models. An SLR involves understanding, evaluating, and identifying the
available research evidence to answer specified review questions [21].

2.1. Review Questions (RQs)

For the assessment and the reviewing of primary studies, research questions are listed
here. Population, Intervention, Comparison, Outcomes, and Context (PICOC) criteria
were used to design these questions [22]. Table 1 illustrates the population, intervention,
comparison, outcomes, and context (PICOC) criteria. In this study, the research questions
that will be answered are as follows:

Table 1. Population, Intervention, Comparison, Outcomes, and Context (PICOC) criteria.

Population IoT Attack Detection

Intervention Machine learning techniques

Comparison Not available

Outcomes Monitoring real-time security attacks for IoT systems using DevSecOps pipelines

Context Review the existing studies monitoring real-time security attacks for IoT systems

RQ1—Which datasets have been used for IoT attack detection?
RQ2—What machine learning techniques have been used to detect IoT attacks?
RQ3—What are the current kinds of IoT system attacks that will be detected using

machine learning techniques?
RQ4—What are the dependent or independent variables considered when IoT attacks

are detected?
RQ5—Which evaluation metrics have been used to evaluate IoT attack detection models?
RQ6—Are the existing models monitoring real-time security for IoT systems using

DevSecOps?

2.2. Review Protocol

The process of our study search consisted of selecting digital repositories, creating a
search string, proceeding with an initial search, and fetching the first collection of primary
studies from digital repositories. We used five digital libraries that have been used in many
SLRs related to software engineering [22]: Springer Link, Science Direct, Association for
Computer Machinery (ACM), Scopus, and IEEE Xplore. After selecting the repositories, a
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search string was needed to perform an exhaustive search to select the main studies. The
four steps for defining the search string were [22]:

1. using research questions to define major terms through recognizing population,
context, intervention, and outcome;

2. identifying synonyms and alternative spellings for each major term;
3. verifying the search terms in titles, abstracts, and keywords;
4. utilizing the Boolean conjunction operator and/or when producing a search string.

We used the following search string using the steps described above: (IoT OR “Inter-
net of things”) AND (“attacks”) AND (“Real Time monitor*” OR “Cybersecurity” OR
“At-tack detect*” OR (“Intrusion detection*”)) AND (“machine learning” OR “super-
vised learning” OR “classification” OR “regression” OR “unsupervised learning”) OR
(“DevSecOps”).

We used these search strings to collect all available papers in the digital libraries
mentioned above. In order to gather as much of the applicable literature as possible, no
date limit was placed on the search process in this study. In order to choose the primary
studies from the initial list, inclusion and exclusion criteria were designed.

Inclusion criteria:

• written in English;
• related to IoT attack detection;
• published in a journal or conference;
• peer-reviewed papers.

Exclusion criteria:

• focused on detection methods other than machine learning;
• without empirical analysis or results;
• without surveys;
• the full text is not available.

We collected a total of 2898 initial studies from five digital repositories based on the
search string. We eliminated primary studies based on the title, abstract, and keywords,
which led us to 423 primary studies. The primary studies were carefully reviewed by ap-
plying the exclusion and inclusion criteria and finally were reduced to 49 studies. Table 2
illustrates the data sources and search results.

Table 2. Summary of data sources and search results.

Resource Name Total Results Initial Selection Final Selection

IEEE Xplore 248 90 35

Science Direct 746 84 3

Springer Link 1200 150 4

ACM 475 53 2

Scopus 229 46 5

Total 2898 423 49

2.3. Data Extraction

The primary studies used to collect data and answer the research questions in this
study were taken from digital repositories. Table 3 shows the characteristics used to answer
the questions. Table 4 below summarizes the primary studies that used IoT device testbed
datasets with information on machine learning (ML) techniques, IoT attacks, evaluation
metrics, and monitoring real-time security using DevSecOps. IoT device testbed datasets
were generated from various IoT devices with real traffic. Tables 5–7 below summarize
the primary studies using the NSL-KDD, KDDCUP99 or UNSW-NB15 datasets with in-
formation on ML techniques, IoT attacks, evaluation metrics, monitoring of real-time
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security using DevSecOps, and other datasets used in the primary studies. The KDD-
CUP99, NSLKDD, and UNSW-NB15 datasets have been generated for evaluating intrusion
detection systems (IDSs). Table 8 below summarizes the primary studies using other public
datasets on ML techniques, IoT attacks, evaluation metrics, monitoring of real-time security
using DevSecOps, and datasets used in the primary studies. Most of the primary studies
used seven different types of machine learning techniques, such as NN, BN, DT, SVM,
clustering, FS, and EL. The NN technique has been widely used to enhance the represen-
tation of data to build better models. The BN technique manage features separately and
thus cannot collect useful information from relations and coordination between features.
The DT technique is a popular classification technique for machine learning based on the
strategy of divide and conquer. The SVM technique is a supervised learning approach
utilized for regression and classification. The clustering technique is suitable when no class
of attacks is present. K-nearest neighbors and K-means are two of the clustering algorithms.
The FS technique is used to reduce the dimension of data and enhance the technique’s
performance. EL aims to enhance the results of classification by integrating several models.

Table 3. Data extraction characteristics related to the research questions.

Characteristic Research Question

Authors, study title, publication year, publication title, source, source type General

IoT attack datasets RQ1

IoT attack detection machine learning techniques RQ2

Type of IoT attacks RQ3

Dependent/independent variables RQ4

Performance measures RQ5

Monitoring real-time security for IoT systems using DevSecOps pipelines RQ6

Table 4. Internet of Things (IoT) device testbed datasets.

S.No Reference ML Techniques IoT Attacks Evaluation
Metrics

Monitoring
Real-Time

Security Using
DevSecOps

S1 (Eirini et al., 2018) [23] BN. Probing, and DOS Precision, recall,
and F-measure. No.

S3 (Eirini et al., 2019) [24] BN and DT.
DOS, MITM,

reconnaissance,
and replay.

Precision, recall,
and F-measure. No.

S6 (Prachi et al., 2017) [25] DT and Clustering. Wormhole Detection rate. No.

S7 (Fariz et al., 2019) [26] DT DOS Accuracy. No.

S8 (Aymen et al., 2019) [27] SVM Selective
forwarding attack. Accuracy. No.

S10 (Maede et al., 2019) [28] DT, SVM and NN.

Backdoor,
command

injection, and SQL
injection.

Accuracy, false
alarm rate, ROC

curve, and
sensitivity matric.

No.

S17 (Parth et al., 2018) [29] NN. DOS.
Accuracy, true

positive rate, and
false positive rate.

No.

S18 (Christiana et al., 2019)
[30] SVM.

Selective
forwarding, and

blackhole.
Accuracy. No.
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Table 4. Cont.

S.No Reference ML Techniques IoT Attacks Evaluation
Metrics

Monitoring
Real-Time

Security Using
DevSecOps

S20 (Suman et al., 2017) [31] SVM. DOS. Precision and
recall. No.

S21 (Mehdi et al., 2016) [32] SVM. DOS and DDoS. Precision and
recall. No.

S22 (Jessica et al., 2019) [33] NN. DOS Detection rate. Yes.

S24 (Randeep et al., 2019)
[34] NN. DOS Precision, recall,

and F-score. No.

S26 (Nadia et al., 2019) [35] BN, DT and NN. Amplification
Recall, accuracy,

precision, and false
positive rate.

No.

S30 (Naoki et al., 2018) [36] NN. Wormhole Detection rate. No.

S31 (Seiichi et al., 2019) [37] NN. Wormhole Detection rate. No.

S32 (Yassine, 2019) [38] DT, Clustering and
NN. Wormhole

Accuracy,
precision, and

recall.
No.

S33 (Geethapriya et al., 2019)
[39] NN. Wormhole Precision, recall,

and F1 score. No.

S38 (Christiana et al., 2020)
[40] SVM.

Blackhole and
selective

forwarding.

Accuracy,
precision, negative

predictive value
(NPV), recall, and

the Matthews
correlation

coefficient (MCC).

No.

S41 (Zhipeng et al., 2020)
[41]

SVM, clustering
and DT.

DOS, scanning and
MITM.

Accuracy, recall,
and F1 score No.

S47 (Riccardo et al., 2020)
[42] BN. DOS, scanning and

MITM

Accuracy,
precision, recall,
and F-measure

No.

Table 5. NSL-KDD dataset.

S.No Reference ML
Techniques IoT Attacks Evaluation

Metrics

Monitoring
Real-Time

Security Using
DevSecOps

Other Datasets
Used

S5 (Chao et al., 2019)
[43] NN. DOS, U2R and

R2L.

Accuracy,
precision, and

recall.
No. -

S9 (Poulmanogo et al.,
2019) [44] DT and NB. Probing, U2R

and R2L. Accuracy. No. KDDCUP99.

S12 (Hamed et al., 2019)
[45]

Clustering and
NB. U2R and R2L.

Detection rate,
and false alarm

rate.
No. -

S13 (Abebe et al., 2018)
[46] NN. Probing, U2R

and R2L.

Accuracy,
detection rate,

false alarm rate
and ROC curve.

No. -
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Table 5. Cont.

S.No Reference ML
Techniques IoT Attacks Evaluation

Metrics

Monitoring
Real-Time

Security Using
DevSecOps

Other Datasets
Used

S25 (Andrii et al., 2019)
[47] NN. Probing, DOS,

U2R and R2L. Detection rate. No. -

S27 (Shahadate et al.,
2019) [48] NN. Probing. Accuracy. No. -

S28 (Shailendra et al.,
2018) [49]. Clustering. Probing, DOS,

U2R and R2L.

Accuracy,
sensitivity,

F-score and
positive

predictive value

No. -

S29 (Abebe et al., 2018)
[50] NN. Probing, U2R

and R2L.

Accuracy,
detection rate,

false alarm rate,
precision, and

recall.

No. -

S34 (Samir et al., 2019)
[51]

BN, DT and
Clustering.

DOS,
Reconnaissance

U2R, R2L.,
Backdoor,
Analysis,

generic, fuzzers,
and shellcode.

Accuracy, false
positive rate,

precision, and
F1-Score.

No.
UNSW-NB15

and
KDDCUP99.

S35 (Abhishek et al.,
2019) [52] DT. DOS

Accuracy,
specificity,

sensitivity and
false positive

rate.

No.
CICIDS2017

and
UNSW-NB15.

S37 (AHMED et al., 2020)
[53] NN. DOS and SQL

injection.

Accuracy,
precision and

recall.
No.

UNSW-NB15,
CICIDS2017,

RPL-NIDDS17
and BoT-IoT

S39 (Seyedeh et al., 2020)
[54]

SVM, DT,
Clustering.

DOS, U2R and
R2L.

Accuracy,
precision, recall,

and F1-score
No. -

S44 (Sara et al., 2020) [55] NN. U2R and R2L.

Accuracy,
F1-score,

precision, and
recall.

No. -

S45 (Cristiano et al., 2020)
[56]

NN and
clustering. DOS.

Accuracy,
Fl-score,

precision, and
recall

No. CICIDS2017

S46 (Deepa et al., 2020)
[57] DT Probing, DOS,

U2R and R2L.

Accuracy,
Fl-score,

precision and
recall.

No. KDDCUP99.
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Table 6. KDDCUP99 dataset.

S.No Reference ML
Techniques IoT Attacks Evaluation

Metrics

Monitoring
Real-Time

Security Using
DevSecOps

Other Datasets
Used

S4 (Shengchu et al.,
2017) [58] Clustering. Probing, DOS,

U2R, and R2L.

Detection rate,
false alarm rate
and Accuracy

No. -

S11 (Ionut et al., 2016)
[59]

DT, SVM and
Clustering.

Probing, DOS,
U2R, and R2L. Precision. No. -

S48 (Shubhra et al., 2020)
[60] SVM and BN. DDoS

Accuracy,
sensitivity,
specificity,
precision,
f-measure,
AUC (Area

under curve)
and false

positive rate

No.

CAIDA,
CONFICKER
Worm, and

UNINA traffic
traces.

Table 7. UNSW-NB15 dataset.

S.No Reference ML
Techniques IoT Attacks Evaluation

Metrics

Monitoring
Real-Time

Security Using
DevSecOps

Other Datasets
Used

S16 (Bipraneel et al.,
2018) [61] NN.

Reconnaissance,
DOS, wormhole
and backdoor.

Accuracy,
precision, recall,

F-measure,
miscalculation

rate, and
detection rate.

No. -

S19 (Sohaib et al., 2019)
[62] NN.

Reconnaissance,
DOS, probing,
wormhole and

backdoor.

Accuracy and
precision No. -

S36 (Shahid et al., 2020)
[63] NN.

Reconnaissance,
DOS,

wormhole,
exploits and

backdoor.

Accuracy. No. -

S42 (Zina et al., 2020) [64] DT.
Reconnaissance,
DOS, wormhole
and backdoor.

Accuracy No. -
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Table 8. Other public datasets.

S.No Reference ML
Techniques IoT Attacks Evaluation

Metrics

Monitoring
Real-Time

Security Using
DevSecOps

Used Datasets

S2 (Abhishek et al.,
2019) [65] EL

Sinkhole, local
repair attacks,

blackhole, sybil,
DDOS, hello
flooding and

selective
forwarding.

Accuracy and
AUC No. RPL-NIDDS17

S14 (Vladimir et al., 2019)
[66]

SVM, NN and
Clustering. DOS Accuracy No. CICIDS2017

S15 (Mengmeng et al.,
2019) [67] NN.

Information
theft attacks,

DDOS,
reconnaissance

and DOS.

Accuracy,
precision, recall,
and F-measure.

No. BoT-IoT

S23 (Mostafa et al., 2018)
[68] Clustering. Probing, DOS,

U2R and R2L.

Detection rate,
False Positive

rate and
Accuracy.

No. intelIoT

S40 (SHAHID et al., 2020)
[69] NN. Probing and

DOS.

Accuracy,
precision, recall

and F1 score.
No. DS2OS

S43 (Monika et al., 2020)
[70] NN. DDOS.

Accuracy,
Fl-score,

precision, and
recall

No. CICIDS2017

S49 (Haifaa et al., 2020)
[71] NN. DOS. F1 score No. MedBIoT.

3. Result
3.1. Datasets

A dataset is classified as a collection of information used in a specific domain. Twenty
of the primary studies we identified used IoT device testbed datasets, and the others used
public datasets, as shown in Figure 2. IoT device testbed datasets were generated from
various IoT devices with real traffic, such as Samsung smart things Hub, smart cameras,
smartphones, IoT hubs, intelligent thermostat, and smart assistant speakers. Different
datasets are publicly accessible for use in intrusion detection systems (IDSs) for IoT systems.
However, public datasets have quality issues. Various public network datasets, for example,
KDDCUP99, NSLKDD, and UNSW-NB15, have been generated to evaluate IDSs; however,
they do not contain any specific characteristics of IoT systems [72]. The NSL-KDD dataset
was built from the KDDCUPP99 datasets [73]. The KDDCUP99 dataset contains a large
number of duplicate records that were removed in the NSL-KDD dataset [73]. UNSW-
NB15 is different from other datasets such as KDDCUPP99, which has fewer features [74].
The KDDCUP99and NSL-KDD datasets do not contain a set of attack types, while the
CICIDS2017 dataset contains a new IoT attack generated from real network traffic such
as structured query language (SQL) injection, brute force, XSS, Botnet, web attack, and
infiltration [75]. The NSL-KDD and KDDCUP99 datasets are not suitable for evaluating
network intrusion detection systems (NIDSs) for IOT; however, the RPL-NIDDS17 dataset
includes attack and normal network traffic. Due to the different nature of the datasets,
many researchers have used various public datasets in the same primary studies.
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In our study, we observed that the NSL-KDD dataset was used in 15 primary studies.
The NSL-KDD dataset was created using three different protocols (TCP, UDP and ICMP).
Two test datasets were developed by NSL-KDD—namely, KDDTest+ and KDDTest-21,
which have 41 features [76]. This dataset is grouped into different attack categories—
namely, R2L, Probe, U2R, and DoS.

The UNSW-NB15 datasets, used in six primary studies, were generated by the Aus-
tralian Centre’s Cyber Range Lab [74]. This dataset varies from previous datasets such as
NSL-KDD, which has fewer networks, more repetition, and fewer features. The UNSW-
NB15 datasets include 49 features and nine attacks. These attacks include backdoors,
fuzzers, analysis, exploits, generic, reconnaissance, shellcode, worms, and DoS.

KDDCUP99, used in five primary studies, was generated by DARPA [73]. This dataset
contains around 5 million samples of network captured packets. The KDDCUPP99 datasets
have 41 features and three attacks. These attacks include DoS, Probe, R2L, and U2R. The
KDDCUP99 datasets contain many redundant and duplicated records.

Other datasets that are rarely used in the primary studies are CICIDS2017, RPL-
NIDDS17, BoT-IoT, intelIoT, MedBIoT, CAIDA, CONFICKER Worm, UNINA traffic traces,
and DS2OS. CICIDS2017, used in four primary studies, was generated by the Cyber
Range Lab of the center of UNSW Canberra Cyber. These datasets have 78 features and
eight attacks. These attacks include SQL injection, brute force secure shell protocol (SSH),
heartbleed, brute force file transfer protocol (FTP), web attack, DDoS, DoS, botnet, and
infiltration, which are not found in other datasets, such as KDDCUP99 and NSL-KDD.
RPL-NIDDS17, used in two primary studies, was generated using the NetSim tool. These
datasets have 20 features, 2 additional labeling attributes and 7 attacks. These attacks
include blackhole, sinkhole, sybil, clone ID, selective forwarding, hello flooding and local
repair attacks. BoT-IoT, used in two primary studies, was generated by the Cyber Range
Lab of the center of UNSW Canberra Cyber. This dataset contains around 72 million
records of network traffic captured from the IoT environment. The BoT-IoT datasets have
32 features and five attacks. These attacks include DoS, DDoS, keylogging, data exfiltration,
and service scan. IntelIoT, used in one primary study, was generated by Samuel Madden at
the intel research laboratory. This dataset contains around 2 million records captured from
54 sensors spread around the laboratory. For the intelIoT, 30% of all of records became
abnormal and the rest of them (70%) became normal. CAIDA, used in one primary study,
was generated by the Center for Applied Internet Data Analysis institute. The CAIDA
datasets contain unusual traffic traces from DDoS attacks. CONFICKER Worm, used in one
primary study, was generated by Center for Applied Internet Data Analysis institute. This
dataset was collected from the UCSD Network Telescope after 3 days of network study.
DS2OS, used in one primary study, was generated by Kaggle. This dataset contains attacks
on sensors and applications; therefore, it consists of 357,952 records, 13 features, and 8
attacks. These attacks include DoS, malicious control, probing, scan, wrong setup, spying,



Information 2021, 12, 154 11 of 23

and normal and malicious operation. The UNINA dataset contains traffic of WAN access
router at the University of Napoli Federico.

3.2. Machine Learning Techniques

Many techniques for IoT attack detection have been introduced in the literature,
amounting to 49 studies. In this paper we classify primary studies into seven techniques
used in IoT attack detection. Most of the primary studies use more than one technique
in IoT attack detection. The distribution of the machine learning techniques is shown in
Figure 3. The seven techniques presented are BN, DT, NN, clustering, SVM, FS, and EL.
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NNs are most widely used in IoT attack detection in primary studies. There are
many different NN models, such as the convolutional neural network (CNN), deep neural
network (DNN), recurrent neural network (RNN), deep learning (DL), and shallow learning.
In IDSs, NN techniques have been widely used to enhance the representation of data to
build better models. The processing time of NN techniques is high because they have
several parameters that need to be tuned, such as the number of neurons in each layer and
the number of layers used. Abebe et al. [50] and Abebe et al. [46] proposed a distributed
attack detection model based on DL techniques. The proposed model deployed the deep
learning model on multiple coordinated nodes for distributed attack detection. Moreover,
Ahmed et al. [53] proposed a distributed architecture of an LSTM DL Model deployed
on distributed fog nodes, which was managed and modified via a service layer in a
cloud computing architecture. This achieved better distributed attack detection than a
centralized algorithm. Shahadate et al. [48] also proposed a new model; they combined
an autoencoded and dense neural network to detect IoT attacks in the network layer. The
autoencoded network provided unsupervised pretraining on the data for less input data
noise. A dense neural network was used for final classification in an intrusion detection
scenario. The proposed system yielded better results than those acquired when only a
DNN was used. There is also a study on combining a CNN and an LSTM by Monika
et al. [70], where the aim was to detect IoT attacks. The proposed system achieved good
performance and a high detection rate compared to using only MLP, SVM, NB, and random
forest. Randeep et al. [34] proposed a model using unsupervised classifiers, such as an
autoencoder and PCA, and supervised classifiers, such as the SVM. It was observed that
each of these unsupervised machine learning (ML) classifiers performed better than a
supervised classifier with new and unseen attacks. Bipraneel et al. [61] proposed a new
IDS for detecting IoT attacks based on a bidirectional long short-term memory recurrent
neural network (BLSTM RNN). The proposed model learned effectively in the training
phase. Shahid et al. [69] proposed a new IDS based on a random neural network (RaNN)
approach. The proposed prediction based on the RaNN achieved a higher performance
than other machine learning algorithms such as ANN, SVM, and DT. A new IDS using a
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DNN algorithm was suggested by Chao et al. [43]. The proposed model achieved a high
efficiency for detecting transport layer attacks.

The DT is the second most widely used model in IoT attack detection in primary
studies. It is a popular classification technique for machine learning based on the strategy
of divide and conquer. It contains nodes and leaves, where the leaves are the class labels and
the nodes are one of the features. As a result of its construction, DT requires large storage
capacity. Zina et al. [64] proposed a hybrid IDS using random forest (RF), classification
and regression tree (CART) algorithms. The RF algorithm was used in feature selection
to reduce the dimensions of the dataset into the most significant features. The CART
classifier was used to identify different IoT attack classes. Maede et al. [28] proposed an
ML-based IDS using seven techniques for the IDS: SVM, KNN, NB, RF, DT, LR, and ANN.
RF exhibited the best performance, and NB was the worst in the proposed system. Nadia
et al. [35] proposed an IDS at the service layer based on NB, multilayer perceptron (MLP),
J48, RF, and sequential minimal optimization (SMO). J48 achieved the best results in binary
classification and multiclass classification. NB had the fastest time for CPU training and
the worst performance. Yassine et al. [50] proposed an IDS using NB, KNN, RF, SVM, and
MLP for detecting IoT attacks. In the proposed IDS, RF achieved the highest performance
when detecting routing attacks among all algorithms. Samir et al. [51] proposed a system
for the detection of IoT attacks based on NB, LR, DT, RF, KNN, SVM, and MLP algorithms.
DT and KNN obtained the best performance among all algorithms; however, compared
to the DT algorithm, the KNN needed a high amount of time to classify. Deepa et al. [57]
proposed a NIDS based on the RF classifier with a minimal feature set. The proposed
system took less time to learn and predict. Fariz et al. [26] proposed middleware using an
IDS based on the J48 algorithm to detect DoS attacks. Before using the J48 algorithm, the
proposed model cleaned noise from the data.

The SVM is the third most widely used model in IoT attack detection in primary
studies. SVM is a supervised learning approach utilized for regression and classification.
The SVM maps input vectors into a multidimensional space. They can perform under
binary as well as multiclass conditions. For large datasets, SVM is not recommended as
the training takes a long time [35,41]. Suman et al. [31] proposed an IDS for IoT security
based on SDN strategies which aimed to detect anomalous activity early and enhance
resilience. The proposed system was compared with a nonlinear and linear SVM for IoT
attack detection. In the proposed IDS, the better learning strategy for identification of
attacks was the nonlinear SVM. Christiana et al. [30] proposed a c-SVM machine learning
model as an anomaly IDS. The proposed model achieved high detection accuracy when
the Sinkhole and Blackhole attacks were present.

One of the unsupervised learning methods is the clustering technique, which is suit-
able when no class of attacks is present. K-nearest neighbors (KNN) is one of the clustering
algorithms. KNN was grouped and trained by certain criteria and analyzed to set in simi-
lar K neighbors. Deciding the optimal estimation of K can be a complicated and tedious
procedure. Cristiano et al. [56] proposed a hybrid binary classification method based on
DNN and KNN. The proposed system gave better results compared to when only DNN
or KNN were used. The memory and processing cost worked with low overheads in the
proposed method. Shengchu et al. [58] proposed a new model for an IDS, which depends
on a dimension reduction algorithm and a classifier. This model used two classifiers:
the softmax regression and KNN algorithms. Both algorithms showed equal accuracy,
but the softmax regression showed better time efficiency. Mostafa et al. [68] proposed a
hybrid model based on K-means and sequential minimal optimization (SMO) for IoT attack
detection. K-means clustering was used in the proposed model to cluster the input dataset,
and SMO was used to label data whose label was not fixed. The hybrid method gave better
results compared to when only SMO or K-means were used.

Bayesian algorithms, specifically naïve Bayes (NB), are the fifth most widely used
model in IoT attack detection in primary studies. NB is well known for its simplicity of
use, fewer training requirements, and the low time consumption. It manages features
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separately and thus cannot collect useful information from relations and coordination
between features. Eirini et al. [23] proposed a new model capable of predicting malicious
behavior and detecting malicious IoT nodes on a network using NB.

FS is used to reduce the dimension of data and enhance the technique’s performance,
and some studies have used it to select the best features to be used for IoT attack detection
model [43,46,55,60].

The EL techniques are rarely used in IoT attack detection in primary studies. The
aim of ELs is to enhance the results of classification by integrating several models. Thus,
using many models can increase the accuracy of detection. Abhishek et al. [65] proposed
an EL-based network intrusion detection system (ELNIDS), which is based on EL and
uses four types of classifiers: Bagged Trees, Boosted Trees, RUSBoosted Trees, and Sub-
space Discriminant. Boosted Trees and RUSBoosted Trees achieved the best performance
in ELNIDS.

3.3. IoT attacks

IoT architecture can be separated into a perception layer, a network layer, a processing
layer, and an application layer [77]. There are different features for each IoT layer, so there
are multiple threats for each layer [78]. IoT attacks can be detected in any layer of IoT
architecture. In the perception layer, hardware components of IoT systems, such as zigbee,
radiofrequency identification (RFID), wireless sensor networks (WSNs), and sensors, are
vulnerable to various attacks. The network layer in an IoT system has substantial security
measures, but certain issues still occur. There are various types of IoT system at-tacks, such
as DoS attacks, viruses, man-in-the-middle attacks, and eavesdropping attacks that affect
the network layer [79]. The processing layer contains various types of technology, such
as data analysis and data storage. The most popular type of attack on the IoT processing
layer is a cloud attack since the cloud receives data sent at this phase [80]. The attacker will
use trojan worms, horse applications, spyware, malware, and malicious scripting software
attacks that can damage IoT system devices in the application layer. Figure 4 illustrates the
percentage of IoT attacks considered in primary studies.
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DoS attacks were frequently used in the studies we compiled. A DoS attack is a type
of attack in which the attacker makes a service inaccessible and stops legal users of the
service by sending floods of ICMP echo replies or SYN to port(s). U2R attacks are the
second most frequent IoT attack. An U2R attack is when the attacker uses illegal techniques
and methods (e.g., sniffing passwords or malicious injection) to gain access to devices or
get access from a normal user account. R2L attacks are the third most frequent IoT attack.
R2L attacks are exploitations in which the attacker identifies a security vulnerability in a
network in order to enter it as a local user. Probing is the fourth most frequent IoT attack.
Probing is an attack where the attacker attempts to gather information about the network
to exploit its protection by sending an ipsweep-ping to several hosts to discover the IP
address of the target and scan for ports to discover the services of the host. Reconnaissance
attacks are the fifth most frequent IoT attack. In reconnaissance attacks the attacker collects
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information for the system in order to observe it. Table 9 below summarizes the IoT attacks
according to the layers.

Table 9. IoT attacks according to the layers.

IoT Attack Layer

DoS Network layer and application layer.

U2R Application layer.

R2L Network layer and perception layer.

Probing Network layer.

Reconnaissance Network layer.

wormhole Processing layer.

DDoS Network layer and application layer.

backdoor Application layer.

analysis Application layer.

generic Application Layer.

fuzzers Network layer and perception layer.

shellcode Processing layer.

sinkhole Network layer.

blackhole Perception layer.

hello flooding Network layer.

SQL injection Processing layer.

ARP cache poisoning Network layer.

Malformed packets Application layer.

Exploits Network layer.

Scanning Network layer.

Other IoT attacks that have rarely been considered in primary studies are worm-
hole (4.8%), distributed denial-of-service (DDoS) (4.8%), backdoor (4.1%), analysis (3.4%),
generic (2.7%), fuzzers (2.7%), shellcode (2.7%), sinkhole (2%), blackhole (2%), hello flood-
ing (1.4%), SQL injection (1.4%), ARP cache poisoning (1.4%), malformed packets (1.4%),
exploits (1.4%), and scanning (1.4%) attacks.

3.4. Independent Variables

The independent variables used in machine learning models, also called predictors
or features, play important roles in enabling good performance in the detection of IoT
attacks. Some primary studies use techniques to decrease the dimensions of the dataset
from a massive number of features to a small number. Shengchu et al. [43] and Hamed
et al. [46] used principal component analysis (PCA) to decrease the dimensions of a dataset
from a large number of features to a small number. Monika et al. [55] used NSGA-ii-aJG to
decrease the dimensions of a dataset from a large number of features to a small number.
Shubhra et al. [60] used an information gain-based intrusion detection system (IGIDS) to
select the most relevant features from the original IDS datasets. The independent variables
used in the IoT attack detection model depend on the type of IoT attack detected and
the datasets used, such as public datasets or IoT device testbed datasets. Table 10 below
summarizes the primary studies with information on public datasets used, IoT attack type,
and feature used in proposed model for IoT attack detection. Table 11 below summarizes
the primary studies used IoT device testbed datasets with information on feature used in
proposed model for IoT attack detection.
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Table 10. Features considered in primary studies (public datasets).

Datasets IoT Attack Type Features

NSL-KDD

DoS back, teardrop, Neptune, land, smurf, and pod.
U2R buffer overflow, perl, rootkit, and load module.

Probing Satan, ipsweep, portsweep, and nmap.

R2L multihop, warezmaster, FTP write, guess password,
phf, spy, imap, and warezclient.

UNSW-NB15
Fuzzers, analysis, reconnaissance,

backdoors, generic, DoS, exploits, worms,
and shellcode

destination, service, source mean, source byte,
source to destination time, mean size, source

inter-packet arrival time, data transferred, protocol,
number of connections, and number of flows.

KDDCUPP99

Probing nmap, satan, ipsweep, saint, portsweep, and mscan.

U2R perl, sqlattack, Httptunnel, buffer_overflow, ps,
rootkit, xterm, and loadmodule.

R2L
Xlock, xsnoop, phf, snmpguess, warezclient, named,

warezmaster, tp_write, spy, guess_passwd, imap,
snmpgetattack, worm, and multihop.

DoS Neptune, back, teardrop, mailbomb, land,
processtable, apache2, udpstorm, smurf, and pod.

CICIDS2017 DDoS Source, time stamps, and destination IP addresses.

RPL-NIDDS17
Sinkhole, Sybil, Clone ID, Blackhole,

Hello Flooding, Selective Forwarding,
and Local Repair attacks

Destination IP address, protocols used, time of the
attack, and size of packets transmitted.

BoT-IoT probing, DOS, and DDOS frame-related fields, ARP-related fields, IP-related
fields, TCP-related fields, and UDP-related fields.

Table 11. Features considered in primary studies (IoT device testbed datasets).

S.No Features

S1 destination IP address, protocols used, time of the attack, and size of packets transmitted.

S3 Frame information and packet type.

S6 Safe distance between any two neighboring routers.

S7 Flags, Ip_len, TCP4_flood, UDP_Flood, TCP6_Flood, UDP6_Low, and IP6_plen.

S8 Packet receiving rate and consumed energy.

S10 mean flow (mean), destination, source bytes, source packets, source port, and total load.

S17

two classes: connection features (e.g., duration of connection, packets per second, average size of data
message, and data rate) and traffic features (e.g., active connections on a specific port, active connections on all

hosts, rate of active connections on a specific host, rate of active connections for a service, and active
connections on a specific host port).

S18 Data packets sent, packets forwarded, packets dropped, announcements received, and data packets received.

S20 bandwidth consumption, source of requests, number of failed authentication attempts, number of sent
requests, and device usage at different periods.

S21 the number of bytes in acknowledgment response packets, the number of bytes in command packets, and
inter-packet time interval.

S22 level, time, source IP, and packet type.

S24 source bytes, average packet size of traffic, and destination.

S26 request identifier, destination, and response status code.

S30 sequence number, destination port, and window size.

S31 window size, sequence number, and destination port.

S32 duration of connection, rate transmission, and destination.
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Table 11. Cont.

S.No Features

S33 transmission rate, reception rate, source IP, and destination.

S38 packets forwarded, packets dropped, data packets sent, and announcements received.

S41 destination IP address of the packet, sequence number for the packet, time, source IP address of the packet,
protocol, length of the packet, and info.

S47 Duration, total forward packet, total backward packet, total length backward packet, total length forward
packet, and idle minimum time.

3.5. Evaluation Metrics

Detect attacks should be evaluated in real time to assess their effectiveness and effi-
ciency. The primary studies we reviewed used various strategies to evaluate the efficiency
of their proposed approach. Figure 5 shows the percentages of specific evaluation metrics
used in the primary studies. Numerical measures and graphical measures are two types of
measurement. Numerical measures consist of precision, accuracy, F-measure, and others,
whereas graphical measures consist of ROC curves, etc.
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Accuracy was frequently used in the primary studies. Accuracy can be described
as the number of IoT attacks that are correctly detected divided by the number of IoT
attacks. The second most commonly used performance measure for the identification of
IoT attacks is recall. This measurement relates to the quantity of IoT attack classes correctly
predicted among the actual IoT attack classes. Precision is the third most commonly
used evaluation metric, and it measures the correctness of the model. F-measure is the
fourth most commonly used evaluation metric, and it shows the trade-off between the
performances of a classifier. The detection rate is the fifth most commonly used evaluation
metric, and it indicates the efficiency of a classifier with respect to its ability to detect
malicious behaviors.

3.6. DevSecOps

DevOps is the process of continuously improving software products through rapid
release cycles, global automation of integration and delivery pipelines, and close collab-
oration between teams [81]. Securing DevOps helps organizations operate securely and
protect the data their customers entrust them with. DevSecOps represents a cultural solu-
tion for improving and accelerating business value delivery by effectively coordinating
development, security, and operations [82]. If cyber security is achieved after completion
of development, systems shall be developed with vulnerabilities that are impossible to
solve. Security teams must exchange expertise and supply resources for operation and
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development teams that fit systems and applications [83]. If the detection models applied
DevSecOps pipelines in development processes for IoT devices, they were more secure.

Few studies dynamically generated and configured IoT system infrastructure manage-
ment using DevSecOps. Athanasios et al. [84] proposed a system for automatic lifecycle
management of IoT applications that require cellular network connectivity. This system
uses DevOps pipeline by automating the deployment of IoT application based on the
information retrieved from the monitoring infrastructure (CPU, memory status, and net-
work). Jessica et al. [33] addressed the formalization of feedback processes from operations
to IoT system development. Security teams use the continuous and fast process from
Ops to Dev to instantiate IoT’s self-service cyber security management systems to enforce
security in a DevOps environment. Ramón et al. [85] proposed an architectural model of a
distributed IoT system and continuous delivery (CD) of customized Software as a Service
(SaaS) updates at the IoT Edge. The proposed model automated building, deployment, and
testing of software updates for edge devices. Miguel et al. [86] addressed the formalization
of continuous and fast feedback to detect problems in an IoT system in order to fix them.

4. Discussion

In this study we reviewed 49 journal papers on IoT attack detection that were pub-
lished from 2016 to 2020. We have provided a summary of IoT attack detection models
and identified the scope of the development models. We collected all available papers in
various digital libraries.

There are different features for each IoT layer, so there are multiple threats for each
layer. Most IoT attacks occur at the network layer according to the literature. IoT attacks
can be detected in any layer of IoT architecture. The binary class classification is commonly
used in IoT attack detection models. Inputs are labeled in binary class classification as
an attack or as benign. Some studies use multiclass classifications not only to recognize
attacks, but to also identify their type.

Following the research questions defined above in Section 2.1, the first question is
related to the type of datasets that researchers often use to construct a detection model in
primary studies. Most primary studies used IoT device testbed datasets, and others used
public datasets. The NSL-KDD, UNSW-NB15, and KDDCUP99 repositories were found to
be the most frequently used datasets among researchers. However, public datasets have
some quality issues, which can lead to poor detection results. However, studies that use
data from real IoT device traffic enhance the effectiveness of ML techniques.

The second question is related to machine learning techniques that are often used
for building detection models, and the NN has been widely used in IoT attack detection
models. However, with standard CPUs, NNs are computationally more time-consuming
and costly. EL techniques have rarely been used in IoT attack detection models. SVMs
are not recommended for large datasets, as the training takes a long time. Some re-
searchers have proposed hybrid frameworks [29,54,56,64,68]. Some studies have proposed
distributed attack detection [46,49,50], which has achieved better attack detection than
centralized algorithms.

The third question is related to IoT attacks detected in the proposed model, where DoS
is the most commonly detected type of attack in the primary studies. DoS is popular because
it aims to misuse the available resources in a communication network and stop services
used by users. Therefore, researchers need to purpose this model for IoT attack detection.

The fourth question is related to the independent variables used in primary studies,
which depend on the type of IoT attack detected and the datasets used, such as public
datasets or IoT device testbed datasets. NSL-KDD datasets have 41 features, such as
service, duration, flag, destination bytes, protocol, source bytes, etc. UNSW-NB15 datasets
have nine attacks and 49 features, such as destination, service, source mean, source byte,
etc. KDDCUP99 have three attacks and 41 features, such as nmap, satan, ipsweep, saint,
portsweep, mscan, etc.
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The fifth question is related to evaluation metrics, of which accuracy is the most
commonly used. Accuracy is popular because it is used to measure the ratio of correct
predictions over the total number of instances evaluated.

The last question is related to identifying whether existing models or systems are
monitoring an infrastructure that is created and configured automatically for IoT systems
using DevSecOps pipelines. Few studies have analyzed device log traces from IoT devices
to identify IoT attacks and monitor infrastructure using DevSecOps pipelines.

In this study, we also raised several challenges when it comes to IoT attack detection
and included an overview of the work that can be performed to overcome these challenges.
The first challenge that researchers have discovered is using public datasets such as NSL-
KDD, UNSW-NB15, and KDDCUP99 in IoT attack detection models. Public datasets have
some quality issues, which can lead to poor detection in IoT attack models. We recommend
applying some data preprocessing and data cleaning techniques to improve the quality of
public datasets.

Another challenge relates to building IoT attack models. More research on the de-
tection of IoT attacks should be performed using ML techniques to achieve generalizable
results since there are very few studies comparing various ML algorithms. Researchers can
apply other approaches such as ensemble learning (EL) algorithms and other classifiers
to detect the IoT attacks. A few studies have used hybrid frameworks, which achieved
good performance and high detection rates compared to the use of individual machine
learning algorithms. Thus, we recommend the continued use of hybrid frameworks for the
improved detection of IoT attacks. Moreover, distributed attack detection algorithms have
achieved better attack detections than centralized algorithms, so we recommend using
distributed attack models.

Another challenge is that there was only one study that dynamically generated and
configured IoT system infrastructure management using DevSecOps. Jessica Diaz [33]
addresses the formalization of feedback processes from operations to IoT system devel-
opment. This infrastructure was implemented following good DevOps practices. It was
automated by configuration files and scripts (monitoring as code), and its deployment was
simplified by virtualization and containerization technologies and versioned (GitHub). We
recommend advanced monitoring infrastructure configurations using methods based on
software pipelines and the use of machine learning techniques for advanced supervision
and monitoring.

Study Limitations

Our review has many limitations. First, the search keywords selected and time
of publication (last 5 years) limit this study. Second, it utilized few electronic sources.
Moreover, this study discussed only English papers and we cannot guarantee to have
used all the good studies for our review. Third, the data are provided by private security
companies, such as McAffe and Symantec. It is common for these companies to not publish
scientific papers.

5. Conclusions and Future Work

In this study, we reviewed the performance of IoT attack detection models that use
machine learning techniques to analyze and evaluate attacks. We identified 49 primary
studies between 2016 and 2020 after a comprehensive investigation following an organized
process. We summarized these primary studies based on the datasets, ML techniques, types
of IoT attack, independent variables, evaluation metrics, and monitoring infrastructure via
DevSecOps pipelines. We summarize the main findings as follows:

• Most primary studies used IoT device testbed datasets, and others used public datasets.
NSL-KDD, UNSW-NB15, and KDDCUP99 repositories were found to be the most
frequently used datasets among researchers.

• BN, DT, NN, clustering, SVM, FS, and EL were the ML techniques used in primary
studies, and NNs were the most widely used technique for IoT attack detection.
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• DOS, U2R, and R2L attacks were most widely considered in the primary studies based
on the results we obtained.

• Accuracy, recall, and precision were the most widely used evaluation metrics in the
primary studies.

• Few studies analyzed device log traces from IoT devices to identify IoT attacks and
monitor infrastructure using DevSecOps pipelines.

For future studies on IoT attack detection using machine learning techniques, the
following are recommended:

• More data preprocessing and data cleaning techniques should be applied to improve
the quality of public datasets.

• Using data from real IoT device traffic will enhance the effectiveness of ML techniques.
• The performance of IoT attack detection models should continue to be enhanced

through integration with other algorithms.
• Infrastructure configuration should continue to be monitored using methods based on

software pipelines.
• Machine learning techniques should be used for advanced supervision and monitoring.
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