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Abstract: The presence of faults in dynamic systems causes the potential loss of some of the control
objectives. For that reason, a fault-tolerant controller is required to ensure a proper operation, as
well as to reduce the risk of accidents. The present work proposes a passive fault-tolerant controller
that is based on robust techniques, which are utilized to adjust a proportional-derivative scheme
through a linear matrix inequality. In addition, a nonlinear term is included to improve the accuracy
of the control task. The proposed methodology is implemented in the control of a two degrees
of a freedom robotic helicopter in a simulation environment, where abrupt faults in the actuators
are considered. Finally, the proposed scheme is also tested experimentally in the Quanser® 2-DOF
Helicopter, highlighting the effectiveness of the proposed controller.

Keywords: fault-tolerant control; robust nonlinear control; robotic systems

1. Introduction

The main objective of a fault-tolerant controller is to preserve stability and a proper
performance, even when there is a malfunction in some of the system components. A suit-
able controller is essential to maintain a correct and safe operation. Besides, with the
objective of assuring the suitability of a proposed scheme, it is required to settle on ad-
equate methods of analysis. In this fashion, different techniques have been proposed to
analyze the stability of the closed-loop system, as well as to guarantee a required perfor-
mance. Nevertheless, with the automation of internal processes, the occurrence of faults
is prone to increase. In addition, it is usual that the system components yield a natural
degradation in performance over time, a fact that can lead to instability or to irreversible
damage. Even under a wide range of tolerable faults, the controller must be designed to
ensure proper operation, or at least an adequate degree of command to set the system to
rest, with minimal potential risk.

As mentioned in [1], some outstanding control approaches have been considered
to operate in the presence of faults, maintaining desirable properties of stability and
performance. In particular, in scenarios where safety is essential, such as aircraft vehicle
navigation, power plant control, or chemical process regulation, where any slight failure
could cause catastrophic results.

A failure can be defined as a deviation of a system’s response from its nominal
behavior, or the deviation of the system parameters from their nominal values [2]. Most
of the literature concerning fault detection considers the case of linear systems [3–5].
Nonetheless, for the case of nonlinear systems, some results are available in [6]. For these
systems, the fault is represented as an exogenous input or deviation in the dynamic
response from the expected value. Besides, when the failures are considered as additive
external signals, they are called additive faults.
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1.1. Fault Tolerance Control

Tolerance describes the idea of alleviating the consequences of a failure, so that
the components remain functional. This can be attained by the principle of fault toler-
ance [7]. The control technique, in which the occurrence of failures is taken into account for
control purposes, is known as Fault-Tolerant Control (FTC) [8]. Some FTC systems employ
analytical or hardware redundancy. Those systems where people’s safety is involved use
hardware redundancy due to its superb effectiveness; nevertheless, its financial cost is in-
herently high. It is worth commenting that analytical redundancy reduces instrumentation
and maintenance costs, and this approach can be carried out by using control laws that are
designed to be robust against known or unknown faults [9].

A well-designed robust controller can ensure stability and maintain an acceptable
closed-loop performance in a large number of circumstances, event in the presence of some
actuator faults. Recently proposed FTC methods are based on robust techniques such as
those shown in [10,11]. FTC strategies are classified into two categories: The first one is
named Active Fault-Tolerant Control (AFTC) which consists of reacting to a component’s mal-
function (e.g., actuators, sensors, and even the system itself) by reconfiguring the system’s
controller. To do so, the system’s controller needs to be a reconfigurable one. Moreover, it
needs to use the information from a Fault Detection and Diagnostic scheme (FDD) and a
device to reconfigure the controller. All this requires redundancy in different components
that make up the control system. Moreover, the second one is called Passive Fault-Tolerant
Control (PFTC) which consists of designing, a priori, a controller that supports a certain
number of known faults and does not require additional mechanisms or a reconfiguration
of the controller. Therefore, since in PTFC no additional mechanisms or reconfigurations
of the controller are needed, the probability of presenting a lack of stability or poor per-
formance of automatic control system diminishes, see [12,13]. According to [14], PFTC
does not involve the combined estimation of control signals and faults. Compared to the
AFTC method, the PFTC control uses the same control strategy before and after faults [15].
Besides, under the presence of a passive fault, the PFTC requires neither fault diagnosis nor
controller redesign [16]. The basic idea of PFTC is to make the closed-loop system robust
against uncertainties, as well as to a restrictive set of probable failures, assuming that it is
possible to guarantee that a fault acts as an uncertainty to the system, in a way that can be
limited. In that case, a carefully designed robust controller can achieve tolerance to a wide
range of faults.

1.2. Main Contribution

The simple structure and reliability of classical linear controllers, such as PID (proportional-
integral-derivative) control algorithms, have been widely considered [17], inducing a
robust behavior in several circumstances, such as in the presence of a large variety of
uncertainties. In this work, a PD controller strategy is considered, whose feedback gains
are adjusted through the solution of a convex optimization problem, which is used in turn
to demonstrate the suitability of a given linear matrix inequality (LMI), as shown in [18].
The faults can be considered as additive failures in the actuators, causing a deviation from
the nominal behavior of the system response. These types of failures can occur due to
wear, changes in the actuator structure, or damage. Furthermore, the presence of these
faults produces an impact on the the performance of the closed-loop system, leading to
a potential degradation or even lack in operation of the aircraft system, which motivates
the design of a PFTC, which is able to operate in a broad class of scenarios, including the
presence of disturbances and dynamic uncertainties.

The robust control formulation that is proposed in this paper consists of a passive
approach, which attempts to minimize the output discrepancy over the control objective,
as it was previously studied in [19]. A classical approach, in robust control, considers
the discrepancy caused by the deviation of the systems parameters as an apparent input
disturbance, see Figure 1. Thus, the control objective is to get rid of, or minimize, such a
deviation.
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Figure 1. Block diagram representing the dynamic system under the presence of faults. Here, r is the
reference signal, u is the control input, y is the output and e is the regulation or tracking error.

There are three fundamental advantages of the method used in this paper. The first
one is that, PFTC is much less expensive than the AFTC method because it does not require
the incorporation of additional redundant devices to maintain a good performance of the
closed-loop control system in the presence of failures that occur in the system. The second
one is that the strategy for designing the robust controller of the system, based on LMIs,
considers an extensive list of potential system malfunctions and, additionally, measurement
noise and disturbances, guaranteeing with this to preserve an adequate performance in
adverse conditions. Finally, the third one is that the time required to make adjustments to
the controller is not a limitation because it is adjusted once the system’s operation starts;
therefore, the controller remains fixed in real-time. These advantages were verified by
applying the previous method to a 2-DOF helicopter under the presence of two tolerable
faults, corroborating its effectiveness through experimental tests presented in Section 5.

The rest of this paper is organized as follows. The next Section presents the dynamic
model of the 2-DOF helicopter. The proposed FTC is presented in Section 3. The control
design implementation is shown in Section 4. The numerical results based on simulations
and experiments are given in Section 5. Finally, the discussions and main conclusions are
presented in Sections 6 and 7.

2. Dynamic Model of the 2-Dof Helicopter

This section presents the case of study. The system is composed of a laboratory device,
consisting in a two degree of freedom helicopter, made by Quanser®, See Figure 2.

The 2-DOF helicopter is a dynamic system that consists of two motors, the first or lift
is considered as the actuator one and causes the pitching movement, and a tail motor or
actuator two, which produces the yaw movement; both direct current motors are driven
with a nominal voltage of 12 volts. The platform dimensions are shown in Appendix A. For
more system specifications and their components, as well as the system setup, see [20,21].

An Arduino® Mega 2560 is used to communicate with the physical system, where the
pulse width modulation method is implemented to command the motor. For the power
part, a Monster Moto Shield is utilized, with a voltage capacity of 16 volts and 30 amperes
of current, with a 20 KHz PWM frequency. The sensing was carried out by two rotary
optical encoders, one placed at the base of the platform, which allows the yaw angle ψ to
be measured, and the other one is placed in the center of the platform which measures the
pitch angle φ. The acquired data is processed in Matlab®. The experimental platform is
shown in Figure 2 and its corresponding schematic diagram in Figure 3.
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Figure 2. Helicopter 2-DOF Quanser®.

Figure 3. Experimental platform.

The dynamic model that describes the equations of motion is obtained by using
the Euler–Lagrange formalism. The system model can be written through the following
nonlinear second-order equation:

D(q)q̈ + C(q, q̇) + G(q) = τ, (1)

where q is the vector of generalized coordinates, τ is the input vector, G(q) is the vector of
gravitational torques, C(q, q̇), models the quadratic effects of the velocity generated by the
Coriolis and centripetal forces and D(q) is the inertia matrix, which is a symmetric positive
definite matrix. Specifically:
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D(q) = (m1l12 + m2l22)

[
1 0
0 cos2(φ)

]
,

G(q) =

[
m1gl1cos(φ)−m2gl2cos(φ)

0

]
,

C(q, q̇) = (m1l2
1 + m2l2

2)ψ̇
2cos(φ)sin(φ)

[
1

−2φ̇ψ̇

]
The structure of the matrices D(q), C(q, q̇), and G(q) depend on the kinematic pa-

rameters of the mechanical system, as well as on the masses of the rigid bodies and their
geometric distributions. For the Quanser® 2-DOF, it is convenient to define the generalized
coordinate vector and its derivative:

q =

[
φ
ψ

]
, q̇ =

[
φ̇
ψ̇

]
, (2)

where φ, ψ are the Pitch and Yaw angles, respectively, and ψ̇, φ̇ their angular velocities, see
Figure 4.

Figure 4. 2-DOF Quanser Helicopter Schematic.

Note that the use of system identification techniques has not been required because of
the well-know dynamic structure of the helicopter model. The viability of the considered
model has been tested with comparisons between simulations and experiments on the
physical system; nonetheless, the formulation of novel modeling approaches is beyond the
scope of this paper.

3. Fault-Tolerant Control Scheme

The nominal dynamics of a 2-DOF helicopter is described by Equation (1). In the
presence of additive failures in actuators the dynamic model becomes,

D(q)q̈ + C(q, q̇) + G(q) = τ + fa, (3)

for

fa =

[
fa1
fa2

]
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the failure vector, with fa1 and fa2 being the failures in each of the actuators. It is worth
mentioning that these failures affect the aircraft performance by reducing the thrust force
of the motors.

The control law for the regulation of the 2-DOF helicopter with the presence of additive
failures in the actuators is defined as

τ = Do(q)[uPD + uNL] + Co(q, q̇) + Go(q), (4)

where τ is the feedback control law, Go is the vector of gravitational torques, Do and Co are
the nominal inertia and Coriolis effects, respectively. These differ from those of the actual
helicopter model due to parametric uncertainties. The function uPD denotes the linear PD
controller, where the gains Kp and Kd are tuned through the LMI-based convex optimization
techniques proposed in [22]. The nonlinear controller uNL aims to compensate gravitational
torques. LMI based robust controllers with a nonlinear compensation of uncertainties have
been proposed in [23], for the case of fractional-order systems, and without considering
the presence of faults.

By substituting the controller (4) into (3), one obtains

q̈ = D−1(q)
{

τ + fa − [C(q, q̇) + G(q)]
}

,

= D−1(q)Do(q)[uPD + uNL] + D−1(q) fa + D−1(q)[∆C(q, q̇) + ∆G(q)],

= uPD + uNL + D−1(q) fa + ϕ,

(5)

for ϕ = D−1(q)∆D(q)[uPD + uNL] + D−1(q)[∆C(q, q̇) + ∆G(q)] a term that condenses the
effect of dynamic uncertainties and other disturbances, with ∆, the deviation operator, such
that ∆M = M0 −M is the difference between the nominal M0 and the real M, where M is
an arbitrary matrix/vector, and M0 its nominal value.

4. Control Design and Implementation

Considering the state vector x = [qT , q̇T ]T ∈ <4, one has that

x1 = φ =⇒ ẋ1 = φ̇ = x3

x2 = ψ =⇒ ẋ2 = ψ̇ = x4

x3 = φ̇ =⇒ ẋ3 = φ̈

x4 = ψ̇ =⇒ ẋ4 = ψ̈

(6)

Therefore, by considering the linear PD controller as uPD = −Kx, for a constant matrix
gain K, the model described in (1) can be transformed into

ẋ = (A− BK)x + B(uNL + ϕ) + E f fa, (7)

for matrices

A =

[
0 I
0 0

]
, B =

[
0
I

]
, and E f =

[
0

D−1(q)

]
.

Besides, the following assumption is considered with respect to the failure vector

‖F‖ ≤ γ‖x‖, (8)

with F = E f fa, which means that the effect of the failure is upper bounded by a linear term
that is proportional to the configuration and speed of the robotic system. This assumption
is well funded by noticing that the failure impacts directly in the evolution of the state
vector x.

The above condition prevents the equilibrium point of the nominal system, with uNL +
ϕ = 0 from deviating in the presence of tolerable faults. The proposed method assumes
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that the equilibrium of the nominal system is exponentially stable under the action of the
linear controller uPD.

The following result provides sufficient conditions to verify the robust stability of
Equation (7), [24].

Theorem 1. Consider system (7), with linear and nonlinear controllers

uPD = −Kx and uNL = −knl
BT Px
‖BT Px‖

,

such that knl > ‖ϕ‖, and K = [Kp Kd] satisfies[
AΞ + ΞAT + BΥ + ΥT BT 0

0 −Ξ

]
� 0, (9)

with matrices Ξ = P−1 and Υ = −KΞ, for P symmetric. Then if γ in (8) fulfills

γ <
λmin(Q)

2λmax(P)
, (10)

for Q = −PA − AT P + PBK + KT BT P, which is clearly symmetric and positive definite by
virtue of (9), and λmin(−) and λmax(−) the minimum and maximum proper value functions,
respectively. Then, x = 0 is asymptotically stable. Furthermore, if all the above assumptions are
globally valid, then the equilibrium x = 0 is globally exponentially stable.

Proof. Since P is positive definite, it is possible to consider the candidate Lyapunov func-
tion V = xT Px, whose time derivative along the closed-loop path becomes

V̇ = xT Pẋ + ẋT Px

= 2xT Pẋ

= 2xT P(A− BK)x + 2xT PB(uNL + ϕ) + 2xT PF.

(11)

Besides, using the fact that, for any arbitrary square matrix M and vector x, one has
that 2xT Mx = xT Mx + xT MTx; this results in

V̇ = xT
[

P(A− BK) + (A− BK)T P
]

x + 2xT PB(uNL + ϕ) + 2xT PF

= xT
(

PA− PBK + AT − KT BT P
)

x + 2xT PB(uNL + ϕ) + 2xT PF

= −xTQx + 2xT PB(uNL + ϕ) + 2xT PF

≤ −λmin(Q)||x||2 + 2xT PB(uNL + ϕ) + 2xT PF

(12)

In order to simplify the analysis, let us focus firstly on the term xT PB(uNL + ϕ) =
xT PBuNL + xT PBϕ. Thereby, by substituting the definition of the nonlinear controller,
one has

xT PB(uNL + ϕ) = −xT PB
(

knl
BT Px
‖BT Px‖

)
+ xT PBϕ

= −knl ||BT Px||+ xT PBϕ,
(13)

and thus, by using the Cauchy–Schwartz inequality xT PBϕ ≤ ||BT Px|| ||ϕ||, one gets

xT PB(uNL + ϕ) = −(knl − ||ϕ||)||BT Px|| ≤ 0
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since knl > ||ϕ||. Therefore, it is clear that

V̇ ≤ −λmin(Q)||x||2 + 2xT PF. (14)

It is also possible to simplify the above inequality, by noticing that

xT PF ≤ γλmax(P)||x||2, (15)

which leads to
V̇ ≤ −[λmin(Q)− 2γλmax(P)] ||x||2. (16)

Hence, by virtue of λmin(Q) − 2γλmax(P) > 0, it can be concluded that x = 0 is
asymptotically stable. Moreover,

V̇ ≤ −λmin(Q)− 2γλmax(P)
λmax(P)

V, (17)

and it is evident that x → 0 with an exponential rate.

As is conventional in a Lyapunov based control design, a heuristic process is con-
ducted. This consists in gradually increasing the gain knl until achieving an acceptable
performance, with manageable frequency of commutation and control-signal amplitude in
the actuators.

The structure of the controller is shown in Figure 5. It should be noticed that, under the
conditions imposed by the proposed design, a failure is tolerable if condition (10) is fulfilled,
while the converse cannot be stated.

c(t)
e(t)

𝑢𝑃𝐷

System

y(t)

Actuator

Sensor

𝑢𝑁𝐿

r(t)

PFTC

𝑓𝑎

Figure 5. PFTC controller structure.

5. Numerical Results

In order to test the proposed algorithm, the simulation was carried out in Simulink®.
The parameters shown in Appendix A were used in the simulations. The controller gains
were obtained by solving the LMI in Matlab®.

Kp =

[
12.2668 0

0 12.2668

]
,

Kd =

[
6.71320 0

0 6.7132

]
,

P =


0.0186 0 0.0062 0

0 0.0186 0 0.0062
0.0062 0 0.0186 0

0 0.0062 0 0.0186

,
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Q = −30.2586
[

2
0

0
2

1
0

0
1

]
.

Two types of results are provided in this section. First, the simulation results are used
to verify the fault tolerance scheme. Subsequently, the 2-DOF helicopter platform is used
to implement the proposed controller. The Table 1 shows the case considered.

Table 1. Cases considered.

Case Description

1 Nominal behaviour, without faults
2 fault in actuator 1 25%
3 fault in actuator 1 50%
4 fault in actuator 2 25%
5 fault in actuator 2 50%

5.1. Simulation Test

For simulations, the following initial conditions are considered φ = 0.1 rad and
ψ = 0.1 rad. The appearance of abrupt faults in the system is considered, where the faults
are modeled as step functions, the time of occurrence of the failure is the time for the step.
The graphs show the behavior of the error, the time in which the fault occurs is denoted by
a red vertical dotted line, while τφ = Up and τψ = Uy show the control signal in response
to the presence of the fault, for the pitch and yaw angles.

Actuator fa1 Fault 25%
The presence of a partial abrupt failure of 25% is considered in actuator one at 20 s.

Figure 6 shows the result obtained from the test. Note that when the failure occurs,
the speed in actuator one decreases which can translate into a partial loss of efficiency in
the motor, affecting the lift generated by the rotors. Therefore, the controller increases the
input values Up to compensate the effect of failures and meet the control objective.

0 5 10 15 20 25 30 35

U
p

-0.2

0

0.2

0 5 10 15 20 25 30 35

e
r
r
o
r

-0.5

0

0.5

time(s)
0 5 10 15 20 25 30 35

f
a
1

-4

-2

0

Figure 6. Behavior of the control signal, regulation error and fault in both states, where the fault is present in the actuator
one, that is, fa1.
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Actuator fa2 Fault 50%
The presence of a partial abrupt failure of 50% is considered in actuator two (actuator

two produces the ψ motion); the dotted red line indicates the time of occurrence of the
fault at 20 s. A fault greater than that of actuator one is considered; for this test, the failure
considered is 50%; this is to make it more noticeable. The Figure 7 shows the error,
the control signal for actuator two (Uy), and the fault behavior ( fa2). In the presence of
the fault, the error is different from zero, which physically indicates that the angle yaw
has changed with respect to the desired one; therefore, the fault-tolerant control algorithm
reacts by increasing the control signal, trying to compensate for the presence of the failure,
causing the error to return to the desired value or very close to this.

0 5 10 15 20 25 30 35

U
y

-0.2

0

0.2

0 5 10 15 20 25 30 35

e
r
r
o
r

-0.5

0

0.5

time(s)
0 5 10 15 20 25 30 35

f
a
2

-6

-4

-2

0

Figure 7. Behavior of the control signal, regulation error and fault in both states, where the fault is present in the actuator
two, that is, fa2.

5.2. Physical Test

Figures 8 and 9 show the schematic diagram and the experimental platform of the
closed-loop control system, respectively. The fault was produced by decreasing the thrust
force by means of a series of covers of different size, such that, when a cover is placed on
the thruster, it reduces the airflow, and in turns lift force. These covers were designed from
the area of the rotating disk by varying its size. The masks cover from 100% of the surface
to 25% of it.

For physical tests, the input to the plant is saturated, which influences the input
voltage range at the actuators. Pulse Width Modulation or PWM is a technique used to
transmit analog signals whose carrier signal is digital; in this technique, the duty cycle of
a periodic signal is modified and is used to establish the amount of power that is sent to
the actuators. This helps us to operate with the plant’s minimum and maximum intake
values; for this case, the pulse width modulation (PWM) range values were: 150 PWM for
the lower limit and 255 PWM for the upper limit.

In the case of regulation, the following initial conditions are given φ = −42◦, ψ = −20◦.
Under nominal conditions, the implemented control fulfills the control objective. Figure 10
shows the evolution in time of the error in angles.
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Figure 8. Schematic diagram of the 2-DOF helicopter closed-loop control system.

Figure 9. Experimental platform of the 2-DOF helicopter closed-loop control system.
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time(s)
0 5 10 15 20 25 30 35

a
n
g
le
(r
a
d
)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

angle φ

angle ψ

Figure 10. Time evolution of the error angles.

Actuator fa1 Fault 25%
Figure 11 shows the evolution in time of the error in the angles φ, ψ, and the control

signal provided by the PFTC. It is considered an abrupt failure of 25% at 14 s. In the
interval from one to six seconds oscillations of the system are shown, this is because the
initial conditions are different from zero. The fault appears at second fourteen. While the
fault acts directly on the lift motor, it also affects the angle φ. Once the failure occurs, both
angles present a deviation; however, the proposed PFTC acts to compensate for this effect,
maintaining the control objective.

6 8 10 12 14 16 18 20

e
r
r
o
r
(φ
)

-20

0

20

6 8 10 12 14 16 18 20

U
p

-2

0

2

time(s)
6 8 10 12 14 16 18 20

U
y

-2

-1

0

1
6 8 10 12 14 16 18 20

e
r
r
o
r
(ψ

)

-10

0

10

Figure 11. Response to the presence of failure in actuator fa1 of 25%.
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Actuator fa1 Fault 50%
Figure 12 shows the evolution in time of the error in the angles φ, ψ, and the control

signal provided by the PFTC. It is considered an abrupt failure of 50% at 14 s. Due to the
magnitude of the fault, the angle φ presents deviation, which is reflected in the position
error (error φ) and the increase of the controller signal. While the PFTC control compensates
for the error, it does not maintain the desired position; however, the system can continue to
operate safely, with a mild deviation.

6 8 10 12 14 16 18 20

e
r
r
o
r
(φ
)

-10

0

10

6 8 10 12 14 16 18 20

U
p

-4

-2

0

2

time(s)
6 8 10 12 14 16 18 20

U
y

-2

-1

0

1
6 8 10 12 14 16 18 20

e
r
r
o
r
(ψ

)

-10

0

10

Figure 12. Response to the presence of failure in actuator fa1 of 50%.

Actuator fa2 Fault 25% and 50%
Figures 13 and 14 show the results when actuator faults occurred fa2, the first one with

a magnitude of 25% at 11 s. The second with a failure magnitude of 50% at 14 s. As can be
noticed in Figure 13, in the event of a fault of 25%, the control algorithm presents a good
performance since the error in both φ and ψ is minimal. However, when a 50% fault occurs,
as seen in Figure 14, although the controller signals Uy increases to compensate the fault,
the algorithm cannot tolerate it; this is reflected in the behavior of the error ψ. Physically,
this causes control of the rear engine to be lost, and therefore it is impossible to regulate the
yaw movement, considering that the platform is fixed on a pedestal, the helicopter rotates
without control on its axis.
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Figure 13. Response to the presence of failure in actuator fa2 of 25%.
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Figure 14. Response to the presence of failure in actuator fa2 of 50%.

6. Discussions
6.1. Results

The coupling of the state variables is notorious in the obtained results. In each of the
experimental tests, an encoder-sensor adjustment was necessary to set the angles φ and ψ
to zero from the beginning, taking a few seconds. Therefore, the time on the plots does not
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start exactly at zero. Passive fault tolerant control provides tools to counteract the action of
a large group of faults; nevertheless, the control objective cannot be guaranteed if these
exceed the theoretical limits. In addition, only failures in the actuators are considered in
this paper.

The method proposed in this work was compared with other control schemes. The first
was based on the pole placement design, which is a design methodology based on the
knowledge of the system’s transfer function, where the objective is to determine the closed-
loop pole locations on the complex plane, thus establishing the controller gains. Besides,
PI and PID controllers can be used with the pole placement design, as long as the plant
transfer function system is of first or second order [17]. The second method was based
on the Cohen–Coon method [25]. From the experimentation, the response of the plant
to an input of the unit scale type is obtained; thus, it is intended to obtain a maximum
overpass of 25% in closed-loop, presenting a dead time and considering that the process
is self-regulated. Table 2 shows the values of the gains used in the comparison, while
Figure 15 shows the comparison results, in which it is clear that the proposed controller
produces the best performance among all the tested methodologies.

Table 2. Controller gain values.

Method Kp Kd Ki knl

Proposed method
φ 12.2668 6.71320 - 0.54
ψ 12.2668 6.7132 - 0.54

Pole placement
φ 6.28 3.0483 - -
ψ 4.1229 3.0235 - -

Cohen-Coon
φ 0.0375 0.827 1.072 -
ψ 0.0040 0.668 0.8 -
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Figure 15. Response to the presence of failure in actuator f1 of 25%.
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6.2. Limitations

The proposed approach has shown some important (practical) robustness properties.
However, there are also two main limitations. The first of them is with respect to the size of
tolerable faults, that is, considering that the upper limit of the perturbations (for which the
designed robust control is effective) is a fixed value, the size of the tolerable faults is reduced
as more uncertainties are presents. Furthermore, given a control adjustment through Kp
and Kd, there are faults that cannot be tolerated, for which, the robustness condition is
not satisfied. Then, the case of arbitrarily large faults is not treatable with the proposed
approach. The second limitation is related to the design of the controller, which is obtained
through an optimization algorithm; thus, there is only a small room for post-adjustment.
As a consequence of the above limitations, it is difficult to analytically determine the
size of tolerable failures, even if the upper limit of the uncertainties/disturbances, plus
the magnitude of the failure, is known; this is due to the admissible controller existence
conditions.

7. Conclusions

A passive fault tolerant controller is proposed, based on robust control techniques
such as PD through linear matrix inequalities, and solved using convex optimization. Fur-
thermore, to further improve the closed-loop performance, a nonlinear control is included.
The methodology has been validated through numerical simulations and experiments on
the Quanser® 2-DOF Helicopter platform. Some issues associated with the physical im-
plementation are resolved. The experimental test shows the effectiveness of the proposed
approach in the presence of actuator failures, demonstrating fault tolerance. It is worth
mentioning that the proposed technique can be extended to a broader class of aerody-
namic robots such as fixed wing drones and quadcopters, among others. Future work will
consider including nonlinear techniques, data-driven, artificial intelligence schemes, and
fractional calculus based methods.
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Appendix A

The purpose of this appendix is to show the reader information necessary to quickly
find the meaning of each symbol/parameter used in this paper.
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Table A1. Parameters and symbols used in the simulation and experimentation results.

Nom Description Value

m1 Front Mass 0.414 kg

m2 Rear Mass 0.232 kg

l1 Center to front distance 0.203 m

l2 Center to rear distance 0.203 m

g Gravity 9.8 m/s2

φ Angle Pitch rad

ψ Angle Yaw rad

φ̇ Angular velocity Pitch r/s

ψ̇ Angular velocity Yaw r/s

φ̈ Angular acceleration Pitch r/s2

ψ̈ Angular acceleration Yaw r/s2

G Vector of gravitational torques

D Inertia matrix

C Coriolis vector

Go Vector nominal of gravitational torques

Do Inertia nominal matrix

Co Coriolis nominal vector

fa1 Lift motor fault causing pitch (φ) movement

fa2 Tail motor fault causing yaw (ψ) movement

E f Constant matrix of appropriate dimensions

τ Feedback control law

ϕ Uncertainties and other disturbances

Kp Proportional gain

Kd Derivative gain

uNL Nonlinear controller

Up Control signal in lift motor (actuator one)

Uy Control signal in tail motor (actuator two )

knl Nonlinear controller gain

λmax Maximum eigenvalues of the matrix P

λmin Minimum eigenvalues of the matrix Q
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