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Abstract: A cancer pathology report is a valuable medical document that provides information for
clinical management of the patient and evaluation of health care. However, there are variations in the
quality of reporting in free-text style formats, ranging from comprehensive to incomplete reporting.
Moreover, the increasing incidence of cancer has generated a high throughput of pathology reports.
Hence, manual extraction and classification of information from these reports can be intrinsically
complex and resource-intensive. This study aimed to (i) evaluate the quality of over 80,000 breast,
colorectal, and prostate cancer free-text pathology reports and (ii) assess the effectiveness of random
forest (RF) and variants of support vector machine (SVM) in the classification of reports into benign
and malignant classes. The study approach comprises data preprocessing, visualisation, feature se-
lections, text classification, and evaluation of performance metrics. The performance of the classifiers
was evaluated across various feature sizes, which were jointly selected by four filter feature selection
methods. The feature selection methods identified established clinical terms, which are synonymous
with each of the three cancers. Uni-gram tokenisation using the classifiers showed that the predictive
power of RF model was consistent across various feature sizes, with overall F-scores of 95.2%, 94.0%,
and 95.3% for breast, colorectal, and prostate cancer classification, respectively. The radial SVM
achieved better classification performance compared with its linear variant for most of the feature
sizes. The classifiers also achieved high precision, recall, and accuracy. This study supports a nation-
ally agreed standard in pathology reporting and the use of text mining for encoding, classifying, and
production of high-quality information abstractions for cancer prognosis and research.

Keywords: pathology reports; breast; colorectal; prostate; text mining; machine learning; support
vector machine and random forest

1. Introduction

Cancer is one of the most frequent causes of death in South Africa [1], and breast,
prostate, and colorectal are among the top five cancers occurring in the South African adult
population. According to Stefan [2], adequate attention to cancer diagnoses is needed to
improve the overall health of South Africans. Accurate diagnosis is a major concern in the
health care system for optimal prognosis and treatment of cancer [3]. A cancer pathology
report is a valuable medical document that provides information for clinical management
of the patient and evaluation of health care [4]. Lack of accurate and/or readily available
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data that can offer feedback to physicians negatively impacts health care quality. The health
care system needs to learn from past cancer pathology reports to improve cancer prognosis
and the overall health of cancer patients. Several studies in the literature have audited the
information content of pathology reports regarding (i) veracity in reporting, (ii) compliance
to a set standard, and (iii) comprehensiveness [5,6]. The overall aim of these studies was to
evaluate the quality of pathology reports to improve the conformity to a set international
or national standard.

The Corporate Data Warehouse (CDW), a division of the South African National
Health Laboratory Service (NHLS), collects and archives cancer pathology reports, which
covers approximately 80% of the national population [7]. Besides the direct use of these
pathology reports in the health care system, these reports can also be used in research,
quality and safety evaluations, and cancer incidence reporting [8]. Generally, pathology
reports comprise massive valuable data relating to the clinical condition of the patient.
However, these reports are usually in semi-structured or unstructured free-text format.
In this case, data coders manually read the pathology reports, extract valuable information,
and interpret the information based on clinical rules [9]. The final results are recorded in
the database, with a minimum computer-assisted process [10].

The high throughput generation of pathology reports due to increasing cancer in-
cidence has made a manual translation of unstructured free-text pathology reports to
structured data overwhelming and time-consuming [10]. Therefore, an automated process
is needed to abstract information in pathology reports, which may result in significant
cost-savings and consistent data structure, especially for research and incidence reporting.
In this regard, text mining (TM) has emerged as a powerful computational technique to
extract meaningful information and accurately transform pathology reports into a usable
structured representation [10–12]. TM techniques have been widely applied to unstructured
data such as medical records, social media content, business documents, survey responses,
academic publications, and web pages. These unstructured data are effectively transformed
into a machine-readable structured representation suitable for text classification using a
variety of machine learning (ML) algorithms.

In the medical field, ML has gained a wide range of applications and has provided the
potential to improve patient outcomes [13]. The advantages of ML have been emphasised in
the analysis of medical images, human genetics, and electronic medical record data, with a
focus on diagnosis, detection, and prediction [14]. Precisely, ML has been successfully
applied in the text classification of medical documents. Its goal is to automatically build
a classifier from training samples to assign documents into a set of pre-defined category
labels [15]. For instance, the study by Hyland et al. [16] showed successful application
of supervised ML in predicting circulatory failure in the intensive care unit. In the au-
tomatic prediction of heart disease, Ali et al. [17] proposed integration of deep learning
technique and feature fusion approaches using sensor and electronic medical health data.
ML has also been extensively applied to other medical data with high accuracy in text
categorisation [14,18–21].

In cancer research, several studies exploited the advantages of using ML for automated
text classification [8,11,22–27]. More specifically, Kasthurirathne et al. [22] evaluated the
accuracy of cancer case identification within a free-text pathology report using public health
data. Logistic regression (LR), naïve Bayes (NB), k-nearest neighbour (KNN), random
forest (RF), and J48 decision tree were evaluated. Information gain was used as the feature
selection method. The study showed a comparable performance of about 80–90% for
the decision models for most of the evaluation metrics used. Ranking of the specific
tokens associated with the presence and absence of cancer was shown. Kalra et al. [25]
investigated the performance of SVM, XGBoost, and LR based on the features selected
using the term frequency-inverse document frequency (TF-IDF) method in classifying
pathology report into different diagnosis categories. The XGBoost classifier achieved the
highest classification accuracy of 92%. Another study by Jouhet et al. [8] trained SVM
and NB to categorise pathology reports. Based on the ICD-03 attribution, the SVM model
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achieved 72% and 85% F-measure for topography and morphology. In a more recent
study by our group [27], all 2016 cancer pathology reports from the Western Cape province,
curated by the NHLS-CDW South Africa, were analysed. Various ML algorithms, including
RF, LR, NB, SVM, and KNN, were explored to classify pathology reports into malignant,
non-malignant, and no diagnosis. Among other classifiers, SVM achieved the highest
F-measure of 97%.

Generally, supervised ML algorithms have been used in the classification of cancer
pathology. Among these algorithms, SVM and RF are commonly used and have shown
good performance in the classification of cancer pathology reports [8,27]. This study
considered these supervised ML techniques for categorising cancer pathology reports into
malignant or non-malignant classes. Although previous studies used different approaches
in processing unstructured report, substantial variations and noise that exist in pathology
reports have been shown to impact the generalisability of these studies [11,22]. Hence,
there seems to be no optimal and evidence-based practice published to extract information
from the pathology report. Further, studies done in pathology report classification have
not considered assessing consistency in reporting over the years and using a combination
of filter feature selection techniques. In this study, we allowed the filter feature methods to
automatically reduce the dimensionality of thousands of tokenised features by ranking the
importance of each feature in relation to the target cancer. Such a framework will reduce
computational time and the chances of modelling noise.

This study aimed to use ML approaches to evaluate the veracity of over 80,000 free-
text breast, colorectal and prostate cancer pathology reports archived in the South African
NHLS-CDW. Figure 1 is an illustration of the methodological approach used in this study.
The two diagnosis classes (“benign” and “malignant”) were defined by mapping the
attributes of the Systematised Nomenclature of Medicine (SNOMED) codes to the Interna-
tional Classification of Diseases for Oncology (ICD-03) codes. This study is an important
and useful development within the context of cancer pathology reporting in South Africa.
It may form the foundation for several research studies that will eventually utilise the
NHLS-CDW database. Unlike in the study by Olago et al. [27] and previous studies, our
contributions are as follows:

• Our effort was based on the premise that almost a decade of cancer pathology reports
(used in this study) may yield more valuable insights into the integrity of the curation
of these pathology reports and consistency and style in cancer pathology reporting
over the years. Therefore, our data coverage is more comprehensive, which also
reflects the population of South Africa.

• Various cancers have some unique clinical key terms specific to that cancer (in their
reports) and are entirely different from other cancers. For instance, we expect a
breast cancer pathology report to include key terms such as “estrogen receptor and
progesterone receptor”, which should not be present in colorectal or prostate cancer
pathology reports. Hence, we analysed cancer-specific reports instead of aggregating
reports of all cancers in a single analysis.

• We perform a detailed comparative evaluation of features selected by the different
feature selection techniques and assessed if the integration of the selected features
could impact the algorithms’ efficiency. The selected features were manually reviewed
to ascertain the reliability of any term used in the model building.

Therefore, our research questions are formulated as follows: (1) How efficient can TM
be used to process cancer pathology reports? (2) How well can filter selection methods
identify the most effective terms associated with a cancer diagnosis? (3) How effective can
the two classes be discriminated against by the ML classifiers?
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Figure 1. An overall workflow for this study, illustrating the inclusion and exclusion criteria used to
extract the final study data and also the modelling approach used in data analysis.

2. Materials and Methods
2.1. Data Source

The NHLS is a system of population-based public health laboratory services for South
Africa [7]. It is positioned as the largest diagnostic pathology service in South Africa
and Sub-Saharan Africa. The NHLS has a national network of laboratories across all the
provinces of South Africa and provides public health and laboratory services covering
approximately 80% of the total South African population. It offers a reference to both
provincial and national health departments to support appropriate response to quality
and accessible health care delivery and health decision making. The NHLS-CDW is the
central data repository of laboratory results within the public health sector in South Africa.
The focus of NHLS-CDW is to collect and archive pathology reports by characteristics of
type, time, person, and place. More specifically, the database archives several types of
cancer pathology reports, which are used by the National Cancer Registry in monitoring
and reporting regional or national cancer incidence [7]. Permission to use the study data
was obtained from the NHLS research committee, and ethical clearance was obtained from
the Human Research Ethics Committee of the University of the Witwatersrand (M1911131).

2.2. Preprocessing

We extracted 171,652, 78,181, and 54,323 electronic pathology reports corresponding
to breast, colorectal, and prostate cancers, respectively, diagnosed between 2011 and 2019,
as a CSV file from the NHLS-CDW database (Figure 1). The pathology reports are free-
text written in English, with few terms in Afrikaans, routinely collected from all the
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NHLS pathology laboratories across South Africa and were annotated by the pathologist.
We used the stringr function package in R [28] for pattern matching of the values of the
SNOMED morphology codes (to create the class label) using the International Classification
of Diseases for Oncology (ICD-O-3) code as the underlying terminology for histology and
anatomical sites in the pathology reports. Within the ICD-O-3 codes, there is more than one
possible generic classification of cancer group, including the following: M-8000/0 (benign),
M-8000/1 (uncertain), M-8000/2 (in situ), M-8000/3 (invasive), and M-8000/6 (metastatic).
We observed that majority of the morphology values fell under the benign or the malignant
groups. We then excluded few cases with indecisive diagnosis. We reduced the number of
possible class labels by bucketing all the carcinoma cases to create two response categories,
“Benign” and “Malignant”, for each studied cancer.

Several preprocessing steps were performed [29]. First, duplicate records were identi-
fied and filtered out from the data. We also excluded cases with unknown records and cases
with a maximum report text length of 100 (Figure 1). Most reports with a text length of 100
contain one, two, or few words that show no specific description of benign or malignant
diagnosis. Second, important terms such as “ER+VE” and “PSA” that were inconsistently
written in the pathology reports were standardised. The R package “quanteda” was used
to replace non-useful characters, such as punctuation and parentheses, from the reports
with empty spaces [30]. This package was also used to convert the text in the reports
to lower case, discard non-informative (stopwords) words [31] and other words such as
patient, email, name, etc.

2.3. Model Development and Validation

Before model building, the stemming function in the quanteda package was used to
combine similar words that could have appeared in different forms in the report, which
may affect the classifier’s performance. A typical example of such a word is the “Bloom-
Richardson” for breast cancer grading. We observed different ways of referring to this word
in the reports using different parentheses and abbreviations. These types of words were
aggregated into one using the stemming function. A function called tokens in the quanteda
package was used to tokenise the report into uni-grams. Tokenisation is the process of
breaking text in a document into words, phrases, or whole sentences [31]. As it is not
possible to directly build a classifier using a text document, we employed “bag of word”,
an indexing approach to document representation, to map the reports into a compact
representation of its content [32]. In other words, a vector representing the frequency of
each token was created. There was an imbalance class distribution (72% vs. 28%) with
the colorectal cancer data. To reduce the imbalance in the distribution of the class label,
we subsampled the majority class (benign) using the Ross package in R software [33].
The final distribution was 60% vs. 40% for the benign vs. malignant class. Using a stratified
sampling method in the caret package [34], 30% of each cancer case studied was set aside
for model validation. The overall workflow of this study approach is illustrated in Figure 1.

2.3.1. Feature Selection

To reduce the number of dimensions in the datasets, we identified the most relevant
features useful in supporting the classification process. This is particularly valuable as
irrelevant or redundant features negatively impact the performance of the classifiers and
may also increase the computing run-time [10,35]. Features are selected based on their rank
in discriminating a malignant tumour from benign. In this study, we have employed a
two-step feature selection approach. We first excluded features occurring fewer than 20
times in fewer than 500 documents in the training data. These features may add noise to
the classification or may not help to differentiate a benign from a malignant case report.
In addition, features with high frequency that could equally occur between benign and
malignant classes were excluded from the training data because they may contribute to
the classification. Next, we used four filter feature selection methods to identify terms
or features that strongly differentiate the targeted classes. The list of the unique features
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selected across the feature selection methods for each cancer type was manually reviewed
to identify words not familiar for any of the cancer types. The top-ranked 150 features
common across the four selection methods were identified. In this process, we significantly
reduced the original features from >20,000 to 150. The feature selection methods used in
this study are information gain, mutual information, chi-square, and one rule. Each of these
methods are well known and have been detailed in the literature [35–38]. Hence, we briefly
describe these methods below. Given a collection of the training samples S = (s1, s2, . . . , sn),
each sample i contains a pathology report expressed as a numeric vector representing the
features or terms X = (x1, x2, . . . , xm) ∈ Rn. We assume the diagnosis class Y = (y1, y2)
represents malignant and benign.

Information gain: Information gain (IG) determines the relevance of a feature to the
outcome by counting its presence, or absence, in a report [35,37]. To describe IG, we start
with Shannon’s entropy, denoted by

H(Y) = −∑
y

P(y) log2 P(y) (1)

Shannon’s entropy describes the information content or uncertainty in the outcome
class Y as described in Equation (1). A measure of the estimated information gain is calcu-
lated by comparing the entropy of the class label and the entropy of each specific feature.

IG = H(Y)− H(X) (2)

Mutual information: Mutual information (MI) measures the dependency or rela-
tionship between the outcome class and the feature [35,38]. The conditional entropy is
given by

H(Y/X) = −∑
x

∑
y

P(x, y) log2(P(y/x)), (3)

denoting that the observation of the feature X, reduces the uncertainty in the outcome Y.
The decrease in uncertainty is expressed as

I(M) = H(Y)− H(Y/X). (4)

MI is equal to zero if X and Y are independent; otherwise, it will be greater than zero.
Chi-square test: The chi-square (χ2) method calculates the association of feature X

with class Y [35,36,38]. It measures the the lack of independence between the features and
the class. χ2 is defined by the following expression

χ2(X, Y) =
n[P(xy)P(x̄ȳ)− P(x, ȳ)(y, x̄)]2

P(x)P(y)P(x̄)P(ȳ)
, (5)

where n is the number of the training sample.
One Rule: The one rule (OneR) learning algorithm is a decision tree with only one

split [36]. OneR learning method infers a rule to predict the class for the values of the
features. Similar to IG, these rules are based on each input feature.

2.3.2. Classifiers

Support vector machine: SVM is a well-known pattern recognition technique that has
shown good performance in text classification studies [8,10,27]. SVM uses a hyperplane of
coefficients w and b (with a maximum margin of separation) to model the discrimination
between samples of two classes while minimising the total classifier error. A hyperplane in
the sample space can be defined as w.x + b = 0 ∈ Rn, b ∈ R, where w is the weight vector
perpendicular to the hyperplane and b is the bias term. If such a hyperplane exists in the
training data, then the data is said to be linearly separable, and the optimal hyperplane
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is identified by solving the Lagrange multipliers (αi) [10]. The decision boundary is
defined by

f (x) = sign(
p

∑
i=1

yiαik(xi, xj) + b), (6)

where the kernel function k(xi, xj) = xi.xj for the linear SVM. xi.xj represents the dot
product between the input vector and each support vector. We also considered the radial
kernel function, a scenario where the training data are not linearly separable. In this
process, the training data is mapped into a higher dimensional space, where a linear
hyperplane is constructed to perform separation. For this kernel, the k(xi, xj) in Equation (6)
is substituted by exp(−γ‖xi − xj‖2). As described above, it may not be straightforward to
identify a hyperplane with the maximum margin that can perfectly separate the two classes.
A regularisation parameter C is used in linear SVM to assess the extent of our intention to
perfectly separate the two-class label in the training data [39]. In other words, C controls the
cost of misclassification in the training data during the optimisation process. Large values of
C are associated with high variance and low bias. Conversely, low values of C result in high
bias, low variance, and an increase in the training time. Using five-fold cross-validation
(CV), a range of C values (1:2, by 0.05) were used for SVM linear, and performance at
any given feature size was based on the F1-score, with support from recall, precision, and
accuracy scores. The radial kernel function contains two hyperparameters C and γ [39].
The γ parameter is used to account for the smoothness of the decision boundary and
controls the variance of the model. Smaller γ leads to a smoother decision boundary with
low variance and vice versa.

Random forest: Random forest algorithm has been frequently used in text classification
with good prediction performance [12,40], and this technique has shown more efficiency
than the single decision tree. For predicting a new case, the trees’ final class label prediction
in the forest is observed. Popularity vote is used to select the class label of the new case with
the highest votes. In this study, we have used the ranger method in the R caret package to
fit the RF models [41]. The models were tuned over n of number tree (300:1000, by 100); the
random forest algorithm is described as follows:

1. Randomly select sample from the training data, S.
2. Construct a classifier with selected samples.
3. Randomly select the number of features that maximise the information gain from the

total features.
4. Use the best split among the selected features to calculate the node and the daugh-

ter node.
5. Repeat steps 3 and 4 until the required N number of nodes is reached.
6. Recursively repeat the above steps i number of times to create t number of forests.
7. For a new case i, predict Y class using the rule from step 6, calculate votes v, and use

the majority votes.

2.4. Evaluation Metric

We have discussed that feature selection methods can be used to efficiently extract
essential features from the individual pathology reports, which are used as input features
for the classifiers. Therefore, it is worth evaluating how the extracted features represent
the critical content within the pathology report based on the performance of the classifiers.
The performance of the classifiers was assessed on the test set. The test set for each
studied cancer contained 14,590, 3792, and 4159 for breast, colorectal, and prostate cancers,
respectively. Preprocessing steps were conducted as was done in the training set. The same
features were also selected from the testing set during the prediction process. Based on the
prediction result, we computed four indicators (F1-score, precision, recall, and accuracy)
that have been successfully applied as evaluation matrices in text classification within the
cancer domain [10,27].

• Precision (P) = TP
TP + FP
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• Recall (R) = TP
TP + FN

• F1 = 2 PR
P + R

• Acc = TP + TN
TP + TN + FP + FN ,

where
TP—true positive
TN—true negative
FP—false positive
FN—false negative

Precision estimates the percentage of classified positive cases that are correctly positive,
while recall estimates the percentage of correct positive cases in the classification. F1-score
is the weighted harmonic mean of precision and recall. Accuracy measures the percentage
of correct prediction overall. We computed the performance of the classifiers at a varying
feature size to assess the usefulness of feature selection for these classifiers.

3. Result

The distribution of the class labels for the three studied cancers is shown in Table 1.
The class distribution for prostate cancer data is approximately balanced compared with
others, with 51% malignant cases and 49% benign cases. More than 72% of colorectal cancer
cases are benign. However, this was subsampled during the classification stage. A box and
histogram plots describing the unprocessed versus processed word and character counts
as tabulated in Table 1 are shown in Figures 2 and 3. These figures and the table show
reduced word and character counts in the reports after preprocessing. The illustration
of the median text length of the pathology reports across the study period is shown in
Figure 4. On average, we observed that the text length in malignant breast cancer reports is
consistently higher than that of the benign breast cancer reports across the years assessed.
Between 2015 and 2019, this figure shows a broader variation in text length between the
two classes. We observed an equal or close distribution between the two classes for the
colorectal cancer reporting until 2015. Prostate cancer also shows a wider variation in
reporting from the year 2015. We have shown an example of a pathology report of a patient
with a malignancy diagnosis (Figure 5). This figure shows the transformation from a raw
to processed report, ready for analysis. The reports for each cancer type are presented in
a word cloud format to illustrate the overall frequent terms in both the unprocessed and
processed data (Figure 6). We observed that words synonymous with each cancer type are
more pronounced in the processed reports than in the unprocessed reports. Table 2 shows
the top-ranked ten features selected by each filter method across the three cancer types.

Table 1. Descriptive statistics of word counts and text length distribution for unprocessed and processed pathology reports
across the three cancer type.

Cancer Type Class Frequency Percent Word Counts Character Counts

Unprocessed Processed Unprocessed Processed
Median
(Range)

Median
(Range) Median (Range) Median (Range)

Breast Benign 29,741 40.0% 88.0
(12.0–916.0) 61.0 (8.0–688.0) 696.5

(106.0–6974.0)
558.0
(78.0–5549.0)

Malignant 19,791 60.0% 130.0
(7.0–1197.0) 94.0 (7.0–909.0) 1093.0

(102.0–10,483.0)
875.0
(82.0–7122.0)

Colorectal Benign 13,084 72.0% 83.0 (8.0–968.0) 83.0 (6.0–678.0) 689.0
(102.0–7697.0)

553.0
(88.0–6207.0)

Malignant 5164 28.0% 86.0 (9.0–619.0) 58.0 (7.0–490.0) 735.0
(109.0–5346.0)

594.0
(81.0–4232.0)

Prostate Benign 6849 49.0% 80.0
(20.0–510.0)

55.0
(16.0–363.0)

654.0
(155.0–3482.0)

523.0
(127.0–2854.0)

Malignant 7018 51.0% 92.0
(12.0–475.0)

64.0
(12.0–330.0)

758.0
(131.0–3553.0)

603.0
(114.0–2705.0)
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Figure 2. Histogram illustrating frequency counts of pathology report text length for unprocessed
and processed benign and malignancy reports for breast (top), prostate (middle), and colorectal
(bottom) cancers. The benign class shows higher frequency counts due to large number of cases
studied, while the text length of the malignant class is longer than that of the benign class. The text
length for each of the cancers was reduced after data preprocessing.

The overall classification results of the RF and SVM (linear and radial) algorithms
represented by F1-score measures is shown in Figure 7. A general view of the plots indi-
cates that all the classifiers perform poorly more often than when they have larger feature
sizes (Table 3). This shows that an increase in feature size appears to improve classification
performance. The classifiers show comparable and higher classification effectiveness in
prostate and breast cancers than the colorectal cancer classification. The RF model offers
the highest performance across the three cancer types and feature size values, with per-
formance ranging from 90.4–95.2%, 90.0–94.0%, and 93.2–95.3%, in breast, colorectal, and
prostate cancer, respectively. The performance of the radial SVM is comparable with RF,
especially in prostate cancer classification. On the other hand, linear SVM is the least
accurate classifier across all feature sizes and cancer types.
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Figure 8 shows the accuracy, recall, and precision (ARP) scores of the classifiers across
the three cancer types. For example, in the breast cancer classification, the ARP scores for
the RF show a similar trend across all feature sizes than seen with the SVM. Nonetheless,
the estimated precision scores are consistently higher than the recall scores across the
features sizes. This indicates low misdiagnosis rates than missed diagnosis; that is, a few
reports for benign cancer are classified as malignant. A similar pattern is observed with
the colorectal cancer prediction, with all the classifiers showing lower recall scores than
precision. For both RF and radial SVM in prostate cancer classification, a comparable
pattern is seen with the estimated ARP scores, indicating lower missed diagnosis at a
large feature size than a misdiagnosis. Overall, the ARP scores also support that RF
outperformed SVM across the three cancer datasets.

Figure 3. Box plots illustrating the distribution of word counts in the pathology report for the three cancer types. The figure
shows reports with higher word counts, which skews the distribution of word counts in the reports. For each cancer target
class, the number of word counts reduced after data preprocessing.

As RF outperformed SVM, the classifier was used for further analysis to determine the
efficiency of each feature selection method used in this study. Figure 9 shows the F1-scores
of the RF model with each feature selection method across feature sizes. For breast cancer,
the model achieved a comparable F1-score with the χ2, IG, and OneR methods than MI
across the feature sizes, whereas in colorectal and prostate cancer classification, there is no
clear distinction in performance with the four feature selection methods.
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Figure 4. Distribution of median text length across the study period for each cancer diagnosis target
class. The figures illustrate the increase in the median pathology reports over the years. Class
imbalance is noticeable with the breast cancer reports across the years when compared to prostate
and colorectal cancer.
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Figure 5. A sample of a pathology report for breast cancer malignant neoplasm, illustrating unprocessed free-text report
(top) and processed free-text report (bottom). Processed report shows the absence of some common stop words, punctuation,
and special characters.
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Figure 6. Word cloud of each cancer type for unprocessed and processed pathology reports summarising the most frequently
used terms or features in the pathology report. The figures present an overall theme in each cancer type, which is more
pronounced in the processed reports.
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Figure 7. F1-scores of the RF, radial, and linear SVM models across the feature sizes for each cancer
type. Different patterns in performance of each model are observed for each cancer type.
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Figure 8. Precision, recall, and accuracy measure of the classifiers over the feature sizes for each cancer type. The figure shows
different patterns in each evaluation metric across the feature sizes and for each cancer type.
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Figure 9. F1-score of RF for the three cancer type, showing patterns in performance with each feature
selection method and over feature sizes.
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Table 2. Top ten key features or terms identified from each feature selection methods for breast, colorectal, and
prostate cancers.

Cancer Infogain Chi-Square OneR Mutual Info

Breast

carcinoma carcinoma carcinoma ki67
ki67 ki67 ki67 pleomorphism
tumour tumour er bloomrichardson
score score score er
er er tumour invasion
invasion pr pr lymphovascular
Age invasion infiltrating nests
pr infiltrating invasion infiltrating
infiltrating invasive positive pr
pleomorphism pleomorphism her2 score

Colorectal

adenocarcinoma adenocarcinoma adenocarcinoma adenocarcinoma
differentiated differentiated differentiated differentiated
moderay moderay tumour moderay
tumour tumour moderay lymphovascular
invasion invasion invasion perineural
infiltrating infiltrating invasive infiltrating
invasive invasive infiltrating distant
lymphovascular lymphovascular nodes differentiation
perineural perineural lymph distance
lymph lymph lymphovascular ajcc

Prostate

adenocarcinoma adenocarcinoma adenocarcinoma gleason
gleason gleason gleason adenocarcinoma
perineural perineural perineural perineural
invasion invasion invasion score
score score score group
group tumour grade invasion
tumour group tumour major
grade grade group minor
major major hyperplasia lymphovascular
minor hyperplasia cores involved

Table 3. Performance measures of the classifiers at 10 and 150 feature sizes for the three studied cancers.

Features Cancer
Type Model F1 Recall Precision Accuracy

10

Breast

RF 92.51 90.81 94.28 90.72
SVMLinear 90.35 85.04 96.39 87.50
SVMRadial 91.01 87.38 94.96 88.61

Colorectal

RF 89.86 83.88 96.77 86.74
SVMLinear 89.89 83.84 96.89 86.76
SVMRadial 89.93 84.01 96.77 86.84

Prostate

RF 93.88 93.17 94.60 93.94
SVMLinear 93.17 92.07 94.31 93.19
SVMRadial 93.45 92.15 94.79 93.45

150

Breast

RF 95.19 94.73 95.65 94.09
SVMLinear 94.50 92.26 96.85 93.11
SVMRadial 95.03 94.05 96.03 93.86

Colorectal

RF 93.53 91.51 95.65 86.76
SVMLinear 92.20 88.81 95.86 86.79
SVMRadial 93.11 90.70 95.65 90.96

Prostate

RF 95.34 95.69 94.60 95.25
SVMLinear 94.76 94.40 95.12 94.82
SVMRadial 95.29 95.55 94.88 95.39

4. Discussion

We developed and validated models for breast, colorectal, and prostate cancers to
discriminate benign from malignant using free-text pathology reports. The models achieved
good performances. The knowledge extraction phases include pattern matching of the
SNOMED ICD-O-3 codes, data subsetting, text processing, feature selection, classification,
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and evaluation (Figure 1). We provided a thorough description of how each of these steps
was conducted.

We acknowledge several studies that show that the quality of free-text pathology
reports has potential in enhancing knowledge dissemination [42,43]. Several studies
have attempted the auto-annotation of free-text pathology reports with varying degrees
of successes. According to Liu et al. [44], extraction of clinical information from the
pathology reports poses several difficulties. This study pooled data that spanned nine
years, which presented a significant challenge in discriminating benign from malignant
due to inconsistencies in the reporting across the studied years. For instance, the median
text length has not been consistent over the years for benign and malignancy reporting.
In other words, this indicates that at the beginning of the study year, cancer reporting was
concise compared to the later study years. This is not unusual because, over the years, there
may have been novel biomarkers prescribed for cancer diagnostics, which may necessitate
variation in vocabularies and text length of cancer pathology reporting. Be that as it may,
new or more essential vocabularies (that have a direct link to the classes) added to the
reporting format in recent years might distort the extraction of common terms over the
years, thus influencing the overall performance of the classifiers in this study.

Even though we envisaged the influence of analysing pooled data on the classifiers,
we observed differences in the text length of the reports (for both malignant and benign
cases) within each year. Some reports were overly focused on the patient demographic
characteristics or experiments conducted for the diagnosis, other than words describing
the actual terms directly related to the pathology outcomes. On the other hand, some
reports are so concise that the actual terms that could have helped report interpretations are
missing or not comprehensive. In this latter example, it is not clear whether the report is a
case of benign or malignancy. Although the first scenario might be preferred, these two case
scenarios could be tricky for human and machine classification. These show the imprecise
nature of natural language, which could impact the performance of the classifiers [12,43].

Other factors that could impact the model’s overall performance are parentheses, no-
tation, and inconsistent usage of important clinical terms (singular terms or a combination
of terms) within the reports. For instance, we observed that some of the pathologists report
“estrogen receptor-positive” in full, while in some other reports, it was abbreviated as “ER-
receptor +ve”, “ER-receptor-positive ”, “ER-+ve” etc. Moreover, in some cases, punctuation
marks were used as a conjuncture in these terms, while in other cases, the clinical terms
were enclosed in parenthesis. For example, ER (+ve). This makes the reports somewhat
inconsistent. An effort was made to rephrase or standardise those meaningful synonyms
that are crucial in discriminating benign from malignant classification. Previous studies
noted such inconsistencies in both cancer and non-cancer report classification [11,12,27].

The concept of using filter feature selection methods before text classification has
been explored in an email classification study [10]. In this study, we thought it more
reasonable to explore four well-known statistical and ML filter selection methods to reduce
the excessive number of features generated from reports tokenisation. A combination of
features shared across the four feature selection methods did not improve the classifiers’
performance compared to using only features selected by chi-square or info gain methods.
The selected features are well-known clinical terms that are synonymous with each of
the studied cancers, which supports the reliability of our study. Some of these features
are visible in the word cloud. An increase in feature size seems to improve classification
performance, though in a non-linear fashion across the feature sizes. We recommend the
use of a relatively small feature size in model training. In particular, the selected features
should be manually assessed to exclude any synonym not corresponding with the study
context. Although most cancer case identification and classification studies rely on the
algorithm’s capacity to discriminate the classes, all the features are used as input to the
algorithm without manually assessing the meaningfulness of these features as relating to
the task at hand and, hence, may lead to feeding noise to the algorithm.
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Generally, malignancy reports (in comparison to benign reports) are expected to
embody more elaborate vocabularies, enriched with biomarker terminologies or terms
describing the pathology outcome. However, some of the reports of benign cancers were
constructed to resemble the malignancy reports. The unique terms for each of these
classes are used to profile their characteristics. Ideally, a good classifier should use these
profiles to discriminate between the two classes with minimum misclassification cost.
Previous studies in cancer case classification have used these profiles to distinguish target
classes successfully [8,22,27,45,46]. However, our model showed higher or comparable
performances with previous studies. In this study, the RF model consistently performed
reasonably well across all values of the feature size and showed an overall performance
average of 95.5%, which is comparable to the RF performance in the study by Olago
et al. [27]. In addition, the computing time for RF is lower than that of the SVM variants.
The radial SVM achieved a better classification performance compared with its linear
variant across all the feature sizes. Moreover, the result on the radial SVM is consistently
comparable to RF across the three studied cancers. Previous studies have noted the stability
and reliability of the classifiers used in this study [10,12,27]. Our study showed comparable
performance, especially with the study by Olago et al. [27]. Besides the modelling strategy
used in the study by Olago et al. [27], the variation between our study and the study by
Olago et al. [27] could be attributed to the use of pooled data across several years and cross
several provinces in South Africa.

There is not much variation in the effectiveness of the classifiers across the three
datasets. However, we observed more stability and comparability of the classifiers for
breast and prostate cancer classification than colorectal cancer classification. Exploring
further with the SNOMED ICD-O-3 codes shows that colorectal cancer has about 89 classes
compared to the 50 and 20 classes for breast and prostate cancers. This may lead to
complexity in the diagnosis and prognosis of colorectal cancer, as seen in this study; hence,
the relatively more unsatisfactory performance of the classifiers in colorectal cancer data.
The complexity of diagnosis and prognosis of colorectal cancer has also been noted in a
study by Wagholikar et al. [46].

Conclusions and Future Studies

We have evaluated a framework to audit the quality of breast, colorectal, and prostate
cancer pathology reports archived in the NHLS-CDW between 2011 and 2019 and have
developed automated ML algorithms to identify case reports belonging to benign or
malignant class. Our modelling strategy appears to generalise the three cancers well and
could be adopted in other cancers and beyond cancer studies. Our findings indicate that we
can identify the inconsistencies associated with free-text narrative reports in this database.
In addition, we can predict the labels of the two classes with F-scores above 90% in all the
cancers and feature sizes. We observed the necessity of assessing the tokenised terms to
avoid fitting noise in the model and, also, some tokens identified are unique to each cancer
studied. We also observed that using a subset of thousands of features generated from
tokenisation is enough to build a higher predictive model than using all the features. Using
a subset of the features avoids fitting of noise and decreases computational time. Finally,
the RF algorithm showed good performance across the three cancers and feature sizes. This
study did not comprehensively explore the use of the classifiers (RF and SVM) with other
tokenisations, such as bigram, tri-gram, and combinations of the two. Nonetheless, we
conducted a preliminary analysis with bigrams using selected feature sizes and observed
no improvement compared to uni-gram tokenisation. We also explored other classifiers
that are popular in natural language classification, such as naïve Bayes (NB), K-nearest
neighbours (KNN), and deep learning (DL) in this study (results not shown); however, RF
and the two variants of SVM outperformed NB, KNN, and DL algorithms.

Overall, our study shows that the predictive power of the algorithms used in pathology
report classification may be influenced by several factors, including the type of algorithm,
data quality, and modelling strategies. In addition, this study supports the use of automated
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systems such as text mining and machine learning techniques to support human classifiers
in labelling a large volume of pathology reports and identifying new cancer cases for
incidence reporting. Finally, our findings indicate several interesting directions for future
studies. First, we will extend this study by comparing algorithm-based extraction versus
manual extraction using tumour topography and morphology sites while considering
clustering-based feature selection methods. Correspondingly, for all identified key features
critical to the prognosis of studied cancer, we plan to develop a text mining approach
that will extract the values associated with these features, irrespective of the degree of
inconsistencies observed in the free-text pathology reports. Finally, we would auto-annotate
pathology reports targeting the staging and grading using these data, notwithstanding the
challenges of extracting such features in heterogeneous free-text reports [44,45].
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