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Abstract: The objective of systematic reviews is to address a research question by summarizing
relevant studies following a detailed, comprehensive, and transparent plan and search protocol to
reduce bias. Systematic reviews are very useful in the biomedical and healthcare domain; however,
the data extraction phase of the systematic review process necessitates substantive expertise and is
labour-intensive and time-consuming. The aim of this work is to partially automate the process of
building systematic radiotherapy treatment literature reviews by summarizing the required data
elements of geometric errors of radiotherapy from relevant literature using machine learning and
natural language processing (NLP) approaches. A framework is developed in this study that initially
builds a training corpus by extracting sentences containing different types of geometric errors of
radiotherapy from relevant publications. The publications are retrieved from PubMed following a
given set of rules defined by a domain expert. Subsequently, the method develops a training corpus
by extracting relevant sentences using a sentence similarity measure. A support vector machine
(SVM) classifier is then trained on this training corpus to extract the sentences from new publications
which contain relevant geometric errors. To demonstrate the proposed approach, we have used
60 publications containing geometric errors in radiotherapy to automatically extract the sentences
stating the mean and standard deviation of different types of errors between planned and executed
radiotherapy. The experimental results show that the recall and precision of the proposed framework
are, respectively, 97% and 72%. The results clearly show that the framework is able to extract almost
all sentences containing required data of geometric errors.

Keywords: information extraction; health informatics; NLP; text mining; machine learning; radio-
therapy; geometric error

1. Introduction

Systematic reviews are a type of review that uses a rigorous and transparent approach
to provide an evidence-based answer for a particular clinical question by summarizing
relevant literature [1,2]. Systematic reviews are composed by summarizing different
data elements of a particular topic, collected from relevant articles following a detailed,
comprehensive, and transparent plan to reduce bias [2]. Some examples of such data
elements include the population of an intervention, the inclusion criteria for testing the
effect of a drug, etc. The experts manually extract these data elements from the relevant
literature, following a predefined protocol, and build a systematic review, a process which
typically requires a substantial amount of time [1]. The process of data element extraction
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to compose a systematic review is labour-intensive and time-consuming when dealing
with large quantities of data [1–3]. The main challenge that such efforts face lies in the fact
that the required data elements that need to be identified within a particular article lack
particular, defined patterns of occurrence and are typically reported within tables or in
plain text. Moreover, the data elements may occur in a variety of contexts within an article,
rendering their identification extremely difficult.

Within the radiation therapy domain, systematic reviews form extremely useful
mechanisms for providing answers to particular radiation therapy questions and tasks—
for example, identifying evidence of the effective improvement of geometric discrepancies
in the radiation therapy of cancer patients. The geometrical uncertainties are developed
from the treatment process of the external beam radiotherapy of tumors [4]. The main
sources of uncertainty are tumor delineation inaccuracies of the gross tumor volume,
unknown extent of microscopic tumor, organ positional variation within the patient, and
setup variations [4]. The deviation between planned and executed radiotherapy indicates
geometric error, or discrepancy, even if it is small [4]. Therefore, geometric errors have to
be identified and removed for safe radiation therapy. There are many recent studies which
address issues of measurement and the reduction in geometrical errors [5–7].

In this work, we report on the development of a framework based on machine learning
and natural language processing (NLP) for extracting sentences containing required data
elements of geometric discrepancies in radiation therapy from relevant literature. The work
was carried out in collaboration with a research radiation therapist at the Somerset NHS
Foundation Trust in the UK, who collected the articles containing relevant data elements of
geometric errors for experimental analysis. The relevant sentences from a number of articles
containing required geometric errors were manually identified by a radiation therapist
to evaluate the performance of the proposed framework. We experimentally evaluated
the framework and reported on its effectiveness and limitations for the data extraction of
geometric errors of radiation therapy from relevant literature. The experimental results
delineate that the use of an SVM classifier can extract the sentences containing the required
geometric errors with a 97% recall and 72% precision, demonstrating the effectiveness of
our approach.

2. Related Works

The purpose of radiation therapy or radiotherapy is to deliver doses of radiation to
tumors by minimizing the risk of side effects in healthy tissues. Undeniably, radiotherapy
planning and delivery face many uncertainties [8]. Target volume definition, the first step in
the treatment planning chain, is associated with substantial uncertainty [8]. The main sources
of uncertainty are the tumor delineation inaccuracies of the gross tumor volume, the unknown
extent of microscopic tumor, as well as the organ positional variation within a patient and
setup variations [4]. The geometric error or discrepancy indicates any deviation between
the planned and executed radiotherapy, even if it is small [4]. Hence, it is necessary to have
high geometrical accuracy for a safe clinical application of precise radiotherapy. Some recent
studies describe the process of measurement and reduction in geometrical errors [5–7]. There
are some reviews which discuss different types of errors in radiotherapy and the process
to overcome these discrepancies [3,8–10]. Such reviews are extremely valuable and they
necessitate research radiation therapists to manually explore the literature to identify case
specific geometric errors as well as the corresponding measurements to plan for safe doses.
Such tasks though are both resource and time expensive, since the required data elements that
need to be extracted do not follow particular or fixed reporting patterns. Machine learning
approaches can potentially be used to address these challenges [2,11].
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There are a growing number of efforts to identify data elements related to a number
of diseases across both the scientific literature as well social media datasets using machine
learning and NLP techniques [1,12,13]. Goswami et al. developed a machine learning
technique applying a random forest classifier to extract data elements of anxiety outcome
measures from relevant literature [11], with potential to assist reviews with large numbers
of studies synthesising these measures [3]. RobotReviewer is a web-based system that
employs both machine learning and NLP to identify the Risk of Bias (RoB) of how a
particular clinical study was performed [14]. Another recent study by Basu et al. describes
a machine learning framework to identify relevant data elements of congestive heart failure
from literature applying SVM classifier [2]. Several PubMed indexed systematic reviews
of congestive heart failure were utilised to generate the training data in this study [2].
Hassanzadeh et al. proposed a framework for quantifying the semantic similarity of
clinical evidence in the biomedical literature based on a series of component level generic
and domain specific semantic similarity measures [15].

Different workshops on NLP were organised for the de-identification of protected
health information from relevant medical records by the Informatics for Integrating Bi-
ology and the Bedside (i2b2) research group based at Harvard Medical School [16–20].
Yim et al. developed a sparse annotation method for tumour information extraction and
built a conditional random field based system for entity and relation extraction for these
characteristics [21]. Recently, Wang et al. published a review article of clinical information
extraction applications [22]. They analysed different applications, based on machine learn-
ing and NLP techniques, for information extraction from various types of electronic health
records [22].

3. Proposed Framework

However, to our knowledge, there is no study that discusses the issue of automatically
identifying data elements of geometric errors of radiotherapy from relevant publications.
To address this need, a supervised machine learning framework is developed to extract
the sentences containing the required geometric errors of radiotherapy from the relevant
literature. The framework consists of two major parts, as described below.

3.1. Building Training Corpus

We used 60 articles in PDF format related to geometric errors of radiotherapy to
conduct this study. Fitz (https://pypi.org/project/PyMuPDF/1.9.2, accessed on 17 March
2021), a Python module, was used to convert the PDFs to free text. A total of 52 out
of 60 documents were randomly selected to build the training corpus, with two classes,
geometric-errors, and non-geometric-errors. In principle, the geometric errors class should
have the sentences that contain the required geometric errors of radiotherapy. Certain
keywords related to the geometric errors of radiotherapy—e.g., geometric organ error—were
used to identify whether a sentence belongs to the geometric errors class. This set of
keywords was defined by the domain expert and is reported in Table 1. The sentences that
do not contain any of these keywords related to geometric errors were used to form the
non-geometric errors class. There may exist some sentences in an article that contain some
of the required keywords, but do not contain any required data element—i.e., a decimal
number. These sentences were discarded, as they were not relevant to either of the classes.

A sentence similarity measure was used to identify the relevant sentences from a
given article that represent individual classes. The similarity measure, termed sent_sim,
was defined in line with the Jaccard similarity measure [23]. The similarity between a
keyword (say, kw) that represents the geometric error and every sentence (say, S) in a given
article or part of the training set is defined as:

sent_sim(kw, S) =

∣∣T (kw) ∩ T (S)
∣∣∣∣T (kw)

∣∣ (1)

https://pypi.org/project/PyMuPDF/1.9.2
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Here, T (kw) and T (S) denote the set of words in kw and S, respectively. Note that
the values of sent_sim range between [0, 1], where 1 denotes highest similarity. The aim
of sent_sim is to identify how many words of kw exist in S, unlike traditional sentence
similarity measures, such as Jaccard, which compute the similarity based on the common
words of two sentences. Let us assume that kw is a small phrase and S is a large sentence,
but many words of kw exist in S. In that case, the sent_sim score of kw and S will be high,
indicating the sentence S is relevant to kw.

Table 1. Relevant Keywords of Geometric Errors in Radiation Therapy.

systematic displacement error random displacement error

systematic random displacement error rotational random systematic error

translational random systematic setup error translational error

x y z direction translational x y z direction rotational

x y z correction translational x y z correction rotational

translation discrepancies translational discrepancies

rotational discrepancy rotational discrepancies

rotation translation error rotation translation discrepancy

rotation translation discrepancies rotation translation displacement

mean set up error geometric organ error

standard deviation of set up error population systematic error

population random error organ motion translation

organ motion rotation set up error translation

set up error rotation translational correction

rotational correction vector correction

residual error total error mean or SD

total error mean or standard deviation rotational systematic error

translational systematic error rotational random error

translational random error systematic and random population error

anterior posterior inferior superior translation discrepancy

The sentences with sent_sim scores greater than or equal to a prefixed threshold
α and containing a decimal number were extracted from a given article to construct
the geometric-errors class. The value of α was fixed experimentally as described in
Section 5. Sentences with a sent_sim score of 0, for all the given keywords, were used
to form the non-geometric-errors class. The remaining sentences of the document were
discarded. Algorithm 1 describes the detailed steps of the training corpus generation.
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Algorithm 1 Generation of Training Data
Input : (1) A number of free text documents
(2) Keywords← {geometric organ error, random displacement error etc.}
(3) α← A threshold on sent_sim
Steps:

1: for each document do
2: get sentences from document following regular delimiters
3: for each sentence in a document do
4: f lag← 0
5: convert each character to lower case
6: for each term in Keywords do
7: score← sent_sim(term, sentence)
8: if score > α and sentence contain a decimal number then
9: geometric_errors_class← sentence

10: goto step 3
11: else if score 6= 0 then
12: f lag← f lag + 1
13: end if
14: end for
15: if f lag = 0 then
16: non_geometric_errors_class← sentence
17: end if
18: end for
19: end for
20: return geometric_errors_class, non_geometric_errors_class

3.2. Extraction of Desired Data Elements

A machine learning framework was developed in the second stage, where the training
corpus was used to train a classifier to determine whether a sentence from a test article
contains any geometric error. The bag of words model was then applied for generating
features from free text. Unigrams, bigrams, and trigrams generated from sentences were
used as features with the SVM classifier in the experimental analysis. A unigram con-
siders all unique words in a sentence as features [24]. A bigram or trigram, on the other
hand, considers only two or three consecutive words as a feature, respectively [24]. Both
bigrams and trigrams were used in this framework, since there were many terms in the
training corpus—e.g., rotational discrepancy, random displacement error—which should
be conjoined for analysis.

The conventional vector space model was used to represent the vector corresponding
to each sentence [24,25], which is widely used by several text classification and clustering
techniques [26]. Let us consider the number of sentences in the corpus as n and the number
of unique terms—i.e., the number of unigrams, bigrams, and trigrams—as m. Let us also
consider that ti denotes the ith term and the frequency of ti in the jth sentence is denoted by
t fij, i = 1, 2, · · · , m; j = 1, 2, · · · , n. The entropy-based term weighting technique is used by
many researchers to form a term-document matrix from free text data [27,28]. This method
reflects the assumption that the more important term is the more frequent one that occurs in
fewer documents, taking the distribution of the term over the corpus into account [28]. Thus,
the weight of a term ti in the jth sentence, denoted by Wij, is determined by the entropy-based
technique (https://radimrehurek.com/gensim/models/logentropy_model.html, accessed
on 17 March 2021) [28] as follows:

Wij = log(t fij + 1)×
(

1 +

n
∑

j=1
Pij log Pij

log(n + 1)

)
, where, Pij =

t fij
n
∑

j=1
t fij

https://radimrehurek.com/gensim/models/logentropy_model.html
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Let us assume, ~Sj is the vector of a sentence, say Sj, where the ith component of the vector
is Wij—i.e., ~Sj =

[
W1j, W2j, · · · , Wmj

]
, ∀j = 1, 2, · · · , n. The cosine similarity is a commonly

used measure to find similarity between documents [24–26]. Thus, the similarity between
two sentences—say, Sj and Sk—can be defined as:

cos(~Sj, ~Sk) =
~Sj.~Sk

|~Sj| |~Sk|
=

m
∑

i=1
(Wij ×Wik)√

m
∑

i=1
W2

ij ×
m
∑

i=1
W2

ik

, ∀j, k = 1, 2, · · · , n

Note that cosine similarity is non-negative and ranges between 0 and 1, both inclusive.
cos(~Sj, ~Sk) = 1 indicates that the sentences are exactly similar and the similarity decreases
as the value comes nearer to 0.

The SVM classifier is used to classify the sentences of the test documents using the
training corpus. Given a set of training documents in a vector space, SVM finds the
best decision hyperplane that separates individual documents belonging to two different
classes. An SVM classifier extends its applicability on the linearly non-separable data
sets either by using soft margin hyperplanes or by mapping the original data vectors
to a higher dimensional space in which the vectors are linearly separable. The linear
kernel is recommended when a data set has large number of features [29], since it has
been reported that mapping the data to a higher dimensional space using a non-linear
kernel does not result in substantial performance improvement [29]. Since free text data is
high-dimensional, an SVM classifier with linear kernel that improves the performance of
text classification [29,30] is used in the experimental analysis.

4. Experimental Evaluation
4.1. Experimental Setup

The performance of logistic regression, random forest, and SVM classifiers was tested
to classify the sentences of the test documents. The training set was used to tune the param-
eters of these classifiers, applying 10-fold cross validation technique. The sentences of the
test documents were then classified using the best set of parameters of each classifier. The
sentences were either classified to the geometric errors class or to the non-geometric-errors
class. The code and data set that were used to implement the proposed framework are avail-
able at Github (https://github.com/tanmaybasu/A-Sentence-Classification-Framework,
accessed on 17 March 2021).

4.2. Evaluation Measures

The performances of the individual classifiers were evaluated using precision, recall,
and f-measure [25]. The precision and recall can be defined as:

Precision =
True Positive

True Positive+False Positive

Recall =
True Positive

True Positive+False Negative

Here, true positive represents the number of sentences correctly predicted as belonging
to the geometric-errors class. False positive represents the number of sentences that
are predicted as geometric errors but are members of the non-geometric-errors class.
False negative represents the number of sentences that, while predicted as non-geometric-
errors, are members of the geometric-errors class. The f-measure can be defined in the
following way:

F-measure =
2× Recall× Precision

Recall + Precision

https://github.com/tanmaybasu/A-Sentence-Classification-Framework
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F-measure will be high when the values of precision and recall are close to each
other [31]. The value of f-measure is 1 when the values of precision and recall are 1 and
becomes 0 when the precision is 0, recall is 0, or both are 0. Thus, the value of the f-measure
ranges in between 0 and 1. A high value for f-measure indicates the good performance of
a classifier.

4.3. Analysis and Results

The training and test corpora contained 9545 and 4336 sentences, respectively. The train-
ing corpus included 324 sentences belonging to the geometric errors class and 9221 sentences
that were members of the non-geometric errors class. The rest of the sentences of the training
corpus were discarded, as they were not related to either of the classes. Table 2 shows the
performance of the proposed framework using the SVM classifier to classify the sentences of
the eight test documents.

Note that the objective of this framework is to achieve a high accuracy in terms
of identifying sentences containing measurements of different types of geometric errors
from the test documents. Therefore, a high recall is desirable. The sentences of the test
documents containing the required data elements were manually identified by a domain
expert in radiation therapy to evaluate the performance of the framework.

Thus the recall and precision scores for each test document were computed using
the sentences manually identified by the domain expert and the sentences extracted by
the proposed framework. The true positive, false positive, false negative, and recall and
precision scores of each of the eight test documents are presented in Table 2. Almost all the
test documents have zero false negatives, leading to a very good recall score, indicating
that the proposed system is able to retrieve relevant information from these documents.
Table 3 shows that the aggregate recall of the framework using SVM classifier for the eight
test documents is 0.97, while the aggregate precision score is 0.72. A low precision score
is still efficient, since potential reviewers would now need to review only 1/0.72 = 1.38
sentences per document to identify the geometric errors as opposed to reading the entire
document, which, on average, contain around 200 sentences.

Table 2. Performance of the proposed framework using SVM classifier.

Test Document True Positive False Positive False Negative Precision Recall

Doc 1 12 4 1 0.75 0.92

Doc 2 29 4 1 0.87 0.96

Doc 3 12 13 0 0.48 1

Doc 4 3 1 0 0.75 1

Doc 5 12 3 1 0.8 0.92

Doc 6 6 1 0 0.85 1

Doc 7 7 4 0 0.63 1

Doc 8 6 3 0 0.66 1

Table 3. Performance of the proposed framework using different classifiers.

Classifier Precision ∗ Recall ∗ F-Measure ∗

Logistic Regression 0.69 0.95 0.80

Random Forest 0.66 0.91 0.77

Support Vector Machine 0.72 0.97 0.83
* Aggregate score of 8 test documents.
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5. Discussion

We developed a framework based on bag of words model and SVM classifier that
partially automates the process of building systematic radiotherapy literature reviews by
extracting relevant sentences from the literature. Logistic regression and random forest
classifiers also perform well for text classification [11,32,33]. Hence, the performance of
the proposed framework is assessed using these classifiers. The aggregate precision and
recall scores of the proposed framework using logistic regression, random forest, and
SVM classifiers for the eight test documents are reported in Table 3. The f-measure scores,
reported in Table 3, were computed from the aggregate precision and recall scores of the
individual classifiers. It can be seen from Table 3 that the SVM classifier obtained the best
performance in terms of precision, recall, and f-measure.

To our knowledge, the proposed framework is the first of its kind that can auto-
matically extract geometric errors from relevant publications to expedite the process of
systematic literature review. Goswami et al. developed a similar method based on term
frequency and inverse document frequency (TF-IDF)-based term weighting scheme [24] to
extract anxiety outcome measures for comfort intervention from relevant literature [11].
This approach used different articles collected from Medline, EMBASE, CINAHL, and
AHMED related to anxiety outcome measures to build the training corpus [11]. However, a
set of keywords, defined by the domain experts, was utilised to assess whether any of these
keywords occurred in a sentence so as to generate a training corpus, unlike our method that
employs a sentence-matching technique. Furthermore, the keywords that were identified
by the domain experts for this study [11] are fairly simple, whereas the keywords used in
our approach were much more complex. Let us consider the following sentence from test
document 3 [34].

Fuss et al. (5) reported that the translational error at the isocenter was 0.74± 0.53, 0.75± 0.60,
and 0.93 ± 0.78 mm in the RL, CC, and AP directions, respectively.

It may be noted that ’translational error’ is one of the keywords in the proposed
study and this sentence is clearly describing a geometric error. However, this sentence is
indicating another author’s work cited in this paper [34] and hence it is treated as false
positive by the domain expert. There are many such sentences in different test documents.
As the proposed framework is based on bag of words model and was trained on the
sentences that contain the keywords, any similar sentence will be extracted as relevant.
Thus, the number of false positives is high for some test documents, which results in a low
aggregate precision score.

In principle, a high value of the sentence similarity threshold α is desirable in Algorithm 1
so as to avoid a performance degradation. On the other hand, a very high value of α (e.g.,
α = 0.95) may result in the inclusion of very few sentences in the geometric_errors class of
the training set. In order to assess the necessary trade-off between these two, the value of α
was experimentally determined and different training corpora were generated using different
α values. Subsequently, the SVM classifier was performed to classify the sentences of these
training corpora following 10-fold cross validation technique. Eventually, the training set for a
particular α value, with the highest f-measure, was used to classify the test documents. Thus
the value of α was fixed to report the results in Tables 2 and 3.

The performance of the proposed framework was also tested using the conventional
TF-IDF based term weighting scheme of the vector space model for text document repre-
sentation [11,24] instead of entropy-based technique. Additionally, the simple keyword
matching technique using sent_sim similarity measure to build the training corpus is used
to extract relevant sentences from the test documents and the performance is reported in
Table 4. The performance of the SVM classifier applying both the entropy-based feature
weighting scheme and the TF-IDF-based feature weighting scheme is also reported in
Table 4. Moreover, the performance of BioBERT [35], which is a pre-trained language
representation model for the biomedical domain is reported in Table 4. BERT (Bidirec-
tional Encoder Representations from Transformers) is a contextualised word representation
model that is based on a masked language model and pretrained using bidirectional trans-
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formers [36]. This deep learning architecture has been widely used in many NLP tasks
over the last few years [35]. BERT was pretrained on general domain corpora—i.e., English
Wikipedia and books [36]. BioBERT was initialised with weights from BERT and was pre-
trained on full text articles and abstracts from PubMed [35]. BioBERT performed very well
for certain NLP tasks—e.g., sentence classification for relation extraction [35]. We used the
BioBERT pretrained model (https://github.com/naver/biobert-pretrained, accessed on 17
March 2021) and then fine-tuned it on our training corpus. Subsequently, the sentences of
the test documents were classified using this pretrained model and the sentence classifica-
tion framework of BioBERT. It can be seen from Table 4 that the proposed framework—i.e.,
the entropy-based feature weighting scheme and SVM classifier—performs better than
BioBERT and other techniques in terms of aggregate precision, recall, and f-measure scores
of eight test documents. It is observed from Table 4 that BioBERT did not perform well on
the test documents. We checked the vocabulary built by the pretrained BioBERT model
on the PubMED corpus and noticed that it does not contain some useful words from the
given keywords in Table 1, which appeared in many documents of the training and test
corpora. Hence, it could not capture the semantic interpretation of these keywords from
the given texts.

Table 4. Performance of different sentence extraction techniques.

Classifier Precision ∗ Recall ∗ F-Measure ∗

Keyword match technique based on sent_sim 0.76 0.65 0.70

BioBERT pretrained model for sentence classification 0.63 0.84 0.72

TF-IDF based feature weighting scheme + SVM 0.69 0.92 0.79

Entropy based feature weighting scheme + SVM 0.72 0.97 0.83
* Aggregate score of 8 test documents.

The proposed framework has some limitations, although it has performed well em-
pirically. The method extracts required geometric errors from relevant documents, but
it cannot make any judgment on the extracted data. This framework works on free text
documents and it can not read and extract data from figures or charts. Furthermore, the
proposed framework is based on bag of words model and cannot therefore apply any
semantic interpretation of the text extracts. A deep learning based document or word
embeddings could potentially be employed to generate such semantic features from the
documents. In this particular case, however, such deep learning approaches, since they
require a large number of documents for training, may not work well, as the size of the
corpus used in this work is very small.

6. Conclusions

A machine learning and NLP-based framework is proposed in this study to automat-
ically build a training corpus followed by a sentence classification framework to extract
required geometric errors of radiotherapy from relevant literature. The sentence classifica-
tion framework was developed based on bag of words model for text feature generation,
followed by an entropy-based feature weighting scheme and SVM classifier. Although
the SVM classifier extracted almost all the relevant sentences containing the measurement
of different geometric errors, it extracted some false positive sentences as well from the
test documents. In future, we plan to build a deep learning-based embedding by using a
substantial number of relevant articles of geometric errors in radiotherapy over PubMED,
Scopus, Wikipedia, and other relevant resources to properly derive the semantic interpreta-
tion of the contextual information. We also plan to include a direct feed into a systematic
review paper and inferences over the extracted data that would be useful for clinical re-
searchers. Finally, we plan to generalise our approach and assess its effectiveness for other
diseases and clinical settings.

https://github.com/naver/biobert-pretrained
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