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Abstract: For almost every online service, it is fundamental to understand patterns, differences and
trends revealed by age demographic analysis—for example, take the discovery of malicious activity,
including identity theft, violation of community guidelines and fake profiles. In the particular case
of platforms such as Facebook, Twitter and Yahoo! Answers, user demographics have impacts on
their revenues and user experience; demographics assist in ensuring that the needs of each cohort
are fulfilled via personalizing and contextualizing content. Despite the fact that technology has
been made more accessible, thereby becoming evermore prevalent in both personal and professional
lives alike, older people continue to trail Gen Z and Millennials in its adoption. This trailing brings
about an under-representation that has a harmful influence on the demographic analysis and on
supervised machine learning models. To that end, this paper pioneers attempts at examining this
and other major challenges facing three distinct modalities when dealing with community question
answering (cQA) platforms (i.e., texts, images and metadata). As for textual inputs, we propose an
age-batched greedy curriculum learning (AGCL) approach to lessen the effects of their inherent class
imbalances. When built on top of FastText shallow neural networks, AGCL achieved an increase of
ca. 4% in macro-F1-score with respect to baseline systems (i.e., off-the-shelf deep neural networks).
With regard to metadata, our experiments show that random forest classifiers significantly improve
their performance when individuals close to generational borders are excluded (up to 20% more
accuracy); and by experimenting with neural network-based visual classifiers, we discovered that
images are the most challenging modality for age prediction. In fact, it is hard for a visual inspection
to connect profile pictures with age cohorts, and there are considerable differences in their group
distributions with respect to meta-data and textual inputs. All in all, we envisage that our findings
will be highly relevant as guidelines for constructing assorted multimodal supervised models for
automatic age recognition across cQA platforms.

Keywords: community question answering; user demographics; imbalanced data; multimodal data;
age prediction; supervised learning

1. Introduction

There is no question that demographic analysis is essential for running a successful
social media network. In essence, this analysis is considered virtually indispensable for en-
gaging members on an individual level, and consequently for building social capital. By all
means, a comprehensive demographic analysis provides crucial elements in fostering the
participation of its members as it yields contextualized understanding of their perceptions.

Needless to say, almost all demographic studies consider age as one of its principal
and mandatory variables to be explored, since it usually determines behavioral patterns
such as buying habits and how we respond to advertising. People at different ages have
distinct ways of expressing themselves and often spend their time on separate platforms.
Consider the case of Millennials, who may spend most of their time on Instagram and
Facebook, whereas older people prefer relying heavily on their email inboxes. This can
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also be found on community question answering (cQA) sites such as Yahoo! Answers
(https://answers.yahoo.com (accessed on 1 February 2021)), where our figures show that
Millennials and GEN Z comprise almost 91% of its members. As a means of having a rough
approximation of the actual size of these sites, consider the three billion Yahoo accounts
that compromised the 2017 data breach [1]. Aside from that, another report mentions that
Yahoo! Answers had enrolled about one hundred million fellows as of December 2015 [2].

When considering age demographics, it is convenient to think in terms of generations
or cohorts. Despite the fact that these divisions are always somewhat arbitrary, demog-
raphers normally recognize some “standard” groupings. To give an example, fashion
designers view this variable as specific age ranges or life cycle stages: babies, children,
adolescents, adults, middle-aged adults and seniors. From a different viewpoint, age seg-
mentation can also be grounded in generations such as the Baby Boomers and Millennials.
It is important to find the right segmentation, since using the same strategy with different
groups is highly likely to obtain unfortunate and unintended results (e.g., Baby Boomers
and Gen Z), because they do not share similar characteristics and thought processes. Gener-
ally speaking, modeling age cohorts is a very challenging task due to three chief obstacles:
(a) unclear boundaries between different clusters; (b) it depends on the practical use of the
model; and (b) individuals gradually change when moving from one cohort to the next.

It goes without saying that overcoming these obstacles is not only vital for the descrip-
tion and analysis of various classes of demographic data, but it is also crucial for assisting
most online systems in numerous tasks, including recognizing identity theft, deception,
violation of community guidelines (e.g., underage youths), filtering and banning fake
profiles and malicious activity overall. In the particular case of cQA platforms, age de-
mographics are vital for diversifying and boosting their dynamicity, when integrated into
question routing, expert finding, personalization and dedicated displays [2]. Evidently,
displaying diverse outputs aims in part at kindling the interests of community peers in
gaining knowledge by browsing new topics.

In fact, these obstacles make the construction of effective supervised machine learning
models very hard, especially class imbalances caused by generational trailing. To the best
of our knowledge, this work is one of the first studies to delve into how these phenomena
impact the automatic recognition of age groups across Yahoo! Answers. More precisely,
it focuses its attention on their repercussions in three distinct modalities: metadata (e.g,
posting timestamps and categories), texts (e.g., questions, answers and self-descriptions)
and profile images. We additionally present and experimentally demonstrate effective
solutions for alleviating the impacts of two of these three modalities (i.e., texts and meta-
data).

The roadmap of this work is as follows. First, relevant studies are presented in
Section 2, and later Section 3 outlines the acquisition and the annotation process of our
working corpus. Then, Sections 4–6 dissect the three different modalities: texts, meta-data
and images, respectively. Eventually, Section 7 puts together the outcomes of the three
separate analyses in a discussion; and Section 8 touches on the key findings and some
future research directions.

2. Related Work

Recent research topics regarding cQA users relate to modeling their areas of expertise
and quantifying their impacts on answer selection [3]; how the evolution of their roles in
the community impacts the content relevance between the answerer and the question [4];
the intimacy between askers and answerers [5]. From another angle, current research
has focused its attention on discovering informative features of genuine experts [6–8],
and discovering patterns of interactions between community fellows [9]. Contrary to the
vast bulk of recent research, we take the lead on studying the challenges faced by super-
vised models when discovering discriminative patterns of the age demographics of cQA
members. To be more exact, our work is the first effort at looking into plausible, effective
solutions to overcome the obstacles that show up when zooming in on data distilled from

https://answers.yahoo.com
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three different modalities (i.e., meta-data, texts and profile images). We envisage that the
automatic and successful identification of age demographics can positively contribute to
the aforementioned tasks.

Unlike Facebook [10] and Twitter [11–14], there is only a handful of studies dissecting
age demographics across cQA services [2,15]. Particularly notable is the investigation
of [15], who conducted a study into sentiment analysis for cQA sites; when doing so,
they superficially touched on age demographics, focusing on the effects of age on the
attitude and sentimentality of their members. By the same token, [16] inspected age-related
trends in StackOverflow (https://stackoverflow.com/questions (accessed on 1 February
2021)) as they relate to programming experts. In juxtaposition to our study, these stud-
ies paid attention only to textual inputs as a source of informative attributes, and they
did not deal with the intrinsic hindrances to supervised learning techniques built on
textual corpora.

However, it is important to bear in mind some findings concerning other social
networks. For instance, the research of [17] revealed that it is difficult to correctly predict
ages across mature Twitter users. Additionally, by examining words, phrases and topic
instances within Facebook messages, [10] discovered substantial variations in language
in consonance with age. To exemplify, slang and emoticons are prominent across the
youngest group, while in the 23–29 cluster, conversations about work come up. From a
general view of topics across all age cohorts, they pinpointed that conversations concerning
relationships continuously increase across the life span, and the progression of school,
college, work and family. Incidentally, it is worth noting that PAN (https://pan.webis.de/
(accessed on 1 February 2021)) is a series of scientific events directing its attention to
how language expressed in everyday social media reflects basic social and personality
processes. From 2013 to 2016, these shared tasks considered age author profiling (https:
//pan.webis.de/clef16/pan16-web/author-profiling.html (accessed on 1 February 2021))
in Twitter, blogs and social media [11–14]. Fundamentally, the best systems capitalized on
logistic regressions and simple content features, such as bag-of-words or word n-grams [12];
on the flip side, word embeddings performed poorly on Twitter data [18].

Modern image recognition is, by and large, powered by deep learning, specifi-
cally convolutional neural networks (CNN). Some widely used neural networks include
AlexNet [19], VGG 16 [20] and ResNet [21]. It is worth underlining also that more recent
high-performing neural networks architectures make use of hundreds of millions of pa-
rameters [22]. In relation to age demographics, image processing has focused mainly on
facial age estimation. For instance, the work of [23] proposed a methodology for age and
gender identification grounded on feature extraction from facial images. Classification is
then done using neural networks according to the different shape and texture variations of
wrinkles. Along the same lines, [24] predicted age and gender by means of convolutional
networks capable of learning under the limitations of few samples. Another study was
done by [25], who estimated age and gender based on SVMs and multi-level local phase
quantization features extracted from normalized face images. The work of [26] integrated
CNNs and extreme learning machine (ELM) for to recognizing age and gender. The former
was exploited for collecting features from input images, whereas the latter categorized
intermediate results. Lastly, the feed-forward attention mechanism of [27] was able to
discover the most informative and reliable parts of given faces for improving age and
gender classification. In the case of Yahoo! Answers, members use assorted images on
their profiles, including avatars, landscapes, objects, shields, flags and real faces of course.
This wide variety together with their small size make the recognition of age based on this
modality a very challenging task.

All in all, automatic age prediction across cQA members is a largely unexplored area of
research. This work pioneers the efforts in that direction by dissecting the main challenges
across different modalities, and by presenting an effective way of alleviating two of them
(texts and meta-data), independently.

https://stackoverflow.com/questions
https://pan.webis.de/
https://pan.webis.de/clef16/pan16-web/author-profiling.html
https://pan.webis.de/clef16/pan16-web/author-profiling.html
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3. Dataset

In order to fetch user profiles (see Figure 1) and question-answers pages (see Figure 2)
from Yahoo! Answers, we took advantage of the web scraper implemented in [28], which
ran for around three years (September 2015–2018). As a result, about 53 million of question-
answers pages were retrieved, wherefrom all question titles, bodies and answers were
extracted accordingly; and in the same manner, ca. 12 million profile pages were down-
loaded. From these pages, we extracted self-descriptions, images and lists of questions.
We then singled out all textual content written predominantly in English by means of a
language detector (https://code.google.com/archive/p/language-detection/ (accessed
on 1 February 2021)). See a sample record in Figure 3.

Figure 1. Public profile belonging to ElmsofTaste. This page shows a self-description, a list of
questions asked and a profile image.

https://code.google.com/archive/p/language-detection/
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Figure 2. An instructive question-answers page posted on 12th August 2020. This page highlights its
title, the body and two of its responses.

Our automatic annotation process starts off by searching for valid putative birth
years (1910–2008) and ages (10–99) at the paragraph level. Additionally, correspondingly,
all mismatching paragraphs are eliminated. The next step consists of splitting the se-
lected paragraphs into sentences via CoreNLP (http://stanfordnlp.github.io/CoreNLP/
(accessed on 1 February 2021)). For each sentence, we verified if it starts with any of
following three surface patterns: (a) [I am|I m|I’m|Im|I turned] [|an|now|only|age|turning]
NUMBER; (b) I was born [in|on] [DATE|YEAR]; and (c) My age is NUMBER.

We conducted a case-insensitive alignment, and checked as to whether or not after
the number we could find an occurrence of a unit such as kg and mg, or a period of
time such as weeks or days. In so doing, we made sure that these matched numbers did
not correspond to commonly used metrics/units explicitly mentioned in the text. Every
time these alignments failed, we carried out a POS-based analysis by basically ensuring
that: (a) there was only one pronoun and no additional verb before the first identified
number/year; and (b) there was no negation before the first number/year.

http://stanfordnlp.github.io/CoreNLP/
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Figure 3. An instructive user record. In bold red, phrases used for inferring the age, and in bold black, timestamps.

On the whole, 657,805 users were automatically labelled, and all sentences used
to determine their age where removed from the respective texts. Note that, from these
members, only 219,626 (33.39%) used a non-default profile image.

Table 1 gives an intuition about the age distribution observed within our corpus across
both modalities (i.e., texts/metadata and images). As a means of facilitating this compari-
son, samples were grouped by following the theory of William Strauss and Neil Howe [29].
This is premised on the proposition that each generation belongs to one of four classes,
and that these classes repeat sequentially in a fixed pattern. By virtue of these descriptors,
five distinct cohorts were identified: Matures, Baby Boomers, Generation X-ers, Millenni-
als/Gen Y-ers and iGen/Gen Z-ers (https://www.kasasa.com/articles/generations/gen-
x-gen-y-gen-z (accessed on 1 February 2021)). It is worth mentioning there that people
born earlier than 1944 became members of the additional cluster "Matures."

For experimental purposes, these samples were randomly divided into 394,745 train-
ing (60%), 131,519 testing (20%) and 131,541 evaluation (20%) instances in such a way
that we ensured similar distributions of all five target categories across these three splits
(see Table 1). Additionally, as for images, the distribution was as follows: 131,682 (59.94%)
training, 43,972 (20.02%) testing and 44,029 (20.04%) evaluation. It is worth stressing here
that we kept full consistency between text and image splits; that is to say, each community
peer was used for the same purpose (i.e., training, testing or evaluation) for both sets (i.e.,
texts and images).

In summary, our corpus unveils that, like other online platforms, older people continue
to trail both Gen Z and Millenials in the adoption of online cQA platforms, especially Yahoo!
Answers (see Figure 4). As a natural consequence, the data are skewed; this means most
of the data are on the right-hand side of the graph (younger generations) and the long
skinny tail extends to the left (mature people). More specifically, the entropy of the text set
is 1.4536, whereas this value is 2.322 for perfectly balanced classes. Note also that about
50% of the text samples belong to the youngest generation (Gen Z), and ca. 50% of the
image samples are members of Gen Y; and in this set, the entropy is 1.5447, indicating a

https://www.kasasa.com/articles/generations/gen-x-gen-y-gen-z
https://www.kasasa.com/articles/generations/gen-x-gen-y-gen-z
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higher uncertainty in the distribution of its prior probabilities. Lastly, it worth stressing
that differences in age distributions might also be sharp across distinct modalities (i.e.,
texts, images and metadata).

Table 1. Definitions and distributions of the different age clusters across the United States and
our collection.

Generation Birth Years USA (Million) Texts/Metadata Profile Images

Gen Z 1995–2008 74 321,912 (48.94%) 82,162 (37.40%)
Gen Y 1980–1994 73 276,493 (42.03%) 110,463 (50.28%)
Gen X 1965–1979 82 37,301 (5.67%) 17,330 (7.89%)

Baby Boomers 1944–1964 76 17,705 (2.69%) 8083 (3.68%)
Matures 1910–1943 - 4394 (0.67%) 1645 (0.75%)

Total 657,805 219,683

Figure 4. Prior distribution across texts and images (the abscissa denotes user birth year).

4. Text Analysis

The trailing discussed in the previous section brings about an under-representation
that has a marked and harmful influence on the demographic analysis and on machine
learning models, especially supervised approaches. In our study, we cast age prediction
as a classification task via capitalizing, in the first place, on the segmentation provided by
Strauss and Howe (see Table 1). Based on these divisions, we quantify the significance of
this repercussion on the following state-of-the-art neural network classification models
built solely on textual inputs:

• FastText (https://fasttext.cc/docs/en/support.html (accessed on 1 February 2021)):
It is a simple and efficient library for learning word embeddings and text classification,
rivaling deep learning classifiers in terms of accuracy, but many orders of magnitude
faster. This model is a simple shallow neural network with only one layer. The bag-of-
words representation of the text is first fed into a lookup layer, where the embeddings
are retrieved for every single word. It constructs averaged n-gram text representations,
which are fed to a linear classifier afterwards (multinomial logistic regression). A
softmax layer is utilized for obtaining a probability distribution over pre-defined
classes, and stochastic gradient descent is combined with a linearly decaying learning
rate for training [30,31].

https://fasttext.cc/docs/en/support.html
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• Deep Neural Networks (https://www.tensorflow.org/ (accessed on 1 February 2021)):
We capitalized with four word-level text classification strategies implemented in Ten-
sorflow (https://github.com/dongjun-Lee/text-classification-models-tf (accessed on
1 February 2021)): CNN [32], bidirectional RNN (B-RNN), attention-based bidirec-
tional RNN [33] and RCNN [34].

In order to reduce the bias in our assessments, or in other words, to consider distinct
plausible applications, we took advantage of three different metrics in our evaluations that
are widely used across several text-oriented multi-class settings: Accuracy, MRR (mean
reciprocal rank) and macro-F1-score. A brief description of each metricfollows:

• Accuracy: the fraction of instances that were correctly predicted by a given model.
• Mean reciprocal rank (MRR): The multiplicative inverse of the position in the confi-

dence ranking of the first correct label [35]. Accordingly, the MRR is the average of
the reciprocal ranks of the predictions output for an array of community members.

• Macro-averaged F1-score, or macro-F1 in short: this combines the per-class F1-scores
into a single number by computing their simple arithmetic mean. This metric is more
influenced by the performance on rare categories [36].

Table 2 underscores the outcomes accomplished by each configuration of neural net-
work learner and metric. Fundamentally, our experiments point to the following findings:

1. Although Accuracy and MRR are, by and large, fairly high for a five-class task
(the former over 64% and the latter over 0.8), macro-F1 is quite low (between 0.24
and 0.35). Both things together indicate that trained models are likely to be almost
“two-sided”; in other words, they mainly specialize in discriminating between the two
largest age cohorts (i.e., Gen Y and Z).

2. A shallow neural network (FastText) outperformed much more complex architec-
tures by a considerable margin regardless of the metric in consideration. It assigns,
for instance, the correct age group to 2.38% more members than its closest rival
(Attention RNNs). This result suggests that more research efforts should go into tack-
ling imbalances produced by trailing than into designing more complex architectures.

3. However, more importantly, FastText accomplished a marked improvement in terms
of macro-F1 (over 27%), meaning that it performed better across the five cohorts
on average, and this entails that it was relatively successful at coping with the data
imbalance. It is worth highlighting here that this a desired, but not easy to achieve
result. See, for instance, the outcomes of CNN; this deep neural network improved in
terms of this metric, but its performance diminished in relation to Accuracy and MRR.

Table 2. Accuracy (%)/MRR/macro-F1-score achieved by the for the different age cohort distributions (test set).

ReducedStrauss & Howe Strauss & Howe cso.ie Ten Year Groups

FastText 70.30/0.8388/0.3444 71.79/0.8530/0.6350 70.18/0.8398/0.3343 66.73/0.8095/0.2172
CNN 64.66/0.8079/0.2696 62.24/0.8002/0.4361 64.87/0.8089/0.2752 65.52/0.8126/0.1978

RCNN 66.61/0.8194/0.2371 67.77/0.8311/0.5752 66.55/0.8190/0.2221 66.87/0.8207/0.2372
Bi-RNN 67.23/0.8232/0.2337 68.10/0.8334/0.5639 67.64/0.8254/0.2230 67.11/0.8225/0.2387

Attention RNN 67.92/0.8268/0.2447 68.08/0.8332/0.5924 67.75/0.8259/0.2401 67.68/0.8254/0.2443

Average 67.34/0.8232/0.2659 67.60/0.8302/0.5605 67.40/0.8238/0.2589 66.78/0.8181/0.2270

In summary, the best configuration finished with a fairly high performance, pointing
not only to the fact that age groups can be effectively identified from their textual inputs,
but also that this can be done efficiently, since FastText can run under very limited resources.
However, our figures indicate that class imbalances manifested across age groups seriously
hurt the learning of text-based neural network models.

https://www.tensorflow.org/
https://github.com/dongjun-Lee/text-classification-models-tf
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The next step in our study was testing different age cohort descriptors; this way we
could conduct experiments with different numbers of classes and distributions. For this
purpose, we accounted for the following three additional segmentations:

• Reduced Strauss and Howe: We amalgamated the three oldest and under-represented
groups into only one cluster named "Matures" (see Table 3). We devised this distribu-
tion based on our prior empirical observations. More precisely, our intuition is that
having only one larger, but still under-represented group would lighten the burden
on learning model parameters, resulting in fitter models.

• cso.ie: We took advantage of the grouping utilized for the 2016 Irish census (https://
www.cso.ie/en/releasesandpublications/ep/p-cp3oy/cp3/agr/ (accessed on 1 Febru-
ary 2021)) (see Table 4). The underlying reason behind this choice is that its two largest
cohorts are slightly smaller than the other considered distributions, summing up to a
total of 88.88%. Like Strauss and Howe, it divides people into five clusters, but unlike
Strauss and Howe, these divisions are substantially more uneven.

• Ten year groups: We also made allowances for a traditional ten year segmentation
(see Table 4). This kind of division is utilized across several sorts of demographic
analyses, and in our case, it produces an extremely imbalanced prior distribution
encompassing seven age groups. More specifically, the 1989–1998 cluster comprises
62.56% of the members.

Table 3. Different age cohort descriptors (reduced Strauss and Howe).

Group Birth Years Texts/Metadata

GEN Z 1995–2008 321,912 (48.94%)
GEN Y 1980–1994 276,493 (42.03%)

Matures 1910–1979 59,400 (9.03%)

Total 657,805

Table 4. Different age cohort descriptors (distributions).

cso.ie Ten Year Groups

Group Birth Years Texts/Metadata Group Texts/Metadata

Primary 2006–2008 212 (0.03%) 1999–2008 103,995 (15,80%)
Secondary 2000–2005 62,804 (9.55%) 1989–1998 411,574 (62,56%)

Young adults 1994–1999 309,002 (46.97%) 1979–1988 87,189 (13,25%)
Matures 1954–1993 275,639 (41.91%) 1969–1978 26,496 (4,03%)
Adults 1910–1953 10,148 (1.54%) 1959–1968 13,768 (2,09%)

1949–1958 7988 (1,21%)
1910–1948 6795 (1,03%)

Total 657,805 657,805

Table 2 juxtaposes the performance reaped by each neural network learner when
considering these three segmentations. In this light of these outcomes, we conclude:

1. Interestingly enough, FastText outclassed all deep architectures by a clear margin
every time community fellows were represented by means of three or five cohorts.
This superiority was also seen regardless the metric used for the assessment. However,
on the flip side, its competitiveness notoriously worsened when members were
modeled by means of ten groups.

2. Independently of the metric, the larger the number of age groups, the larger the
decrease in average performance. In particular, when targeting ten clusters, neural
networks models finished with an accuracy between 65.52% and 67.68%. These
values are only 3–5% over the majority class baseline, which scored an accuracy of

https://www.cso.ie/en/releasesandpublications/ep/p-cp3oy/cp3/agr/
https://www.cso.ie/en/releasesandpublications/ep/p-cp3oy/cp3/agr/
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62.56%. On the other hand, when aiming at five cohorts, the majority baselines scored
accuracies of 46.97% and 48.94%, and the values achieved by the deep networks range
from 64.66% to 67.92% (accuracy). All these things considered, learning was less
effective in the presence of greater class imbalances and when increasing the number
of age cohorts.

3. Independently of the metric, FastText and most of deep learning methods accom-
plished better performance when community members were represented via three
age cohorts. While this might seem self-evident due to the fact that the average is
computed on a lower number of unrepresented classes, it is also pertinent to con-
sider its increase in accuracy. That is to say, there was a noticeably higher rate of
correct predictions.

To sum up, clustering all under-representing age cohorts into one group showed to be
an efficient way of casting age prediction as a classification task. In particular, using three
groups lessens the distortion attributed to data imbalances. Needless to say, our empirical
results also highlight the efficiency of FastText as a strong, efficient and simple baseline for
age classification.

Another way of tackling data imbalances is adjusting its class distribution. To illustrate,
one common strategy is removing some training instances. This practice is supported
by the debated Newport’s "less is more" hypothesis [37]; i.e., child language acquisition
is aided, rather than hindered, by limited cognitive resources. In the case of supervised
machine learning, this means that model generalization can be hurt by an excessive amount
of training material. This can happen, for example, if there is an over-representation of
some traits that typify a class.

In curriculum learning [38], a learning plan is devised by ranking samples based
on carefully chosen and thoughtfully organized difficulty metrics. In that vein, the work
of [39] proposed a battery of heuristics for sorting the training samples to be fed to their
learning algorithm. Broadly speaking, these heuristics select the next element within
the training material that will be adjoined to the array of instances already presented for
learning. Since feeding one example at a time is computationally expensive, one can gain
a significant speed advantage by picking samples in batches. In practice, this results in a
small loss in terms of accuracy. Following the spirit of this kind of technique, we designed
a greedy algorithm (age-batched greedy curriculum learning) that systematically and
incrementally creates sample batches according to birth years, and feeds FastText with
these instances afterwards.

At length, age-batched greedy curriculum learning, or AGCL for short, starts with
three empty bags of batches: one for each age cohort in accordance with the reduced Strauss
and Howe segmentation (see Table 3). Let these bags be: ΦZ (Gen Z), ΦY (Gen Y) and
ΦM (Matures). After each iteration, this algorithm adds the combination of batches that
performs the best (i.e., single, pair or triplet). In order to determine this tuple, this procedure
tests each non-selected combination of zero or one batch from each cohort together with all
the batches already contained in these three bags (see this flow on Table 5). The algorithm
stops when it is impossible to add a tuple that enhances the performance. As for the
metric and learning approaches, macro-F1 score and FastText were used, respectively. It is
worth underscoring here that we opted for looking into this metric, since our previous
experiments indicated that this is seriously challenged by class imbalances. Note also that
the evaluation set remained unchanged during the entire iterative process; i.e., it always
comprised all 131,541 samples sketched in Section 3.

The outcome of AGCL is a sequence of inputs ordered by their power of generalization
and informativeness regarding the three categories that leads to more resource-efficient
learning (see Table 5). In the first iteration, this curriculum determines the tuple (up to three
age batches) that makes both a broader generalization and a clearer separation of the three
groups. In our case, the years 1978, 1994 and 1997 were added to ΦM, ΦY and ΦZ, respec-
tively. Interestingly enough, AGCL singled out batches that were alongside both category
borderlines; i.e., 1978 is in the vicinity of the 1979–1980 border, and 1994 and 1997 are near
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to the 1994–1995 border. We interpret this as an attempt at finding effective separations
between classes by discovering fine-grain discriminative characteristics between pairs of
consecutive generations—that is to say, by finding out distinctive traits that signal the shift
from one generation to the next one. Naturally, and as a means of gaining generalization
power, the algorithm prefers to choose two batches from the 1994–1995 border, instead of
the 1979–1980 border, due to their bigger share of the dataset.

In the second iteration, AGCL selected a pair of batches instead of a triplet (i.e., 1977
and 2007). We view this selection as a confirmation of the initial trend. In other words,
examples born in the year 2007 are likely to correspond to members bearing the sharpest
differences to any individual born in 1994 or earlier. Although this array of individuals
is very small (19 samples), they aided in enriching the model with very discriminative
features, while at the same time keeping their relative share of the training input virtually
intact. On the other hand, the addition of 3585 mature members born in 1977 aimed
mainly at enhancing generalization by counterbalancing the representations of the other
two groups in terms of number of instances (see data distribution in Table 5).

Table 5. Curriculum discovered by AGCL. Results are shown in terms of macro-F1-score on the evaluation set (Eval).
This table also highlights the percentage of the data (from the 394,745 training instances) used for building each model
(Total). It additionally displays its respective class distribution (%) and entropy.

Batch(es) Added Data Distribution
Step Matures(ΦM) Gen Y(ΦY) Gen Z(ΦZ) Eval Matures Gen Y Gen Z Total(%) Entropy

1 1978 1994 1997 0.5570 3.71 46.01 50.28 16.55 0.358
2 1977 2007 0.6104 6.78 44.53 48.69 17.10 0.388
3 1979 1990 1999 0.6323 6.66 40.08 53.26 27.33 0.383
4 1970 2002 0.6421 7.30 37.45 55.25 29.25 0.385
5 1964 2003 0.6478 7.68 36.07 56.24 30.37 0.386
6 1976 1988 2004 0.6523 8.34 39.47 52.19 33.50 0.397
7 1973 2006 0.6557 9.30 39.02 51.68 33.88 0.404
8 1966 2005 0.6583 9.90 38.60 51.51 34.25 0.407
9 1972 1989 2000 0.6591 9.06 38.43 52.51 41.32 0.401

10 1968 0.6625 9.68 38.17 52.16 41.61 0.405
11 1975 1993 1998 0.6649 7.90 39.82 52.28 56.17 0.394
12 1957 0.6671 8.18 39.69 52.12 56.34 0.396
13 1962 2001 0.6679 8.17 37.92 53.91 58.98 0.393
14 1974 0.6697 8.73 37.69 53.58 59.34 0.397
15 1951 1984 0.6709 8.71 38.95 52.34 60.75 0.399

In summary, the goal at the beginning of learning plan is two-fold: (a) adding a large
number of instances distilled from the under-represented cohort (i.e., Matures); and (b)
finding out attributes informative of the two largest groups (i.e., Gen Y and Z). Note also
that the former goal keeps going until the seventh iteration, where six out of the seven
batches picked by AGCL belong to community fellows born in the 70s (cf. Figure 4).

Furthermore, one of the primary focuses of attention during the last iterations was
harvesting salient attributes from the Matures. In so doing, ACGL chose batches from this
group that were small and far from the 1979–1980 border. With its last additions, AGCL
reaps modest improvements via bringing specifics into the model. In a nutshell, AGCL
devises the curriculum by sorting age batches in consonance with their contributions to
the learning process from more general to more specific features. In quantitative terms,
our experiments yielded the following results:

1. Overall, AGCL finished with macro-F1-scores of 0.6709 and 0.6660 on the evaluation
and test sets, respectively. Conversely, the best model constructed on top of the
entire training material achieved on the test set a score of 0.6350. This means an
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improvement of 3.94% (0.6350→0.6660) caused by smartly reducing the training set
by 40% (cf. Table 2).

2. More precisely, AGCL needed 60.75% of the training set in order to accomplish the
mentioned score of 0.6660. Specifically, this subset encompassed 58.52%, 56.29% and
64.98% of the available training instances for Matures, Gen Y and Gen Z, respectively.
On the one hand, Gen Z increased its share of the data used for building the model
from 48.94% to 52.34%; on the other hand, its two largest batches were not chosen
(1995–1996). Why? We deem this to be a result of trying to capture a wider variety
of informative traits that seem to be spread all throughout the generation. Addition-
ally, presumably, the two largest batches share a lot of commonalities with both the
previous generations and the instances selected from their own cohorts.

3. In juxtaposition, AGCL singled out few from the batches available for Gen Y, and there-
fore took a smaller fraction of the training material; i.e., its share diminished from
42.03% to 38.95%. Given that fewer data are required for their accurate representation,
we conclude that community members belonging to this generation are much more
homogeneous (see Figure 5).

4. If we pay attention to the selections for the Mature cluster, we discover an additional
piece of information on how AGCL is increasing the diversity of the discriminative
features across the training set. From 1962 to 1972, AGCL integrated solely even
years into the model (dismissing odd years). We perceive this skipping pattern as
an indication of prioritizing trait diversity over enlarging its share of the training set
(see Figure 5). Note here that batches systematically decrease in size in consonance
with their birth year (cf. Figure 4).

Figure 5. Training samples chosen by AGCL (cf. Table 5).

In conclusion, our findings point out to the fact that the distribution of classes should
be in tandem with the diversity of their members. Put differently, it is not a matter of
gathering an equal amount of instances of each class, but of having enough samples for
covering the diversity of each category. It is here where generational trailing has its greater
negative impact, because it makes building this collection for older members much harder.
It is crystal clear that the unbalance discovered by AGCL stems from this and another two
factors: (a) the larger amount of diverse young people coming from different walks of life
that have adopted the use of online platforms such as Yahoo! Answers; and (b) although
Gen Y is a massive cohort, it is much more heterogeneous, and hence it can be represented
by a comparatively smaller set of instances.
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5. Meta-Data

In order to dig deeper into the meta-data view, we capitalized on the training material
used for our text analysis (see also Section 3), namely, the 394,745 training instances (due to
computational limitations (Intel Corei5 CPU), it was infeasible to run the R software on the
entire dataset), for extracting 95 meta-data non-negative integer variables. Most of these
elements correspond to frequency counts (see variable descriptors on Tables A1 and A2 on
Appendix A).

The methodology of analysis consisted of four different steps: (1) we cleared the
data by detecting and eliminating anomalous values; (2) as a means of reducing the
number of dimensions, we applied principal component analysis (PCA) for identifying
the subset that largely contributed to the total variability; (3) we applied a correlation
function for determining the groups of variables that exhibited the highest correlations
with the different age cohorts; and finally, (4) we implemented random forest classifiers
to distinguish between the two youngest age clusters (i.e., GenZ and GenY). As a result,
we discovered the most informative variables.

First, graphical tools and summary statistics have been used for detecting anomalous
values, which were eliminated accordingly. Anomalous values stem from several reasons,
including errors during the pre-processing of the corpus. Next, PCA was performed on the
clean material. Note that PCA is a technique aimed at describing a multidimensional data,
using a smaller number of uncorrelated variables (the principal components) that incorpo-
rate as much information from the of the original dataset as possible (see Reference [40] and
the references therein). (We used the implementation from the FactoMineR package [41]
in R software [42]). In light of this analysis, we found out that the first two principal
components take into account 54.26% of the total variance (Figure 6). It additionally reveals
the contributions of the first 20 variables to components 1 and 2, which are represented
in Figure 7a,b, respectively. Although the differences among contributions are very small,
variables harvested from questions seem to help the first component more. However, given
that almost all variables provide a significant variability, it is not possible to select a few
elements which represent most of the variance of the entire data set.

Figure 6. Percentage of variables explained by each principal component.
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(a) (b)

Figure 7. Contributions to the first (PC1) (a) and second (PC2) (b) components by the 20 most significant variables. The red
line represents the threshold for the significant variables (see variable descriptors on Appendix A).

Furthermore, correlation analysis unveils that age (year of birth) is more correlated
with variables distilled from questions than from answers. To be more precise, Figure 8
highlights their Pearson correlation coefficients. From these results, we can conclude that
question variables (from 51 to 94 ) seem to be better age predictors than their counterparts
extracted from answers (from 2 to 44). The first correlation equal to one indicates that the
correlation of the first variable is with itself. However, the highest correlations are with
variables 45 and 46; those are the years that the members started and ended their activities,
respectively. Additionally, from Figure 8, it emerges that answers are negatively correlated
with the year of birth, while questions are positively correlated.

Figure 8. Pearson correlations between age (year of birth) and all predictors. Variables 2-44 and 51-94
were extracted from answers and questions, respectively.

Our last analysis consisted of applying random forest classifiers (introduced by [43])
for identifying which variables are more informative of the different age cohorts. For this,
we grouped the data into five age cohorts according to the definitions in Table 1. However,
since these groups are highly unbalanced (as shown in Figure 9 and Table 1), we only
considered the two youngest clusters (i.e., Gen Y and Gen Z) for this analysis. Given the
aforementioned computational restrictions, the training data were randomly split into 75%
and 25% for the training and testing, respectively.
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Figure 9. Sample distribution across different birth years. The vertical lines separate the age cohort
represented in Table 4.

By using n = 500 trees, RF classifiers obtained an accuracy of 0.74, a sensitivity
of 0.7794 and a specificity of 0.7149. The performance significantly improved when RF
was implemented by excluding samples corresponding to birth years close to the border.
For example, by considering from Gen Z all the individuals who were born between 2000
and 2008 and from Gen Y all members born between 1985 and 1990, the accuracy increased
to 0.9248, and the sensitivity and specificity were 0.9486 and 0.9020, respectively. This means
that individuals close to the border are very similar, and hence difficult to classify.

Overall, RF classifiers singled out eight discriminative year-based variables (see
Table 6): (1) when the user started his/her activity in the community; (2) when his/her
activity finished; (3) when he/she was prompted with the first question; (4) when he/she
asked more questions; (5) when he/she posted the last question; (6) when he/she answered
more questions; (7) when his/her first answer was published; and (8) when his/her last
answer was posted. Since we used the implementation of RF classifiers provided by the
caret package of R software, the importance of variables was evaluated using statistical
non-parametric methods included in its tt varImp function.

If we observe the histogram plot corresponding to the top selected variable (con-
sidering N = 77, 018 samples), that is to say the element denoting the year when a
community member starts his/her activity in the site, we find a different behavior for Gen
Z (class 1) with respect to Gen Y (class 2), which allows one to improve the classification
rate (see Figure 10).

From all these analyses, we can conclude that the years of starting and ending ac-
tivities in the social network are important variables for estimating the age of the users.
Additionally, it seems that the age is more correlated to variables related to questions than
to answers, allowing a better predictive ability. Finally, the age cohort prediction signifi-
cantly improves when no continuous classes are considered, suggesting a new definition
of their limits.
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Table 6. The top 20 most important variables (out of 95). The values are scaled between 0 and 100. Q,
A and G denote elements extracted from questions, answers and global (combines all information),
respectively (see variable descriptors on Appendix A).

Ranking Source Variable Importance

1 G initActYear 100.00
2 G endActYear 99.08
3 Q minYear 85.43
4 Q year.highest.frequent 85.03
5 Q maxYear 83.56
6 A year.highest.frequent 58.74
7 A minYear 57.07
8 A maxYear 57.04
9 A 3rd.level.cat.highest.frequency 35.95

10 A 1st.level.cat.highest.frequency 35.56
11 A ampm.marker.highest.frequency 34.16
12 A minute.hour.unique 34.11
13 A second.minute.unique 33.77
14 G no. questions 33.61
15 A day.month.unique 33.56
16 A day.month.unique 33.56
17 A day.year.unique 33.48
18 A 2nd.level.cat.highest.frequency 33.41
19 A month.year.highest.frequency 32.83
20 A year.highest.frequency 32.48

Figure 10. Histograms of the top variable selected by RF classifiers. It displays the values for two
youngest cohorts (1 = Gen Z, 2 = Gen Y).

6. Image Analysis

Computer vision seeks to give computers human capabilities for pattern recognition
from images and it is an essential part of the Internet of Things [44], robotics [45] and
human brain interfaces [46]. Despite the progress made, research in this area is still
evolving. Needless to say, visuals differ in textual patterns, and thus they can work
together as complementary sources of effective features for any given prediction task that
has both modalities at hand.
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Like textual patterns, the complexities of visual patterns are best captured by machine
learning methods. In this case, machine learning algorithms are based on finding the
underlying relationship in the image information and thus making decisions without
requiring explicit instructions. Multiple classical approaches applied to artificial vision
have been considered [47,48]. Similarly to texts (see Section 4), convolutional neural
networks [49] has shown great potential in tasks related to computer vision.

Experimentally, deep variants of CNNs are some of the best techniques for recogniz-
ing image content and perform effectively in tasks such as segmentation, classification
and detection [50]. Even this type of neural network is being used by companies such
as Google, Microsoft and Facebook [51], which have developed active research groups
seeking continuous improvements in CNN architectures to solve increasingly complex
machine vision problems.

The key feature of CNNs is that they can find the correct spatial correlations in the pixel
space of images such that neural networks usually can perform visual classification tasks.
The typical CNN architecture is based on a sequence of convolutional layers that represent
the multiple levels of learning where non-linear processing units and subsampling layers
are additionally incorporated. The first network that showed superior performance to the
classic alternatives was a deep variant called Alexnet [19]. Currently there are powerful
variants of CNNs such as GoogleNet, DenseNet [52] and ResNet [21], among others.

Given these antecedents, an attractive alternative for the recognition of the age group
considering the available database is through the use of the images associated with each
user, that is, their avatars. We think that the information from image avatars could reveal
discriminatory patterns between age groups using deep variants of CNNs. In this section,
we will conduct experiments to test this hypothesis. It should be mentioned that in the
bibliographic review carried out, there was no precedent for this task.

6.1. Experimental Setting

The dataset consists of the avatar images of the Yahoo! Answers users. Unlike
photos found across other social networks, including Flicker (https://www.flickr.com/
(accessed on 1 February 2021)) and Instagram (https://www.instagram.com/ (accessed on
1 February 2021)) (cf. [53,54]), these profile pictures are low resolution; i.e., their size is 128
× 64 pixels on average. The distribution of the classes is given in Table 7:

Table 7. Number of samples by age group and partition.

Generation Training Set Validation Set Test Set

Gen Z 61,468 20,380 20,391
Gen Y 66,915 22,492 22,509
Gen X 3157 1053 1088

Baby boomers 85 26 27
Matures 17 11 5

An inspection of the dataset indicates a huge class imbalance. Due to this imbalance,
preliminary experiments on the entire dataset gave poor performance; therefore, we first
decided to simplify the learning process by only considering classes Gen Z and Gen Y,
since they are the most frequently used to facilitate the task of the visual classifier.

We plan the following experiments to identify the age group of users from their avatar
images:

(i). Classification of age groups using original avatars. Original avatars have a
high heterogeneity and represent diverse objects such as people, animals, symbols and
landscapes. Figure 11 shows random samples of the original avatars.

https://www.flickr.com/
https://www.instagram.com/
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Figure 11. Original samples. The labels 0 and 1 indicate the classes Gen Z and Y, respectively.

In this task, multiple standard visual recognition architectures such as convolutional
neural networks, VGG [20], ResNet and DenseNet were tested. The convolutional neural
network is composed by three convolutional layers and one final fully-connected layer.
We used this CNN configuration in the rest of experiments. In the last three neural networks,
the transfer learning process was applied based on the weights learned on Imagenet and
where the last layer was replaced by a full-connected layer.

(ii). Classification of age groups using virtual human avatars. The original avatars
present great diversity, therefore, we decided to test more homogeneous avatars to facilitate
the classifier’s work. Specifically, we consider virtual human avatars based on entire bodies.
First, we trained a virtual human avatar classifier over a subset of validation data, and then
it was applied to the original dataset. Figure 12 shows random samples of virtual human
avatars detected.
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Figure 12. Samples of the virtual avatar dataset. The label Virtual human indicates a virtual human
avatar; otherwise it does not correspond to a virtual human avatar.

In this task, we tested convolutional networks with/without data aggregation. The
other neural networks were not tested because their performance in the previous task was
similar between methods.

6.2. Results
6.2.1. Classification of Age Groups Using Original Avatars

The performances of the neural networks appear to be similar (see Table 8), either
using standard convolutional networks or using more sophisticated networks. The use
of data augmentation delays overfitting, but the results appears to be similar as well.
To analyze the behavior of visual classifier, we show in Figure 13 the evolution of the values
of loss function and accuracy in training and testing sets.

Table 8. Accuracy by age group.

Method Test (Training)

CNN 59.2% (85.7%)
CNN + data augmentation 58.7% (82.9%)

VGG 59.4% (58.4%)
ResNet 60.6% (60.1%)

DenseNet 57.5% (57.2%)
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(a) (b)

Figure 13. The accuracy and loss function for convolutional neural networks. The overfitting is quickly reached after
few iterations. (a) Accuracy; (b) loss function.

6.2.2. Classification of Age Groups Using Virtual Avatars

Given the previous results, we proceeded to simplify the problem considering the
classification of age groups using virtual human avatars. First, we trained a CNN for
classify between virtual and non virtual human avatar. We obtained 91.4% considering the
validation set, where the errors are likely explained by the difficulty of human labeling.
Considering the good performance obtained, this classifier was applied to the simplified
dataset. We only applied a CNN because the previous results indicate that the more
sophisticated neural networks appear to have similar performance to the CNN. The results
are shown in Table 9:

Table 9. Accuracy by age group using virtual human avatars.

Method Test Accuracy (Training Accuracy)

CNN 59.4% (66.3%)
CNN + data augmentation 59.2% (65.9%)

We note again that data augmentation does not improve the classification accuracy.
Moreover, the performances of virtual human avatars and original avatars were similar.
Finally, we evaluated the classification accuracy considering different temporal gaps be-
tween generations Y and Z. We consider a CNN for these experiments. We report the
results in Table 10:
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Table 10. Accuracy by age group considering different temporal gaps for the virtual human avatars
classification task. The gaps are reported in years.

Data Partitions Gap Test Accuracy

Gen Y:{1980–1994} , Gen Z:{1995–2008} 0 59.4%
Gen Y:{1980–1991} , Gen Z:{1996–2008} 4 63.4%
Gen Y:{1980–1988} , Gen Z:{1997–2008} 8 67.4%
Gen Y:{1980–1985} , Gen Z:{1998–2008} 12 67.0%
Gen Y:{1980–1982} , Gen Z:{1999–2008} 16 68.9%

The results indicate that as the temporal gap between generations Y and Z is increasing,
the classification performance improves, reaching an accuracy of 68.9%. This result suggests
that the virtual human avatars follow different visual patterns according to the ages of
users; however, a major change requires a gap of several years.

In summary, when we consider the total intervals for each generation, we observe
that the classification of age groups is a challenging task, as can be seen in the classification
performance, even though class imbalances were removed by focusing only on the two
major classes. We have several hypotheses that explain this phenomenon:

• There is a great heterogeneity in the avatars which makes the task of classifiers difficult.
Ideally, the visual classifiers are designed to classify classes where internally there
is visual closeness. In this case, within a possible class, such as humans, there are
sub-classes, such as faces, torsos and bodies of people.

• Avatars used by community members are very arbitrary and represent subjective
representations of themselves. In particular, we found few visual differences between
avatars of users with ages nearby, which makes it difficult to discriminate avatars
born on the border between generations.

• Clear differentiating instances are rare, such as the photo of a fashionable singer for a
particular generation. Mostly, there are general instances such as virtual avatars.

• A significant change of visual patterns of avatars takes several years; for example,
a gap of eight years leads to an improvement of 8.0% in accuracy. This suggests
proposing subclasses based on temporal gaps to facilitate the learning of classifiers.

7. Discussion

Briefly speaking, this work makes a first move on digging into the major challenges
posed by the predictive modeling of age cohorts across cQA platforms (i.e., Yahoo! An-
swers). In particular, our object of study was a massive sampling of community fellows,
which included their inputs in three distinct modalities: texts, profile images and meta-data.

First of all, our experiments indicate that class imbalances severely hurt performance
regardless of the modality. After testing with a handful of demographic segmentations,
our outcomes show that merging comparatively under-represented cohorts into a bigger
group can help not only to increase the classification rate, but also to reduce the amount of
model parameters by preventing from learning boundaries for classes with many missing
informative traits. To be more accurate, our results reveal that choosing few, but signifi-
cant, age groups can enhance the average classification rate from 0.8181 to 0.8302 (MRR),
and from 0.2270 to 0.5605 in terms of macro-F1-score (see Table 2). Many people had
this intuition before, but to the best of our knowledge, we provide the first empirical
confirmation and quantification on a large-scale corpus.

Another important finding unveils that, contrary to what might be popular belief,
perfectly evenly balanced classes are unsuitable for this task. To be more exact, our figures
on texts point out to a distribution in consonance with the diversity of each age group.
In fact, our results suggest that Gen Y is a much more heterogeneous segment than Gen Z,
and hence fewer training samples are required to cover most of its informative attributes.
This makes sense since younger people stand out for their technology use, which also
entails a wider diversity from that group accessing online platforms. On the flip side,
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generational trailing has a strongly negative impact on building a representative collection
for older members of the community. To put it more exactly, the best model constructed
by AGCL comprised 34,761 and 155,638 and 209,178 training instances harvested from
Matures, Gen Y and Gen Z, respectively (see discussion on Section 4).

Secondly, outcomes on texts and metadata show how the gradual evolution from
one to the succeeding group affect the construction of effective models. More accurately,
they show its impact on the selection of training instances, especially of samples coming
from the proximity to class borders (see Figure 5). These elements must be carefully
selected, since they are likely to share a significant number of traits with both clusters,
and thus their inclusion might bring a distortion that makes both cohorts to look as one
heterogeneous group, when they are not. In short, our experiments indicate that adding
these individuals to the training material depends on whether or not the corresponding
traits are adequately represented by samples of the respective class that are further from
that borderline. Of course, this finding serves as a guideline for how to reduce the number
of training samples in order to find a distribution that cooperates on building a better
fit model.

Thirdly, our analysis of the meta-data reveals that the years of starting and ending
activities in the social network are important variables for estimating the age of its users.
Specifically, these are the two most relevant attributes selected by RF classifiers (see Table 6).
Further, it disclosed that age is more correlated to variables coming from questions than
from answers.

Fourthly, there are considerable differences in group distributions across distinct
modalities. As a consequence of the nature of cQA sites, almost all community fellows
have posted at least one question or answer, and hence associated not only to some textual
input, but also to some meta-data. Given it is unneeded to participate in the platform, just a
third of the members provide an image for their profiles. It is worth highlighting here two
interesting aspects: (a) when considering images only, the majority class is Gen Y instead of
Gen Z by a very large margin; and (b) only one fourth of the samples belonging to Gen Z is
linked to a profile picture, whereas 40% of Gen Y peers yield their image. In brief, the use
of profile pictures is more prominent in Gen Y individuals, and thus their information
accessible to supervised machine learning approaches.

Lastly, even though image and some of the text approaches used in this study were
based on the same class of deep neural networks (CNNs), the classification accuracy was
significantly low for original avatars in relation to texts (i.e., a decrease from about 62-65%
to around 59% in terms of accuracy). Particularly, if we additionally consider that our image
classifiers conducted a two-sided task by targeting solely at the two youngest cohorts. As a
logical conclusion, it is harder to infer high quality predictors for age from profile pictures
than from texts. In reality, we also found it hard to label each individual by an eyeball
inspection of his/her profile picture only.

8. Conclusions and Further Work

This work is breaking new ground in cQA research by addressing the key challenges
faced by supervised learning when automatically identifying age groups across their
community fellows. In particular, it discusses class imbalances, different class distributions
across distinct modalities (i.e., texts, images and meta-data) and the gradual evolution from
one cluster to the next.

By devising a random forest classifier from the meta-data viewpoint and an age-
batched curriculum learner operating on text, we discovered a way of mitigating the effects
of class imbalances. In essence, instances close to generational borders must be carefully
selected and the distribution of classes must adjust to the diversity of each cohort. In the
same vein, putting together all under-represented age cohorts into one cluster proves to be
an efficient strategy, when conceiving age prediction as a classification task.

Although our age-batched curriculum learner presents interesting qualitative and
quantitative findings on Yahoo! Answers, its application to textual inputs distilled from
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other sorts of social media networks still remains an open research question, because of the
complexity and diversity that are intrinsic to this area of human activity.

As future work, we envisage the extension of this study to consider not only extra
techniques for coping with unbalanced data, but also to cover other kinds of views, such as
user activity, which would give access to additional, and hopefully highly reliable predic-
tors. In so doing, a battery of graph mining algorithms should be utilized for determining
sub-graphs, roles and centralities, just to name a few.

Despite the poor performance reaped by visual classifiers on original avatars, we do
not think that the task is desperately lost for them. As a means of enhancing their accuracy,
we envision a preliminary step consisting of clustering images into distinct types of pro-
file images (e.g., faces and animals), which which subsequent classifiers will be trained,
this way facilitating the task of inferring visual predictive patterns.

Since AGCL is built on top of a greedy search algorithm, it can get trapped in local
optima; therefore, the curriculum discovered by the algorithm is highly unlikely to be
the optimal, albeit a good one. While it is true that the amount of combinations is small
when considering three cohorts, thereby increasing the likelihood of finding the optimal
curriculum, it is also true that this number might skyrocket if a larger amount of age groups
is considered or if cohorts are modeled with a finer granularity (e.g., per month). Note here
also that the level of granularity used by AGCL depends on how well these fine-grained
clusters are represented.

All in all, we envisage that our findings will be highly relevant as guidelines for
constructing assorted multimodal supervised models for automatic age recognition across
cQAs and other sorts of online social networks. In particular, we contemplate as a possibility
that our outcomes will aid in the design of multi-view and/or transfer learning models.
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Appendix A

Table A1. Descriptions of variables (questions or answers).

Variable Meaning

birth.year Year of birth
1st.level.cat.highest.frequency Frequency count of most recurrent 1st level categories
1st.level.cat.highest.frequent Most recurrent 1st level categories
1st.level.cat.unique Number of different 1st level categories
2nd.level.cat.highest.frequency Frequency count of most recurrent 2nd level categories
2nd.level.cat.highest.frequent Most recurrent 2nd level categories
2nd.level.cat.unique Number of different 2nd level categories
3rd.level.cat.highest.frequency Frequency count of most recurrent 3rd level categories
3rd.level.cat.highest.frequent Most recurrent 3rd level categories
3rd.level.cat.unique Number of different 3rd level categories
ampm.marker.highest.frequency Frequency count of most recurrent am/pm timestamp
ampm.marker.highest.frequent Most recurrent (none, AM or PM)
ampm.marker.unique 0, 1 or 2 (none, AM and/or PM)
day.month.highest.frequency Frequency count of most recurrent day in the month (1–31)
day.month.highest.frequent Most recurrent day in the month
day.month.unique Number of different days in the month
day.week.highest.frequency Frequency count of most recurrent day in the week (1–7)
day.week.highest.frequent Most recurrent day in the week
day.week.unique Number of different days in the week
day.year.highest.frequency Frequency count of most recurrent days in the year (1–365)
day.year.highest.frequent Most recurrent day in the year
day.year.unique Number of different days in the year
hour.day.highest.frequency Frequency count of most recurrent hour (0–23)
hour.day.highest.frequent Most recurrent hour in the day
hour.day.unique Number of different hours in the day
maxYear Latest year within the timestamps
minYear Earliest year within the timestamps
minute.hour.highest.frequency Frequency count of most recurrent minute (0–59)
minute.hour.highest.frequent Most recurrent minute
minute.hour.unique Number of different minutes in the hour
month.year.highest.frequency Frequency count of most recurrent month in the year (1–12)
month.year.highest.frequent Most recurrent month in the year
month.year.unique" Number of different month in the year
second.minute.highest.frequency Frequency count of most recurrent second (0–59)
second.minute.highest.frequent Most recurrent second
second.minute.unique Number of different seconds
week.month.highest.frequency Frequency count of most recurrent week in a month (1–5)
week.month.highest.frequent Most recurrent week in the month
week.month.unique Number of different weeks in the month
week.year.highest.frequency Frequency count of most recurrent week in a year (1–52)
week.year.highest.frequent Most recurrent week in a year
week.year.unique Number of different weeks in the year
year.highest.frequency Frequency count of most recurrent year (2006–2018)
year.highest.frequent Most recurrent year
year.unique Number of different years
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Table A2. Descriptions of variables (global).

Variable Meaning

endActYear the year when the user finished his activity in the community
initActYear the year when the user started his activity in the community
yearsActive Number of years of activity in the community
no.answers Number of posted answers
no.best.answers Number of posted best answers
no.questions Number of posted questions
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