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Abstract: One of the main ideas about the Internet is to rethink its services in a user-centric fashion.
This fact translates to having human-scale services with devices that will become smarter and make
decisions in place of their respective owners. Online Social Networks and, in particular, Online Social
Groups, such as Facebook Groups, will be at the epicentre of this revolution because of their great
relevance in the current society. Despite the vast number of studies on human behaviour in Online
Social Media, the characteristics of Online Social Groups are still unknown. In this paper, we propose
a dynamic community detection driven study of the structure of users inside Facebook Groups. The
communities are extracted considering the interactions among the members of a group and it aims at
searching dense communication groups of users, and the evolution of the communication groups
over time, in order to discover social properties of Online Social Groups. The analysis is carried out
considering the activity of 17 Facebook Groups, using 8 community detection algorithms and consid-
ering 2 possible interaction lifespans. Results show that interaction communities in OSGs are very
fragmented but community detection tools are capable of uncovering relevant structures. The study
of the community quality gives important insights about the community structure and increasing the
interaction lifespan does not necessarily result in more clusterized or bigger communities.

Keywords: online social groups; dynamic community detection; interactions network; social network
analysis

1. Introduction

In recent years, the world has seen a progressive change of the way systems are
working, switching from a service-centric design to a more user-centric one. For instance,
the Internet of People (IoP), a newly introduced paradigm for Internet data and knowledge
management [1], confirmed this trend, defining the future Internet with a human-centric
approach where human behaviour models will be used to define the networks or to manage
services. A concrete move in this direction is the Next Generation Internet (NGI) (Available
online: https://ec.europa.eu/digital-single-market/en/policies/next-generation-internet
(accessed on 31 January 2021)), a European initiative promoting the decentralization of
services. Many fields will be touched by this newly born revolution: IoT, Cloud computing
and Machine learning, among the others. One of the fields that will be mostly touched
by this change of paradigm is the one of Social Media (Available online: http://www.
eismd.eu/next-generation-internet-summit/ (accessed on 31 January 2021)), which are the
most used services, where people share their personal data. Understanding the human
behaviour is one of the main issue of NGI because it can help to better design human-
centric services, and Social Media can help to customize services. Indeed, as many studies
have demonstrated, the online behaviour of people has similar characteristics of the offline
behaviour [2–5].

Current Online Social Media (OSMs), such as Facebook, Reddit, or Twitter, provide to
users the possibility to establish and join virtual themed communities of people online [4,6].
People are able to easily join the so called Online Social Groups (OSGs), which gives them
the ability to reach a lot of other people, possibly with common interests. These groups
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exist and can be joined for several reasons: helping connectivity of offline relationships (e.g.,
family groups), get access to more opportunities (e.g., work groups), or for simple common
interests and hobbies and exchange of ideas. Despite the fact that human behaviour
has been studied thoroughly in current OSMs, as the main scenario to understand the
behaviour of users, OSG social properties are not analysed in depth, in contrast to offline
social group properties. Typically, OSGs are virtual communities built around a common
interest. Hashtags can be considered OSGs, as well as Facebook Groups, which probably
represent the first definition of an OSG. Facebook Groups can have different visibility
status: public or private (only visible to members). Public groups, that are groups that
everyone on the Social Media can join, do not represent real content-based communities as
people can exploit the openness of the group to join it, even if they are not interested in its
contents. Instead, private groups require an invitation or that the user who wants to join is
accepted by an administrator of the group. Private groups represent an interesting scenario
that is still unexplored. Usually, in an OSG a user can join without knowing the other
members of the group, and the interaction inside a group are interactions based on the
membership concept. In this paper, we propose an analysis of the temporal user behaviour
in OSGs by exploiting a real set of Facebook Groups. In our analyses, we focus on the study
of dynamic communities built by exploiting the interactions among the users. Indeed, a
group is represented as a graph where a link between two nodes means that these two
nodes have interacted in the group. While the presence of communities in Social Media has
been studied both in a general extent [7], and in a local extent [8,9], studies are still lacking
in this specific case. We propose the concept of an interaction micro-community, which
can be defined as a set of active users tightly connected to each other by the interactions
they make within the group. Contrarily to the study presented in [6], in this work, we tried
to have a more temporal localised approach to understand whether the daily interactions
among people can still form interaction groups. The major contributions of this paper can
be summarized in three points:

• we introduce the dynamic User Interaction Temporal Graph, that is a temporal graph
made of the interactions among the users in the OSG;

• we analyse the dynamic Interaction Communities by exploiting a dataset consisting
of 17 Facebook Groups;

• we propose a set of studies to assess the characteristics of the dynamic interaction
communities by the means of 8 community detection algorithms and 6 measures.

Results show that interaction communities in OSGs are very fragmented and that
different community definitions have major impact on the discovered structure. We dis-
cover that community definitions based on modularity optimization or structural definition
have a more meaningful structure in the scenario of OSGs. Thanks to the temporal side
of our analysis, we additionally discover that increasing the interaction lifespan does not
necessarily result in more clusterized communities and that the core of an interaction
community tends to be active daily.

The paper is organized as follows. Section 2 presents a survey of related works on OSG
and community detection in Online Social Networks. Section 3 introduces the scenario
and shows how we model the scenario using graph theory. Section 4 presents the tools
used for the dynamic community detection, and Section 5 presents the measures we use to
characterize the community structure. Section 6 briefly presents the dataset used for this
work, while in Section 7 we propose the experimental evaluation of our analyses. Section 8
concludes the paper pointing out possible future works.

2. Related Work

Online communities are virtual social spaces where people interact to get and give
information and/or support [10]. OSGs were shown to have mainly two functions, namely
bridging, that is the ability to connect people with different ideas and point of views, and
bonding, that is the ability to bring closer people with a similar social and ideological
profile [11]. Formally, a group is described as two or more individuals who are connected
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by and within social relationships [12]. Instead, an OSG is described in [13] as a group of
users in a Social Media environment who are closely connected to each other, interact with
each other more frequently than with those outside the group, and may have interests on
common topics. As explained in [14], two major types of groups exist. The first category
consists of self-created groups by sorting social contacts into personal sets (colleagues,
friends, followers, etc.). The second category is analogous to the clubs of the offline world:
open to anyone, closed, or secret. Facebook Groups, for example, can be considered an
online aggregation of individuals based on similar interests. The investigation of OSGs
covers a large variety of research topics, such as information diffusion [15,16], the analysis
of social engagement [17,18], the study of social roles [19] and the behaviour of the groups
in general [20–22]. Facebook Groups in particular have been studied under many different
aspects, from viral advertising [23] to peer support in medical conditions [10,24–26] and
even as learning tools in school and university [27–29]. An important work studied the
existence of Dunbar Circles in Facebook Groups [4], showing that these groups have
characteristics similar to the offline world. However, most of their dynamics, especially the
ones related to graph properties [30], are still unknown.

The literature concerning OSGs involved several other online platforms. In [31], Flickr
groups have been used to characterize online groups along with space, time and social
dimensions. In [32], authors show the structure of user interaction patterns in groups
by analysing four datasets taken from LiveJournal, YouTube, Orkut and Yahoo. In [33],
authors present an analysis of YouTube groups by showing the small-world nature of the
interactions. Finally, in [13], authors propose an analysis of the user’s activeness on Twitter
by exploiting hashtag groups.

A very important concept in both Social Network Analysis and graph theory is the
one of community [34]. A community does not have a widely accepted definition, but it
can be defined, at a very high level, as a set of nodes in a graph which are tightly connected
with each other, more than with nodes belonging to other communities [35]. Community
detection algorithms serve to identify such groups of nodes in a network, but the ill-
posedness of the problem led to a plethora of different formal definitions of community,
either based on structural properties of the networks or on the algorithm used to detect
them. Several algorithms have been proposed during the years [34]. The importance of
community detection in OSNs has been already highlighted [8,9], and several studies have
been proposed [36–39], and some tools specifically developed for the scenario of the Next
Generation Internet are already appearing [40].

Concerning the specific study of the community structure of Facebook Groups, a recent
work [41] analyses the dynamic communities detected in a Facebook Group, based on the
sentiment expressed in the posts during a certain period of time. Another previous relevant
study, [6], proposes a study to understand at a general extent what are the interaction
communities in OSGs, but considers the interaction graph in an incremental fashion. In
fact, in that work, once an edge appears in the interaction graph, it will never be removed.

3. Modelling Interactions in OSGs

In this work we will study the interactions among users of Online Social Groups, and
in particular we will study how their interactions tend to form communication groups
within the social groups. To model the activity of the users inside an Online Social Group,
the mostly used structure in literature is the graph coming from graph theory [6,30,34,42].
In its most basic form, a graph G = (V, E) is a structure which is able to model a set of
objects or entities through the set of vertices V, and their relations or interactions through
the set of edges E. In our specific case, the set of vertices V will be used to model the
users in an Online Social Group, and the set of edges E ⊆ V × V will be used to model
their social interactions in terms of comments to posts and comments to other comments.
This model was introduced in [6], with the name User Interaction Temporal Graph (UITG).
However, this model does not characterize the dynamics of the social group, due to the
lack of temporal information. To face this issue, we enrich the edges E ⊆ V×V×N, where



Information 2021, 12, 113 4 of 26

the added information specifies at what time the interaction happened. To capture the
dynamic evolution of the interactions in the OSG, we introduce the dynamic view of the
UITG, called dynamic UITG (d-UITG), which works in a similar way to the UITG, but
introducing an edge lifetime. Therefore, fixing an edge life duration d, the d-UITG at time t
contains only the edges appearing in the time span starting from t− d and ending at time t.
The study of the d-UITG is organised as follows:

• Fix an observation period. We collect the interactions of an OSG that appeared in a
fixed interval. In this study, the observations are made once every 24 h.

• d-UITG construction. The graph is obtained by fixing an edge life duration d. The
graph at time t is then obtained considering the interactions appearing in the time
span starting from t− d, as described above.

• Dynamic community detection. We evaluate the communities by applying a specific
community detection algorithm on the obtained d-UITG.

Through the introduction of this view, we aim to highlight the interactions that are
recurring over time, which, with a long enough edge life duration, will be present in each
subsequent d-UITG of the interaction network. Figure 1 showcases how the d-UITG is built.
On the top part of the Figure, a shard of a UITG is represented.Below, we show the d-UITG
at time t1, which includes two edges and three nodes, and at time t2, which includes four
edges and four nodes. In the graphical representation of the d-UITG, the time labels on the
edges are omitted for readability reasons. Thanks to the d-UITG, we are able to model the
interactions recurring among users of OSGs.

Figure 1. A small example to showcase how the dynamic User Interaction Temporal Graph (d-UITG)
is built.

Thanks to our analyses, we want to understand the typical human behaviour in these
contexts, which is much different with respect to the classical scenario of OSNs. Indeed, in
a traditional OSN people need to explicitly express the will to connect with other users,
usually through friendship requests. On the other hand, a group is a much different entity,
which revolves around a potentially numerous set of users, and typically, aside from a few
exceptions, the users in the group do not know each other. Groups are not built around
acquaintanceships, but they are built around shared interests, which range from arts to
sports, from politics to health and beyond. Given their extreme novelty in the wide scenario
of online social services, it is important to understand how people make use of them.

4. Dynamic Community Detection

In this paper, we will focus our attention on finding interactions communities in OSGs,
that are the dense zones of the interaction graph. One of the major novelties included
in this work, with respect to other similar works present in the literature, is that we
consider that edges may be added as new pairs of nodes interacting, but edges may also
disappear as two nodes do not interact again within a fixed amount of time. This novelty
opens the possibility to have a more detailed and fine grained study of the community
structure. Indeed, a direct consequence of considering an edge can disappear through time
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is the two corresponding users do not interact frequently enough. If the users have their
duration refreshed and if the two users interact regularly, this will help us identify the
core interaction communities in the groups. The detection and analysis of such structures
is crucial, and can reveal important patterns of information flow and diffusion in these
scenarios where a numerous set of peers have the chance to interact each other.

To perform the community detection task, we apply various algorithms, which can be
categorized into two dynamic community detection approaches, namely the Instant Opti-
mal approach and the Temporal Trade-off approach [43]. In the Instant Optimal approach,
the community detection task at time t is performed using only the state of the network at
time t. In this approach, the dynamic network is, usually, observed at equally distant points
in time and for each observation the community structure is computed from scratch. This
enables the usage of static community detection tools for the analysis of dynamic networks.
We decided to apply this approach with 7 community detection algorithms as follows:
Democratic Estimator of the Modular Organization of a Network (DEMON) [44,45] and
label propagation [46] are two algorithms based on node labelling; Fast Greedy [47] and
Multilevel [48] are two algorithms based on the modularity optimization; Walktrap [49]
and Infomap [50,51] are two algorithms based on random walks; K-core is a structural
definition based on the notion of degeneracy. Our choice was made based on a variety
of unique community-type definitions and, for each type of community definition, we
selected two algorithms.

On the other hand, a Temporal Trade-off approach, to compute the community struc-
ture at time t, can use the state of the network at time t and possibly all the information
available in the past. The community detection process is usually carried out initializing
the community structure at the first observation, and then keeping it updated through
time. The algorithm of our choice belonging to this approach is TILES [38]. The choice was
driven mainly by the logic of the community updates behind the algorithm. In TILES, each
time an edge is added or removed in the network, communities are updated locally with
respect to the change.

We now briefly present the community detection algorithms used for our analyses.

4.1. Tiles

Considering the temporal nature of communities, we need to choose an algorithm
belonging to the Temporal Trade-off approach [43], and TILES [38] is a Temporal Trade-off
approach with a very low running time. The algorithm considers the edge dynamism
network model, which consists of considering that the network changes in terms of edge
addition or removal, opposed to the node dynamism model which considers that whole
nodes may join or leave the network. TILES adopts a triangle-based (subgraph of three
nodes fully interconnected) definition of community to avoid accepting chain structures
as communities. In fact, a node is required to be involved in at least a triangle with other
nodes already inside a community to be accepted inside a community. The approach is also
capable of considering edges that disappear from the network, either by explicit removal or
implicit edge removal. In the explicit removal, a time at which each edge disappears must
be specified. With the implicit edge removal, instead the algorithm takes as input a time to
live (ttl) l for the edges, such that an edge (u, v, t) is removed at time t + l unless another
edge (u, v, t′) is present such that t′ ∈ [t, t + l], which will refresh the timeout, letting the
edge survive until t′ + l.

4.2. DEMON

Democratic Estimator of the Modular Organization of a Network (DEMON) [44,45]
is a two step community detection algorithm. In the first step, communities local to each
node are computed using label propagation [46], then these local communities are merged
together to build the output communities. Local communities obtained from all nodes are
then analysed and possibly merged pairwise using a threshold ε, which is a parameter
of the algorithm. Two local communities are merged together if and only if at most a
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fraction equal to ε of the smaller community is not included in the bigger one. The merging
process goes on until there are no more communities that can be merged together, and the
resulting communities are returned as the global communities of the whole network G.
The algorithm runs in time O(nK3−α) for a scale free network of n vertices and maximum
degree K. This approach is most useful in systems where the computational power is a
precious resource, such as Decentralized Online Social Networks [52], because, instead of
computing the communities from scratch each time they are needed, one can also keep them
updated according to the network changes (namely: edge or node addition and removal).

4.3. Walktrap

Walktrap [49] is a hierarchical community detection approach based on random walks.
The general idea is that performing random walks on a graph, it tends to get trapped
into sets of nodes that are densely connected. Initially, walktrap starts by assigning each
node to its own community. Then, a pair of adjacent communities is chosen such that an
objective function, based on computing the distance among the nodes within the chosen
communities, is minimized. The two identified communities are merged together, and the
merging process is stopped when all the nodes are unified within the same community.
The returned communities are the ones of the partition with the highest modularity among
all partitions. The algorithm computes communities structure in time O(mnd) where n is
the number of vertices, m is the number of edges and d is the height of the corresponding
dendrogram.

4.4. Multilevel

Multilevel [48] is an iterative algorithm based on the optimization of network modular-
ity by the means of the local contribution of each node. At first, each node is assigned to its
own community, then, through an iterative procedure, a node will change its community
based on its contribution to the modularity score. The iterative procedure is repeated
until modularity cannot be increased further. At this point, a new network is created by
aggregating the nodes that belong to the same community, and on this aggregated network
the iterative procedure is applied again to detect higher-level communities. The whole
process is repeated recursively until only one node remains and the method runs in time
O(n2) where n is the number of vertices.

4.5. Label Propagation

Label propagation [46] is a very efficient algorithm for community detection claims to
have almost a linear time complexity. The idea behind this algorithm is that a node should
decide its community based on the communities its neighbours belong to. The algorithm
starts by assigning a unique label to each node. Through an iterative procedure, labels are
updated until nodes will stop changing their labels. To update the label of a node x, the
most common label of its neighbours is chosen. In case of a tie (two or more labels are the
most frequent ones among the neighbours of node x), a random label is chosen among the
most frequent. The algorithm requires no parameter and the time complexity is O(dm)
where m is the number of edges and d is the total number of iterations.

4.6. K-Core

A very basic definition of community is given by the clique: a set of nodes fully inter-
connected. Despite its simple definition, finding all maximal cliques is a computationally
hard task (NP-complete problem). The definition is also a very strict community definition
and would surely lead to cases in which suboptimal communities are detected because of
the missing few edges. A relaxation of the concept of clique is the K-core, which relaxes the
concept of clique because, in a K-core, nodes must have at least k neighbours within the
core. In other words, it is a subgraph such that each node has a degree of at least k. For
large enough graphs, the K-core decomposition has O(m) time complexity, where m is the
number of edges [53].
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4.7. Infomap

Infomap [50,51] involves the optimization of the map equation, which models the
description length of a random walk. The algorithm starts by assigning each node to
its own community and nodes change their community to their neighbour’s community
for which the map equation value is the lowest. If no more changes are possible, a new
network is built where the nodes are the modules detected up to now, and the algorithm is
repeated until a single node remains. The output is a hierarchical community structure of
the network. The computational complexity of the algorithm is O(e) [54], where e is the
number of edges.

4.8. Greedy Modularity

The greedy modularity method [47], also widely known as the Clauset–Newman–
Moore greedy modularity maximization, is a modularity maximization approach in which
nodes are initially in their own community. The pair of communities that, if considered
as a single community, increases the most the modularity value is then merged. The
merging process is repeated until there are no more merges that increase the modularity
score. The algorithm has time complexity O(mdlogn) where n is the number of vertices,
m is the number of edges and d is the depth of the dendrogram describing the network’s
community structure.

5. Community Structure Evaluation

The application of the eight algorithms presented in this section will return just as
many different community structures. We will then evaluate these structures using six
measures which are introduced in this section for convenience.

Initially, we will analyse the community structure from a general point of view. In
particular, to have a first understanding of the detected structure, we will study the number
of communities and the number of active nodes for each algorithm. We say that a node is
active at time t if it belongs to at least one community at time t. These two features of the
community structures analysed will help us in assessing whether the algorithms used were
capable of detecting a relevant community structure or not. For instance, a small number
of communities and a small number of active nodes is a clear sign that the community
structure is non-existent.

Since our study is centred on the study of the interaction community and its evolution
through time, we will also study how much the community structure grows over time. To
this purpose, we will study the growth rate, introduced in [6], which is defined as:

GR
(

Cj
i

)
=

∣∣∣Cj
i

∣∣∣∣∣∣∣AN
(

Cj
i

)j−1
∣∣∣∣ − 1 (1)

where Cj
i is the ith community at the jth observation and AN(C)j is the set of active nodes of

the community C at the jth observation. The growth rate measures how much a community
has grown in size only considering newly activated nodes. This measure does not consider
nodes that were already active in the previous view to avoid the possibility of having very
high or low values coming from large community join or split events. Through this feature,
we aim to capture, in a dynamic fashion, whether the community structure grows, at which
rate or if it remains roughly the same.

Lastly, we evaluate the community quality structure through three widely used fea-
tures: modularity, conductance and internal density. Modularity of a community structure
evaluates how much the structure is modular, or, in other words, how much the communi-
ties are internally densely connected, but are well separated to each other. The conductance
of a community evaluates how well the community is separated from the rest of the graph.
We aggregate by taking the maximum value for each observation, so that the structure is
evaluated by the worst case boundary. The internal density of a community evaluates how
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much a community is dense in terms of edges, thus how much the community is well knit.
We aggregate the values by taking the minimum value for each observation, so that the
structure is evaluated by the worst case boundary.

6. Dataset

We used a dataset presented in [42], which is made of the activity of 17 Facebook
Groups gathered by an HTTP-crawler based on Selenium (Available online: https://www.
seleniumhq.org/ (accessed on 31 January 2021)), a browser automation library. The activity
gathered is in terms of posts published by the users of the groups, comments to such posts
together with a reference to the original post, and comments to other comments again with
a reference to the original comment. The crawler was able to retrieve all the interactions
for a large portion of the groups available in the dataset, while for the others we have
only partial information due to the high activity of users per day. Indeed, due to the
excessive number of interactions performed on some groups (such as the group Sport3,
which has about 226 posts per day), and due to the way of Facebook to organize the pages
of groups, the browser page managed by our crawler was not able to retrieve all the history
of the groups. This effect is also caused by massively targeted marketing campaigns where
some members publish posts to promote services or products. A recap of the information
gathered can be found in Table 1.

Table 1. General description of the Facebook Groups.

Group Cat. Days Users Min Date Max Date Posts

Edu1 Edu 388 10,643 01/01/17 24/01/18 3555
Edu2 Edu 317 46,016 06/04/17 18/02/18 5271
Edu3 Edu 393 21,195 25/01/17 22/02/18 5060

Sport1 Sport 249 35,671 27/08/17 03/05/18 5588
Sport2 Sport 370 3589 04/02/17 09/02/18 708
Sport3 Sport 28 107,459 13/02/18 14/03/18 6353

Work1 Work 406 26,901 02/01/17 12/02/18 1444
Work2 Work 418 4925 04/01/17 26/02/18 945
Work3 Work 318 25,257 13/06/17 27/04/18 4809
Work4 Work 485 12,151 03/01/17 04/05/18 2651

Ent1 Ent 130 6941 30/09/17 08/02/18 5009
Ent2 Ent 123 15,028 22/10/17 23/02/18 3777
Ent3 Ent 120 39,079 02/01/18 03/05/18 4904
Ent4 Ent 178 9392 09/09/17 06/03/18 3543

News1 News 111 49,761 07/10/17 26/01/18 155
News2 News 91 37,253 08/11/17 07/02/18 3397
News3 News 406 5083 02/01/17 12/02/18 1133

The Table shows the groups’ category (Category), the number of consecutive days on
which our crawler collected the interactions (Days), the number of groups’ users (Users),
the date of both the first (min Date) and the last post (max Date) retrieved by our crawler,
and the total number of posts retrieved from the group in the monitored period (Posts).
As we can see, the groups are quite heterogeneous, in fact they cover five different topics
(Education, Sport, Work, Entertainment and News). We covered crawl lengths ranging
from a few tens of days in Sport3 to almost one year and a half in Work4. The number
of users ranges from a few thousands in Sport2 to more than 100,000 in Sport3 and the
number of posts is between 155 in News1 and 6353 in Sport3.

https://www.seleniumhq.org/
https://www.seleniumhq.org/
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7. Communities in the d-UITG

In this Section, we present the study we conduct regarding the interaction communities
in OSGs. Starting from the interactions gathered by the HTTP-crawler, a UITG was built
such that if a user A writes a comment at time t to a post owned by user B, the edge (A, B, t)
will be present in the graph. Analogous to this case, when a user A writes a comment
to another comment posted by user B at time t′, the edge (A, B, t′) will be present in the
graph. As output, we obtained a list of interactions, sorted by ascending timestamp.

To apply an Instant Optimal approach, we proceed in the following way. Fixing an
edge life duration d, we produce a d-UITG once every 24 h, and then, for each d-UITG,
we consider it as a static graph Gi. Each Gi represents the state of the interaction network
of the ith day, and contains the edges that were created up to d seconds earlier. From
the perspective of the OSG, each Gi contains the recent interactions among users each
day, where an interaction is considered recent if it happened within the last d seconds.
Finally, we apply the algorithms presented in Section 4 to each Gi we produced to get
the communities.

As for the Temporal Trade-Off approach, TILES can be applied to the UITG without
explicitly extracting the d-UITG, because the algorithm is already capable of managing the
dynamics of the edges. In particular, to be able to model the disappearing of edges, we
decided to apply TILES with the implicit edge removal, such that each edge has the same
relevance, and a community structure would emerge around groups of users interacting
frequently. To be consistent with the experiments carried out using the Instant Optimal
approach, the ttl of the edges is set to be equal to the edge life duration d that we decided
to set for the extraction of the d-UITG, for each of the experiments. Independently of the ttl
we set for the edges, we once again decide to inspect the community structure once each
24 h.

Since the edge life duration d is a parameter of our experiments, we decided to produce
two sets of experiments, to be able to capture possibly different behaviours based on its
length. In the first experiment performed, we set d = 86,400 s (1 day) as the edge life
duration to capture small sets of users interacting with each other at least once per day.
In the second experiment, we set the longest edge life duration, d = 604,800 s, 7 days, to
identify interaction communities happening around possibly recurring or weekly events,
such as sport events, periodic occurrences and so on.

In all the experiments, we decided to inspect the community structure once per day
for three motivations:

• First of all, having a too dense observation may lead to the situation in which we are
not able to detect any real evolution of the community structure in time.

• The second motivation is connected to the fact that human life, generally speaking,
follows a 24 h cycle, and therefore it makes sense to align with it.

• Finally, to be able to fruitfully compare the results of all the experiments, we needed
observations at the same point in time, despite the different edge life durations.

In the following sections, we present the empirical results concerning our analysis.
In the plots, despite the fact that the crawling process started in different days for each
group, we decided to temporally align all results. Therefore, at time t = 0 we have the
results of the first day of activity of each group. This will help us understand the activity
of the groups and the quality of the interaction communities detected aligned to the first
available information.

7.1. Dynamic Communities Analysis: Community Number

The first set of results we present concerns the number of communities detected in the
d-UITG. Figures 2–9 show the number of communities detected by the eight community
detection algorithms used, for each edge life duration.
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(a) Edge life duration = 1 day

(b) Edge life duration = 7 days

Figure 2. Number of communities detected by Democratic Estimator of the Modular Organization of
a Network (DEMON).

(a) Edge life duration = 1 day

(b) Edge life duration = 7 days

Figure 3. Number of communities detected by Fast Greedy.

(a) Edge life duration = 1 day

(b) Edge life duration = 7 days

Figure 4. Number of communities detected by Infomap.
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(a) Edge life duration = 1 day

(b) Edge life duration = 7 days

Figure 5. Number of communities detected by K-core.

(a) Edge life duration = 1 day

(b) Edge life duration = 7 days

Figure 6. Number of communities detected by label propagation.

(a) Edge life duration = 1 day

(b) Edge life duration = 7 days

Figure 7. Number of communities detected by Multilevel.
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(a) Edge life duration = 1 day

(b) Edge life duration = 7 days

Figure 8. Number of communities detected by TILES.

(a) Edge life duration = 1 day

(b) Edge life duration = 7 days

Figure 9. Number of communities detected by Walktrap.

Considering the edge life duration equal to 1 day, we immediately observe that some
of the groups, namely Sport2, Work3, Work4, News1 and News3, do not show a stable
community structure, with a reduced number of communities or no communities at all.
On the other hand, all the other groups can be categorized together as the number of
communities tend to increase over time. We detect similar results by fixing the edge life
duration for to 7 days. In particular, the same five groups show an irrelevant community
structure, proving that the result is not bound to the community detection algorithms used.
On the other hand, in the other groups, the number of communities tend to grow very
steeply in the first observations, but then the growth stops suddenly and, even if there is
some volatility in the number of communities over time, the number seems to stabilize
within the same order of magnitude. There are, however, some exceptions. For instance,
for the methods based on random walks, namely Infomap and Walktrap, the number of
communities is constantly increasing over time. A similar result is obtained with label
propagation, although with some noise in the result, due to the detection process. The
result hints at the possibility that some algorithms are not well suited for this kind of
extremely dynamic context.
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Overall, we observe that the community detection tools do not converge on a single
community structure, but instead we see a gradient that ranges from a small number of
communities detected by K-core (see Figure 5), to several hundreds detected by Infomap
(see Figure 4). In addition, Walktrap and label propagation have a higher number of
communities with respect to the other methods, while TILES, the only method following a
temporal trade-off approach, shows an average number of communities.

The groups showing the most communities are again Sport1, Sport3, Entertainment3
and News2, while the groups Sport2, Work3, Work4, News1 and News3 do not show a
relevant number of communities. An important effect of using many different algorithms
for community detection can be seen for the group Work1. In this case, DEMON is not able
to detect a meaningful community structure, but other algorithms, such as Fast Greedy, are
instead able to retrieve a relevant structure. One last important result is that having a longer
edge life duration does not have a clear impact on the number of the communities. Indeed,
in some cases we see the number increasing, such as in DEMON, as a direct consequence
to the fact that more edges are considered in the community detection process. In some
other cases we see the number of community decreasing, such as in Fast Greedy, as a direct
consequence to the fact that more edges to be consider can lead to communities being
brought close together, up to the point where they merge. Lastly, for K-core and TILES
the number remains similar, however in some cases TILES detects a much larger number
of communities.

These sets of results suggest that further investigation is needed because a relevant
community structure can be found and it shows some non-trivial dynamics which are
worth to be studied.

7.2. Dynamic Communities Analysis: Active Nodes

Having detected that some groups show a non-trivial dynamic community structure,
we decided to investigate the nodes which make up the communities, and therefore we
computed the number of active nodes at each view. A node is said to be active during a
view t if it belongs to at least one community in the view t. Figures 10–17 show the number
of active nodes detected by the eight community detection algorithms used, for each edge
life duration.

(a) Edge life duration = 1 day

(b) Edge life duration = 7 days

Figure 10. Number of active nodes detected by DEMON.



Information 2021, 12, 113 14 of 26

(a) Edge life duration = 1 day

(b) Edge life duration = 7 days

Figure 11. Number of active nodes detected by Fast Greedy.

(a) Edge life duration = 1 day

(b) Edge life duration = 7 days

Figure 12. Number of active nodes detected by Infomap.

(a) Edge life duration = 1 day

(b) Edge life duration = 7 days

Figure 13. Number of active nodes detected by K-core.



Information 2021, 12, 113 15 of 26

(a) Edge life duration = 1 day

(b) Edge life duration = 7 days

Figure 14. Number of active nodes detected by label propagation.

(a) Edge life duration = 1 day

(b) Edge life duration = 7 days

Figure 15. Number of active nodes detected by Multilevel.

(a) Edge life duration = 1 day

(b) Edge life duration = 7 days

Figure 16. Number of active nodes detected by TILES.
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Figure 17. Number of active nodes detected by Walktrap.

The plots show that in some groups, namely Sport2, Work2 Work3, Work4, News1 and
News3, we see very few active nodes, despite the approach used to detect the communities.
Considering that we also observe that these groups show a low amount of communities,
we can conclude that in these 5 groups there is no dynamic community structure at all. For
this reason, we will ignore these 5 groups in any further consideration. In all the other
groups, instead, we detect an ever-increasing number of active nodes, even at a very late
stage of the views. This suggests that the number of users who are daily active users and
are involved in interaction groups increase as the group lifecycle progresses. Moreover,
we notice that this happens regardless of the edge life duration. Additionally, we notice
that only in some cases the number of active nodes is sensibly higher for the longer edge
life duration, namely for the communities detected by DEMON, TILES and some cases
of K-core and label propagation. In general, the number of active nodes has a very steep
increase at the very beginning of the history of the groups, which is more distinct in the
experiments where the edge life duration is set to 7 days. Additionally, in this case, we also
notice that in some groups (Sport1, Sport3 and the groups in the Entertainment category),
right after the steep increase, there is a sudden drop of the number of active nodes. This
strange behaviour may suggest that at the very beginning of the life of a group many users
are encouraged to engage with other users, some of them then lose interest in interacting
further more.

This preliminary analysis shows a first characterization of the community structure
detected by the chosen algorithms in the groups analysed. In particular, we saw that out of
the 17 groups considered, 11 of them showed a complex interaction community structure
that is worth to be studied further in detail. Therefore, for the rest of the paper, we will
only consider the following groups: groups in the Education category (3 groups), groups
in the Entertainment category (4 groups), News2, Sport1, Sport3 and Work1. Additionally,
we only show the results of the advanced analyses of the four most relevant community
detection algorithms, out of the eight we initially considered. In detail, we will consider
DEMON (we discarded label propagation because they are both based on the same prin-
ciple), Fast Greedy (we discarded Multilevel, the other approach based on modularity
optimization), K-core (because of its unique definition), TILES (because its approach is
unique with respect to the others). We discarded both approaches based on random walks,
namely Infomap and Walktrap, because their approaches do not fit well the scenario we
consider and their very large number of communities detected is a sign that the community
structure is completely shattered with respect to the other approaches.
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7.3. Dynamic Communities Analysis: Growth Rate

To have a better understanding of the ability of the interaction communities to form
and attract new nodes, we consider the growth rate, as explained in Section 4.

Figures 18–21 show the average growth rate of the communities found by the selected
four community detection algorithms in the eleven groups. In the first experiments, when
we set edge life duration to be 1 day, we see that at the beginning of the crawling process
the growth rate of the communities often exceeds 1, except for K-core. This means that, on
average, at the beginning of their lives all communities are made of at least half of nodes
that were previously not active. This translates into having communities that grow very
rapidly at early stages, where we also observed a rather steep increase of the number of
active nodes, as shown in Section 7.2. In most cases, the growth rate tends to decrease
as time passes by, reaching values in the interval between 0.1 and 1. The result holds
despite the edge life duration. Moreover, we notice that the growth rate observed in the
communities detected by DEMON and TILES is highly unstable, which is a clear sign
that the dynamism of the network can highly impact the structures that are found. Fast
Greedy detects a community structure that is much more stable over time, although the
growth rate values tend to be smaller in most of the cases, as in Work1. A very unique
result is achieved using K-core (see Figure 20), where the growth rate starts at smaller
values, but it is much more stable through time. The results we observe in this section are
tightly connected to the definition of community adopted by each algorithm. The efficient
approaches based on the output of a process, such as DEMON and TILES, which have a
non-structural definition of community, tend to be highly unstable because small changes
in the network can have serious repercussions on the overall community structure. On
the other hand, K-core, with its very strict definition of community, shows a community
structure which is, overall, growing at a steadier, although slower, pace.

(a) Edge life duration = 1 day

(b) Edge life duration = 7 days

Figure 18. Growth rate of communities detected by DEMON.
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(a) Edge life duration = 1 day

(b) Edge life duration = 7 days

Figure 19. Growth rate of communities detected by Fast Greedy.

(a) Edge life duration = 1 day

(b) Edge life duration = 7 days

Figure 20. Growth rate of communities detected by K-core.

(a) Edge life duration = 1 day

(b) Edge life duration = 7 days

Figure 21. Growth rate of communities detected by TILES.
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7.4. Dynamic Communities Analysis: Modularity

We conclude the study proposed in this paper with a detailed study of the community
structure identified by the four community detection algorithms used in this paper. The
structure is evaluated using modularity, which estimates how much a community structure
is modular, the maximum conductance, to estimate how much the communities are well
separated each other, and the minimum density, to estimate how well knit the communities
detected by each approach are.

Figures 22–25 show the modularity of the community structure detected by the se-
lected algorithms in the groups considered. As expected, Fast Greedy is able to detect
a community structure with a very high modularity score, as the algorithm is based on
modularity optimization. The only exception in this algorithm is group News2, which
has a low modularity score. An opposite result is achieved by K-core, which detects a
community structure with an extremely low modularity score. This is a direct effect of the
structure detected by the algorithm, which is similar to a clique. Indeed, modularity scores
suffers greatly when the community structure detection is very strict, as in this case, but,
on the other hand, may not be a good indicator if the network is made of several clique-like
structures [35].

(a) Edge life duration = 1 day

(b) Edge life duration = 7 days

Figure 22. Modularity of communities detected by DEMON.

(a) Edge life duration = 1 day

(b) Edge life duration = 7 days

Figure 23. Modularity of communities detected by Fast Greedy.
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(a) Edge life duration = 1 day

(b) Edge life duration = 7 days

Figure 24. Modularity of communities detected by K-core.

(a) Edge life duration = 1 day

(b) Edge life duration = 7 days

Figure 25. Modularity of communities detected by TILES.

DEMON and TILES detect a community structure which is higher than K-core, but
still very low. In few cases, namely Entertainment4 and Sport1, the modularity score
slightly increases by the end of the simulations. Increasing the edge life duration helps in
stabilizing the community structure, especially in the case of DEMON, while in the case of
TILES slightly increases the modularity score.

7.5. Dynamic Communities Analysis: Conductance

Figures 26–29 show the conductance of the communities detected by the selected
algorithms in the groups considered.

The values of conductance of the community structure detected by TILES are the
highest, meaning that these communities are poorly separated to each other. The con-
ductance starts with a high value and increase up to reaching 200, and a longer edge life
time has no noticeable impact. This worse score is an effect of the way the algorithm
works, which re-evaluates the community structure only locally to where the edges are
added or removed, thus leading to situation where two sets of nodes are tightly connected
but they make two different communities. The communities detected by DEMON and
K-core achieve similar results, while the best (lowest) results are once again obtained by
Fast Greedy.
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(a) Edge life duration = 1 day

(b) Edge life duration = 7 days

Figure 26. Conductance of communities detected by DEMON.

(a) Edge life duration = 1 day

(b) Edge life duration = 7 days

Figure 27. Conductance of communities detected by Fast Greedy.

(a) Edge life duration = 1 day

(b) Edge life duration = 7 days

Figure 28. Conductance of communities detected by K-core.
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(a) Edge life duration = 1 day

(b) Edge life duration = 7 days

Figure 29. Conductance of communities detected by TILES.

If we consider a longer edge duration time, the conductance scores increase for
all algorithms but TILES. This result can be ascribed to the ability of TILES to manage
better the dynamism of the edges, and therefore can create communities that are more
resistant to the test of time. Instead, the other algorithms suffer the fact that each time the
community structure must be computed from scratch. Interestingly enough, the groups in
the Entertainment category and the groups Sport1 and Sport3 suffer more from a longer
edge life duration. Additionally, once again, the group News2 achieve the worst score,
highlighting how the interaction in that group is not so well structured.

7.6. Dynamic Communities Analysis: Internal Density

Figures 30–33 show the internal density of the communities detected by the selected
algorithms in the groups considered.

As we can see from the plots, Fast Greedy and K-core achieve significant values of
internal density. Indeed, in the first case the internal density values range from 0.004 to 0.1,
and in case we set the edge life duration to 7 days we obtain similar results. In the latter
case values are sensibly lower, ranging from 0.0007 to 0.008, which is clearly an effect of
the structural definition of the community adopted in this case.

(a) Edge life duration = 1 day

(b) Edge life duration = 7 days

Figure 30. Internal density of communities detected by DEMON.
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(a) Edge life duration = 1 day

(b) Edge life duration = 7 days

Figure 31. Internal density of communities detected by Fast Greedy.

(a) Edge life duration = 1 day

(b) Edge life duration = 7 days

Figure 32. Internal density of communities detected by K-core.

(a) Edge life duration = 1 day

(b) Edge life duration = 7 days

Figure 33. Internal density of communities detected by TILES.
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In the case of DEMON and TILES, we notice that values are much higher, which is
connected to the community structure that is made of smaller communities. Overall, we
can see that the internal density of the communities tend to lower over time, which is a sign
that nodes can join existing communities. Additionally, the plots show that with a longer
edge life duration the internal density achieved by most of the community structures is
only slightly less.

8. Conclusions and Future Works

In this paper we studied the dynamic interaction structure of OSGs in terms of
dynamic community detection. Eight, well known, community detection algorithms were
exploited to analyse a dataset of Facebook Groups. The analyses were carried out using
two different approaches for dynamic community detection: the Instant-Optimal and the
Temporal Trade-off. The dataset is made of the stream of interactions of 17 Facebook
Groups. For each group, we performed two sets of experiments, one for each edge life
duration we decided to study: 1 day and 7 days.

Findings show that the interaction communities are fragmented, meaning that several
discussions happen at the same time within the groups. The choice of the algorithm
greatly influences the community structure detected, and through an analysis of three
quality measures, we come to the conclusion that modularity optimization and structural
definitions are the best in this scenario. Additionally, we notice with a longer edge life
duration, the interaction network becomes more stable in terms of number of communities
and in terms of nodes belonging to these communities. However, setting a longer edge
life duration does not necessarily bring the community structure to a single community,
confirming the existence of numerous parallel discussion groups, which are made of cores
of users that interact daily.

As future work, we plan to study more in detail the dynamic community structure
using more sophisticated techniques and measures, in order to highlight other important
properties of OSGs. We plan to investigate more in detail the structure of the communities,
by studying different features, such as the size of the communities, and their composition,
and the whole lifecycle of the communities. Furthermore, we plan to analyse the role and
the activity of central nodes in the community structure by using appropriate measures [55].
Finally, we plan to investigate the effects of community events, and a more detailed view
of the community lifespan and of the nodes composing each community at each stage of
its lifecycle.
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