
 information

Article

A Semantic Model for Interchangeable Microservices in Cloud
Continuum Computing

Salman Taherizadeh 1, Dimitris Apostolou 2,3,* , Yiannis Verginadis 2,4, Marko Grobelnik 1

and Gregoris Mentzas 2

����������
�������

Citation: Taherizadeh, S.; Apostolou,

D.; Verginadis, Y.; Grobelnik, M.;

Mentzas, G. A Semantic Model for

Interchangeable Microservices in

Cloud Continuum Computing.

Information 2021, 12, 40.

https://doi.org/10.3390/info12010040

Received: 30 November 2020

Accepted: 13 January 2021

Published: 18 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Artificial Intelligence Laboratory, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia;
salman.taherizadeh@gmail.com (S.T.); Marko.Grobelnik@ijs.si (M.G.)

2 Institute of Communications and Computer Systems, Iroon Polytechniou 9, 15780 Zografou, Greece;
jverg@aueb.gr (Y.V.); gmentzas@mail.ntua.gr (G.M.)

3 Department of Informatics, University of Piraeus, Karaoli & Dimitriou 80, 18534 Piraeus, Greece
4 School of Business, Department of Business Administration, Athens University of Economics and Business,

Patission 76, 10434 Athens, Greece
* Correspondence: dapost@mail.ntua.gr; Tel.: +30-210-7723895

Abstract: The rapid growth of new computing models that exploit the cloud continuum has a big
impact on the adoption of microservices, especially in dynamic environments where the amount
of workload varies over time or when Internet of Things (IoT) devices dynamically change their
geographic location. In order to exploit the true potential of cloud continuum computing applications,
it is essential to use a comprehensive set of various intricate technologies together. This complex
blend of technologies currently raises data interoperability problems in such modern computing
frameworks. Therefore, a semantic model is required to unambiguously specify notions of various
concepts employed in cloud applications. The goal of the present paper is therefore twofold: (i) of-
fering a new model, which allows an easier understanding of microservices within adaptive fog
computing frameworks, and (ii) presenting the latest open standards and tools which are now widely
used to implement each class defined in our proposed model.

Keywords: microservices; cloud continuum computing; semantic model

1. Introduction

Internet of Things (IoT) [1] solutions have emerged as highly distributed environments
in which large amounts of data are generated by devices and transferred toward centralised
datacentres. This fact causes not only inefficient utilisation of network bandwidth and
computing resources, but also a high-latency response time for IoT applications. Nowadays,
in order to decrease both service response time and network traffic load over the Internet,
computing platforms are extended from centralised cloud-based infrastructures [2] across
the cloud continuum and down to fog resources in close proximity to IoT devices.

A fog node may be referred to communication service providers (e.g., ISP providers,
cable or mobile operators), switches, routers or industrial controllers. It could be even a
small computing resource at the extreme edge of the network that has a single or multi-
processor on-board system (e.g., Raspberry Pi [3], BeagleBoard [4] and PCDuino [5]. In this
case, various lightweight operating systems such as CoreOS [6] and RancherOS [7] have
been offered so far to exploit such fog computing infrastructures.

In a computing environment that exploits resources available in the cloud continuum,
the prominent trend in software engineering is the microservices architecture aimed at an ef-
ficient execution of IoT applications [8,9]. Advanced software engineering IoT workbenches
such as PrEstoCloud [10] may exploit small, discrete, reusable, elastic microservices gen-
erally packaged into lightweight containers, shown in Figure 1. The depicted three-layer
cloud continuum computing framework comprises:

Information 2021, 12, 40. https://doi.org/10.3390/info12010040 https://www.mdpi.com/journal/information

https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-5815-8033
https://orcid.org/0000-0001-7373-5591
https://orcid.org/0000-0002-3305-3796
https://doi.org/10.3390/info12010040
https://doi.org/10.3390/info12010040
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/info12010040
https://www.mdpi.com/journal/information
https://www.mdpi.com/2078-2489/12/1/40?type=check_update&version=1

Information 2021, 12, 40 2 of 22

• IoT Devices: They are simple networked devices such as sensors, actuators and objects
which are connected to fog nodes via a wide range of interfaces, for example, 3G, 4G,
5G, Wi-Fi, PCIe, USB or Ethernet.

• Fog nodes: These resources provide limited processing, storage and networking
functions. Fog nodes may be installed in the end-users’ premises. At the edge of
the network, fog nodes are typically aimed at sensor data acquisition, collection,
aggregation, filtering, compression, as well as the control of sensors and actuators. In
comparison to the cloud, which always benefits from an enormous computation and
storage capacity, fog nodes still may suffer from the resource limitation. The location
of IoT devices may change over time, and hence migrating microservices from one
fog node in a specific geographic region to another one needs to be offered to deliver
always-on services. Various situations may also arise in which case computation
provided on a fog node has to be offloaded to the cloud. A reason for this may include
a sudden computational workload, particularly when the number of IoT devices in
one geographic location increases at runtime.

• Cloud resources: Cloud-based infrastructure provides a powerful central storage and
processing capability for IoT use cases. It should be noted that the centralised cloud
computing continues to be a significant part of the fog computing model. Cloud
resources and fog nodes complement each other to provide a mutually beneficial and
interdependent service continuum. Since not all of the data could be processed on the
fog nodes itself, further demanding processing tasks such as offline data analytics or
long-term storage of data may be performed on the cloud side.

Information 2021, 12, x FOR PEER REVIEW 2 of 22

workbenches such as PrEstoCloud [10] may exploit small, discrete, reusable, elastic mi-

croservices generally packaged into lightweight containers, shown in Figure 1. The de-

picted three-layer cloud continuum computing framework comprises:

 IoT Devices: They are simple networked devices such as sensors, actuators and ob-

jects which are connected to fog nodes via a wide range of interfaces, for example,

3G, 4G, 5G, Wi-Fi, PCIe, USB or Ethernet.

 Fog nodes: These resources provide limited processing, storage and networking

functions. Fog nodes may be installed in the end-users’ premises. At the edge of the

network, fog nodes are typically aimed at sensor data acquisition, collection, aggre-

gation, filtering, compression, as well as the control of sensors and actuators. In com-

parison to the cloud, which always benefits from an enormous computation and stor-

age capacity, fog nodes still may suffer from the resource limitation. The location of

IoT devices may change over time, and hence migrating microservices from one fog

node in a specific geographic region to another one needs to be offered to deliver

always-on services. Various situations may also arise in which case computation pro-

vided on a fog node has to be offloaded to the cloud. A reason for this may include a

sudden computational workload, particularly when the number of IoT devices in one

geographic location increases at runtime.

 Cloud resources: Cloud-based infrastructure provides a powerful central storage and

processing capability for IoT use cases. It should be noted that the centralised cloud

computing continues to be a significant part of the fog computing model. Cloud re-

sources and fog nodes complement each other to provide a mutually beneficial and

interdependent service continuum. Since not all of the data could be processed on

the fog nodes itself, further demanding processing tasks such as offline data analytics

or long-term storage of data may be performed on the cloud side.

Figure 1. Container-based microservices within a fog computing framework.

Microservices [11] are small, highly decoupled processes which communicate with

each other through language independent application programming interfaces (APIs) to

form complex applications. Decomposing a single application into smaller microservices

allows application providers to distribute the computational load of services among dif-

ferent resources, e.g., fog nodes located in various geographic locations.

In comparison with the service-oriented architecture (SOA) [12], microservices are

usually organised around business priorities and capabilities, and they have the capability

of independent deployability [13] and often use simplified interfaces, such as representa-

tional state transfer (REST). Resilience to failure could be the next characteristic of micro-

services since every request will be separated and translated to various service calls in this

Figure 1. Container-based microservices within a fog computing framework.

Microservices [11] are small, highly decoupled processes which communicate with
each other through language independent application programming interfaces (APIs) to
form complex applications. Decomposing a single application into smaller microservices al-
lows application providers to distribute the computational load of services among different
resources, e.g., fog nodes located in various geographic locations.

In comparison with the service-oriented architecture (SOA) [12], microservices are usu-
ally organised around business priorities and capabilities, and they have the capability of
independent deployability [13] and often use simplified interfaces, such as representational
state transfer (REST). Resilience to failure could be the next characteristic of microservices
since every request will be separated and translated to various service calls in this modern
architecture. For instance, a bottleneck in one service brings down only that service and
not the entire system. In such a situation, other services will continue handling requests in
a normal manner. Therefore, the microservices architecture is able to support requirements,
namely, modularity, distribution, fault-tolerance and reliability [14]. The microservices
architecture also supports the efficiency of re-usable functionality. In other words, a mi-

Information 2021, 12, 40 3 of 22

croservice is a re-usable and well-tested unit that means a single service can be re-used or
shared in various applications or even in separate areas of the same application.

Figure 2 shows an example of the microservices architecture in which different services
have a varying amount of demands to process their own specific tasks at runtime, and
hence it is possible to dynamically scale each service at different level. Due to various
demands for different services, for example, cluster service 1 includes four microservice
instances, whereas cluster service 2 includes only one microservice instance. This fact
indicates a heavy workload sent to cluster service 1 and the lowest level of cluster service 2.
The REST API gateway is basically a proxy to microservices, and it acts as a single-entry
point into the system. It should be noted that the REST API gateway can be seen as another
service like other microservices in the system, and hence it is an elastic component which
can be scaled up or down according to the amount of workloads. The REST API gateway is
also aimed at addressing some other functionalities such as dealing with security, caching
and monitoring at one place. Moreover, it may be capable of satisfying the needs of
heterogeneous clients.

Information 2021, 12, x FOR PEER REVIEW 3 of 22

modern architecture. For instance, a bottleneck in one service brings down only that ser-

vice and not the entire system. In such a situation, other services will continue handling

requests in a normal manner. Therefore, the microservices architecture is able to support

requirements, namely, modularity, distribution, fault-tolerance and reliability [14]. The

microservices architecture also supports the efficiency of re-usable functionality. In other

words, a microservice is a re-usable and well-tested unit that means a single service can

be re-used or shared in various applications or even in separate areas of the same appli-

cation.

Figure 2 shows an example of the microservices architecture in which different ser-

vices have a varying amount of demands to process their own specific tasks at runtime,

and hence it is possible to dynamically scale each service at different level. Due to various

demands for different services, for example, cluster service 1 includes four microservice

instances, whereas cluster service 2 includes only one microservice instance. This fact in-

dicates a heavy workload sent to cluster service 1 and the lowest level of cluster service 2.

The REST API gateway is basically a proxy to microservices, and it acts as a single-entry

point into the system. It should be noted that the REST API gateway can be seen as another

service like other microservices in the system, and hence it is an elastic component which

can be scaled up or down according to the amount of workloads. The REST API gateway

is also aimed at addressing some other functionalities such as dealing with security, cach-

ing and monitoring at one place. Moreover, it may be capable of satisfying the needs of

heterogeneous clients.

Figure 2. Microservices architecture.

The current focus of cloud continuum platforms is on the dynamic orchestration of

microservices to support quality of service (QoS) under varied amounts of workload,

while IoT devices move dynamically from one geographic area to another. In order to

implement such systems, a wide variety of different technologies should be exploited to

develop, deploy, execute, monitor and adapt services. However, interrelations among

such various technologies have always been ambiguous, and hence the feasibility of their

Figure 2. Microservices architecture.

The current focus of cloud continuum platforms is on the dynamic orchestration
of microservices to support quality of service (QoS) under varied amounts of workload,
while IoT devices move dynamically from one geographic area to another. In order to
implement such systems, a wide variety of different technologies should be exploited to
develop, deploy, execute, monitor and adapt services. However, interrelations among
such various technologies have always been ambiguous, and hence the feasibility of their
interoperability is currently uncertain. Besides that, the state-of-the-art in this research
domain lacks a systematic classification of technologies used in modern cloud continuum
computing environments, and also their interdependency. Each provider of such isolated
computing technologies has different interface characteristics and employs a distinct access
features. This situation makes a user dependent on a specific microservice provider, unable
to exploit another provider without substantial switching costs. Along this line, the EU

Information 2021, 12, 40 4 of 22

general data protection regulation (GDPR) encourages more portability of own data, with
the aim of making it simpler to transmit this data from one application or service vendor to
another who defines purposes and means of data processing.

To overcome the aforementioned interoperability problems, the primary goal of this
paper is to present a new semantic model which clarifies all components necessary to
exploit microservices within cloud continuum applications. This model allows both the
professional and scientific communities to gain a comprehensive understanding of all
technologies which are required to be employed in IoT environments. Beyond only a
model, we also highlight widely used tools which can be currently involved in building
each component defined in our proposed model. Moreover, we discusses several solutions
proposed by research and industry which enable data portability from one microservice
to another.

The rest of the paper is organised as follows. Section 2 discusses related work on
existing models for fog computing environments. Section 3 describes the research method-
ology employed to generate the proposed semantic model. Section 4 presents our proposed
model in detail. Section 5 outlines available data portability solutions and how they address
GDPR requirements. Finally, conclusions appear in Section 6.

2. Related Work

Despite all benefits of cloud continuum computing frameworks, interoperability
problem is a key unsolved challenge which needs to be addressed. This is because in
light of emerging IoT solutions addressing the needs of domains such as intelligent energy
management [15], smart cities [16], lighting [17,18] and healthcare [19], many different
technologies and techniques offered by various providers have to be integrated with
each other and even customised in most cases. In this regards, very limited research
works [20–25], which concentrate on heterogeneous modern computing environments and
the related interoperability issues have been conducted. Key members of fog computing
community have recognised that they need to work on open standards, specifications and
open-source platforms in order to overcome this challenge. Figure 3 shows a number of
large foundations and consortiums aiming at such an objective.

Information 2021, 12, x FOR PEER REVIEW 4 of 22

interoperability is currently uncertain. Besides that, the state-of-the-art in this research

domain lacks a systematic classification of technologies used in modern cloud continuum

computing environments, and also their interdependency. Each provider of such isolated

computing technologies has different interface characteristics and employs a distinct ac-

cess features. This situation makes a user dependent on a specific microservice provider,

unable to exploit another provider without substantial switching costs. Along this line,

the EU general data protection regulation (GDPR) encourages more portability of own

data, with the aim of making it simpler to transmit this data from one application or ser-

vice vendor to another who defines purposes and means of data processing.

To overcome the aforementioned interoperability problems, the primary goal of this

paper is to present a new semantic model which clarifies all components necessary to ex-

ploit microservices within cloud continuum applications. This model allows both the pro-

fessional and scientific communities to gain a comprehensive understanding of all tech-

nologies which are required to be employed in IoT environments. Beyond only a model,

we also highlight widely used tools which can be currently involved in building each

component defined in our proposed model. Moreover, we discusses several solutions pro-

posed by research and industry which enable data portability from one microservice to

another.

The rest of the paper is organised as follows. Section 2 discusses related work on

existing models for fog computing environments. Section 3 describes the research meth-

odology employed to generate the proposed semantic model. Section 4 presents our pro-

posed model in detail. Section 5 outlines available data portability solutions and how they

address GDPR requirements. Finally, conclusions appear in Section 6.

2. Related Work

Despite all benefits of cloud continuum computing frameworks, interoperability

problem is a key unsolved challenge which needs to be addressed. This is because in light

of emerging IoT solutions addressing the needs of domains such as intelligent energy

management [15], smart cities [16], lighting [17,18] and healthcare [19], many different

technologies and techniques offered by various providers have to be integrated with each

other and even customised in most cases. In this regards, very limited research works [20–

25], which concentrate on heterogeneous modern computing environments and the re-

lated interoperability issues have been conducted. Key members of fog computing com-

munity have recognised that they need to work on open standards, specifications and

open-source platforms in order to overcome this challenge. Figure 3 shows a number of

large foundations and consortiums aiming at such an objective.

Figure 3. Interoperable open standard projects for fog computing.

The Industrial Internet Consortium [26], founded by Cisco, IBM, AT\&T, Intel and

GE, was established in 2014. This consortium is aimed at pushing the standardisation for

the industrial IoT. The Industrial Internet Consortium published the latest version of their

Figure 3. Interoperable open standard projects for fog computing.

The Industrial Internet Consortium [26], founded by Cisco, IBM, AT\&T, Intel and
GE, was established in 2014. This consortium is aimed at pushing the standardisation for
the industrial IoT. The Industrial Internet Consortium published the latest version of their
industrial IoT reference architecture in 2017. The European Telecommunications Standards
Institute (ETSI) is an independent standardisation organization in the telecommunications
industry. Multi-Access edge computing (MEC) [27], which is an industry specification
group within ETSI, is aimed at creating a standardised, open environment for the efficient
and seamless integration of IoT technologies from service providers, vendors and third
parties. The key objective of the Open Edge Computing Initiative [28] is to make all
nearby components such as access points, WiFi, DSL-boxes and base stations able to act
as computing resources at the edge of the network via standardised, open mechanisms

Information 2021, 12, 40 5 of 22

for IoT applications. Members of this initiative are Intel, Nokia, Telekom, Vodafone, NTT,
Crown Castle along with Carnegie Mellon University.

The OpenFog consortium [29] was founded by high-tech industry companies, namely,
Cisco, Dell, Intel, ARM and Microsoft together with Princeton University in order to drive
standardisation of fog computing. This consortium aims to promote fog computing to
improve IoT scenarios. The OpenFog consortium released its reference architecture for
fog computing in 2017. The Open19 Foundation [30] was launched in 2016 by LinkedIn,
VaporIO and Hewlett Packard Enterprise. This fast-growing project offers an open stan-
dard technology able to create a flexible and economic edge solution for operators and
datacentres of all sizes with wide levels of adoption. The open-source EdgeX Foundry [31],
which is supported by the Linux Foundation, started in 2017. This project is aimed at
developing a vendor-neutral framework for IoT edge computing. The EdgeX Foundry
allows developers to build, deploy, run and scale IoT solutions for enterprise, industrial
and consumer applications. The EdgeCross Consortium [32], established by Oracle, IBM,
NEC, Omron and Advantec in Japan, provides an open edge computing software platform.
This project stands for addressing the need for edge computing standardisation across
industries on a global scale.

One of the significant efforts to improve the cloud interoperability has been made
by the mOSAIC project [33] within the European framework FP7. The mOSAIC project
has developed an ontology which offers a comprehensive collection of cloud computing
concepts. In other words, the mOSAIC ontology provides a unified formal description of
different cloud computing components, resources, requirements, APIs, interfaces, service-
level agreements (SLAs), etc. Han et al. [34] provided an ontology which includes a
taxonomy of cloud-related concepts in order to support cloud service discovery. The
proposed cloud ontology can be used to assess the similarity between cloud services and
return a list of results matching the user’s query. In essence, they presented a discovery
system using ontology for VM services according to different search parameters, for
example, CPU architecture, CPU frequency, storage capacity, memory size, operating
system, and so on.

Bassiliades et al. [35] presented an ontology named PaaSport which is an extension of
the DOLCE+DnS Ultralite ontology [36]. The PaaSport ontology is exploited to represent
Platform-as-a-Service (PaaS) offering capabilities as well as requirements of cloud-based
applications to be deployed. In other words, this ontology is able to support a semantic
ranking algorithm which primarily recommends the best-matching PaaS offering to the
application developers. However, this ontology could be extended to consider the per-
spective of modern distributed models such as the microservices architecture which is
currently one of the state-of-the-art concept in the cloud. Sahlmann and Schwotzer [37]
proposed the usage of the oneM2M ontology descriptions [38] enabling automatic resource
management as well as service discovery and aggregation. They employed these semantic
descriptions for the automatic deployment of virtual IoT edge devices settled at the edge
of network. Androcec and Vrcek [39] developed a cloud ontology as a key solution to
cope with interoperability issues among different parts of an IoT system, such as service
instances, resources, agents, etc. The authors claimed that their ontology, which can be
considered as sharable information among different partners, is a tool able to explicitly
specify various semantics. The main aim in this work is to clearly describe and categorise
the existing features, functionalities and specificities of commercial PaaS offers.

Although existing standards and proposed ontologies address various aspects of
the cloud continuum (from centralized clouds, to fog and the extreme edge), they do
not provide a comprehensive account of the various aspects of microservices and their
emerging role in the cloud continuum. Our work aims to capture the essential concepts
and entities of microservices and their relations, focusing mainly on microservices used
in self-adaptive IoT applications. Therefore, the focus of our proposed semantic model
lies in directions, such as what components need to be defined in a microservice-based
IoT fog computing architecture, what parameters have to be taken into consideration for

Information 2021, 12, 40 6 of 22

each component, how to best serve relationships among various entities of a microservice-
based IoT environment, how each entity can be characterised, what aspects should be
monitored, etc.

3. Research Methodology

Among the methods available for formally describing software engineering entities,
we opt for a semantics-based approach which captures the essential concepts, entities and
their relations together for microservice-based cloud continuum computing. Therefore, the
focus of the proposed extensible semantic model or ontology lies in directions, for exam-
ple, what components need to be defined in a cloud continuum computing architecture,
what parameters have to be taken into consideration for each microservice, how to best
serve relationships among various entities of an IoT environment, how each entity can be
characterised, etc.

Given a wide variety of computing methods and the increasing complexity of IoT
applications, we have followed four steps towards proposing a semantic model clarifying
all necessary components and their relations together in cloud continuum computing
applications. Figure 4 depicts the research methodology which was adopted in this work.

Information 2021, 12, x FOR PEER REVIEW 6 of 22

Although existing standards and proposed ontologies address various aspects of the

cloud continuum (from centralized clouds, to fog and the extreme edge), they do not pro-

vide a comprehensive account of the various aspects of microservices and their emerging

role in the cloud continuum. Our work aims to capture the essential concepts and entities

of microservices and their relations, focusing mainly on microservices used in self-adap-

tive IoT applications. Therefore, the focus of our proposed semantic model lies in direc-

tions, such as what components need to be defined in a microservice-based IoT fog com-

puting architecture, what parameters have to be taken into consideration for each compo-

nent, how to best serve relationships among various entities of a microservice-based IoT

environment, how each entity can be characterised, what aspects should be monitored,

etc.

3. Research Methodology

Among the methods available for formally describing software engineering entities,

we opt for a semantics-based approach which captures the essential concepts, entities and

their relations together for microservice-based cloud continuum computing. Therefore,

the focus of the proposed extensible semantic model or ontology lies in directions, for

example, what components need to be defined in a cloud continuum computing architec-

ture, what parameters have to be taken into consideration for each microservice, how to

best serve relationships among various entities of an IoT environment, how each entity

can be characterised, etc.

Given a wide variety of computing methods and the increasing complexity of IoT

applications, we have followed four steps towards proposing a semantic model clarifying

all necessary components and their relations together in cloud continuum computing ap-

plications. Figure 4 depicts the research methodology which was adopted in this work.

Figure 4. Methodology for developing the semantic model for microservices.

The four steps of the research methodology are explained as follows:

 Step (1): The first step is not only analysing main gaps and challenges for IoT appli-

cations, but also expanding our knowledge of this field. It means that the goal is

providing an overview of current research areas and challenges in IoT applications

orchestrated by cloud continuum computing models.

 Step (2): The second step is the article selection process used to narrow the research

topic related to microservices within IoT-based cloud computing frameworks. At the

first level, 952 articles were selected. At the second level, 728 articles, which were

Figure 4. Methodology for developing the semantic model for microservices.

The four steps of the research methodology are explained as follows:

• Step (1): The first step is not only analysing main gaps and challenges for IoT ap-
plications, but also expanding our knowledge of this field. It means that the goal is
providing an overview of current research areas and challenges in IoT applications
orchestrated by cloud continuum computing models.

• Step (2): The second step is the article selection process used to narrow the research
topic related to microservices within IoT-based cloud computing frameworks. At the
first level, 952 articles were selected. At the second level, 728 articles, which were
published only in the last four years, were qualified. We excluded earlier works
because they tackled microservices in premature stages of their current development
as emerged in 2015 [11]. Afterwards, 643 articles peer-reviewed in qualified journals
and highly ranked conferences were found at the third level. At the fourth level, 181
articles proposing an IoT architecture were listed.

• Step (3): At this step, different IoT architectures including various components are
presented from all research works in the chosen literature. All required components
and their inter-relations defined in architectures were extracted. It should be noted
that various architectures may have components which have different names but the

Information 2021, 12, 40 7 of 22

same functionalities and identical concepts. We have standardised the terminology
accordingly and generated our proposed semantic model.

4. Microservice Semantic Model

A key characteristic of the design of a semantic model is the notion of interchangeabil-
ity. In order to ensure interchangeability of microservices within the cloud continuum, it
is necessary that the interaction between information objects should be sufficiently well-
defined. Therefore, a set of formal specifications for information objects within IoT-based
cloud computing environments is necessary. In other words, an abstract formal description
of concepts within such IoT environments is required with which these formal specifica-
tions can be associated. To this end, a semantic model shown in Figure 5 is defined to
clearly specify the relevant notions.

Information 2021, 12, x FOR PEER REVIEW 7 of 22

published only in the last four years, were qualified. We excluded earlier works be-

cause they tackled microservices in premature stages of their current development

as emerged in 2015 [11]. Afterwards, 643 articles peer-reviewed in qualified journals

and highly ranked conferences were found at the third level. At the fourth level, 181

articles proposing an IoT architecture were listed.

 Step (3): At this step, different IoT architectures including various components are

presented from all research works in the chosen literature. All required components

and their inter-relations defined in architectures were extracted. It should be noted

that various architectures may have components which have different names but the

same functionalities and identical concepts. We have standardised the terminology

accordingly and generated our proposed semantic model.

4. Microservice Semantic Model

A key characteristic of the design of a semantic model is the notion of interchangea-

bility. In order to ensure interchangeability of microservices within the cloud continuum,

it is necessary that the interaction between information objects should be sufficiently well-

defined. Therefore, a set of formal specifications for information objects within IoT-based

cloud computing environments is necessary. In other words, an abstract formal descrip-

tion of concepts within such IoT environments is required with which these formal spec-

ifications can be associated. To this end, a semantic model shown in Figure 5 is defined to

clearly specify the relevant notions.

Figure 5. Microservice semantic model depicting classes and interrelations between classes.

All classes, their own properties and relations to each other are explained in detail in

the next subsections. Furthermore, different modern open standards and tools which can

be employed to implement some of classes defined in our proposed semantic model are

discussed and compared to each other.

Figure 5. Microservice semantic model depicting classes and interrelations between classes.

All classes, their own properties and relations to each other are explained in detail in
the next subsections. Furthermore, different modern open standards and tools which can
be employed to implement some of classes defined in our proposed semantic model are
discussed and compared to each other.

4.1. Sevice Cluster

A service cluster is a set of the same microservice instances providing a specific
functionality to reply to the requests. Each service cluster, which can consist of one or
more microservice instances, offers an individual functionality. When the workload is too
high, the service cluster includes more microservice instances; for example, an e-commerce
website in which daytime comprises more traffic than at night. At the lowest level of
workload intensity, the service cluster includes only one microservice instance. The service
cluster class, along with its own properties defined in the semantic model, is presented
in Table 1.

Information 2021, 12, 40 8 of 22

Table 1. Service cluster class.

Property Name Range (Type) Rationale

Service Cluster ID unsignedInt This property allows a unique number to be generated when a
new individual service cluster is inserted into the system.

Service Cluster Name string This property implies the service cluster’s name.

Service Cluster Description string This property is an explanation which describes the service
cluster.

hasMetric Metric ID

This relation includes one or more service-level metrics which
represent the information about the status of the service cluster
as a whole and its performance, such as the aggregated service
response time or the aggregated application throughput.

hasMicroserviceInstance Microservice Instance ID This relation includes one or more microservice Instances which
belong to the service cluster in order to process the tasks.

hasSLA SLA ID This relation includes the SLA which applies to the service
cluster.

4.2. Microservice Instance Class

Each Service Cluster includes one or more Microservice Instances with regard to the
amount of requests to be processed. The Microservice Instance class, along with its own
properties defined in the semantic model, is presented in Table 2.

Table 2. Microservice instance class.

Property Name Range (Type) Rationale

Microservice Instance ID unsignedInt This property allows a unique number to be generated when a
new individual microservice instance is inserted into the system.

Microservice Instance Port Number unsignedInt The task provided by the microservice instance uses a set of ports
which need to be exposed.

Microservice Instance CPU Portion decimal Each microservice instance located on a host achieves a
proportion of CPU cycles through an assigned relative weight.

Microservice Instance Memory Limit decimal Each microservice instance located on a host has its own limit at
the use of memory.

Microservice Instance Type string A microservice instance is usually packaged into containers.
Besides that, it could be also based on VM.

hasMetric Metric ID

This relation includes one or more service-level metrics which
represent the information about the status of an individual
microservice instance, such as the its response time or application
throughput.

hasHost Host ID This relation includes the host where the microservice Instance is
located.

hasImage Image ID This relation includes the container or VM Image based on which
the microservice instance is instantiated.

4.3. Image Class

An image consists of pre-configured files and software. The purpose of an image is to
simplify the delivery of a packaged microservice instance. In order to run a microservice
instance on a host, the image file needs to be pulled down from a local repository or a public
registry (e.g., Docker hub) where this file is stored, and then the microservice instance is
instantiated and starts working. The image class, along with its own properties defined in
the semantic model, is presented in Table 3.

Information 2021, 12, 40 9 of 22

Table 3. Image class.

Property Name Range (Type) Rationale

Image ID unsignedInt This property allows a unique number to be generated when a new individual image is
inserted into the system.

Image Name string Each image stored in a local repository or a public registry such as the Docker hub has
its own name.

Image Description string This property is used to display the description about the image.

Image Title string Title is a short and keywords-relevant description of the image.

Image Functionality string This property implies the functionality which is provided by the service included in the
image.

Image Version string During the application lifecycle, Images may be upgraded several times, and each one
has its own version.

Image Instruction Set string Different types of image instruction set can be, for example, ARM or X86.

Image Creation Time dateTime This property specifies the time when the image was generated or upgraded.

Image File Format string This property is used to define the file format of the Image.

Image IRI anyURI Images need to be properly indexed through the URI (Uniform resource identifier), the
geographic location, and other details for the search facility.

Image License string This property specifies the license based on which the image is published.

hasOwner Owner ID This relation includes the owner of the image that can be for example the application
developer, the service provider, or anyone else.

4.4. Host Class

A host is a resource that not only exhibits the behaviour of a separate infrastructure
but is also capable of hosting microservices. A host can be a fog node or a VM on the cloud.
The host class, along with its own properties defined in the semantic model, is presented
in Table 4.

Table 4. Host class.

Property Name Range (Type) Rationale

Host ID unsignedInt This property allows a unique number to be generated when a new individual host is inserted
into the system.

Host Type string Different types of host can be, for example, a fog node or a cloud resource.

Host IP string Each host has its own IP address to use the Internet Protocol for communication.

Host Location string Each host has its own particular geographic location.

Host Network Interface string Each host has its own network adapter to transmit and receive data such as eth0.

Host Network Speed unsignedInt This property shows how much bandwidth is assigned to the host.

Host Subnet Mask string Each host has its own subnet mask address in the network area.

Host Default Gateway string Default gateway is the node that is assumed to know how to forward packets to other networks.

Host OS string Each host has an operating system (OS).

Host Storage Size decimal Each host has its own particular storage size.

Host Memory Size decimal This is a parameter to define the size of an individual host’s memory.

Host CPU Count unsignedInt This property indicates the number of cores called processors that belong to the host.

Host CPU Clock Rate decimal This property indicates the hertz which is the measure of frequency in cycles per second.

Host GPU string
This property indicates the graphics processing unit (GPU) which is a specialised electronic
circuit developed to accomplish rapid mathematical calculations, principally for the purpose of
rendering images.

Host Root Username string This property indicates the username assigned for the root user employed to connect to the host.

Host Root Password string This property indicates the password assigned for the root user employed to connect to the host.

hasMetric Metric ID This relation includes one or more host-related metrics which represent the information about
the status of an individual infrastructure, such as its current CPU or memory utilisation.

hasSLA SLA ID This relation includes the ID of the SLA which applies to the host.

Information 2021, 12, 40 10 of 22

There are various types of fog nodes to be used; for example, communication service
providers (e.g., ISP providers, cable or mobile operators), routers, switches, industrial
controllers, video surveillance cameras, or even small single- board computers such as
Raspberry Pi, BeagleBoard and PCDuino at the extreme edge of the network. Compared
to Raspberry Pi, an important characteristic of BeagleBoard and PCDuino is support for
Android in addition to Linux operating system. Table 5 compares the latest characteristics
of these three single-board computers at the time of writing this paper.

Table 5. Comparison of popular single-board computers.

Specification Raspberry Pi Model B BeagleBoard-X15 pcDuino3 Nano

Chip BCM2837 Sitara AM5728 Allwinner A20

Core 4 1 2

CPU 1.4 GHz 1.5 GHz 1 GHz

GPU VideoCore IV PowerVR SGX544 Mali-400MP2

Memory 1 GB RAM 2 GB RAM 1 GB RAM

SD Card Minimum of 4 GB Minimum of 4 GB Minimum of 4 GB

Operating System Linux Linux + Android Linux + Android

Dimensions 85.60 mm × 53.98 mm 107 mm × 102 mm 96 mm × 64 mm

4.5. Metric Class

A metric is a stream of monitoring data. Metrics can be measured at different layers
including (i) underlying host (e.g., CPU, memory, disk or network utilisation, etc.), (ii)
possible service parameters from deployed microservices (e.g., service response time or
application throughput, etc.), as well as (iii) SLA related parameters (e.g., availability, cost,
security, etc.) The metric class along with its own properties defined in the semantic model
is presented in Table 6.

Table 6. Metric class.

Property Name Range (Type) Rationale

Metric ID unsignedInt This property allows a unique number to be generated when a new individual monitoring
metric is inserted into the system.

Metric Name string This property implies the name of the monitoring metric.

Metric Description string This is a freestyle textual description of the monitoring metric.

Metric Group string For example, all metrics such as memTotal, memFree, memUsed and memUsedPerecent
may belong to a group named ‘memory’.

Metric Level unsignedInt

Metrics can be monitored as (i) host-level parameters related to the infrastructure utilisation
such as CPU, memory, etc., (ii) service-level parameters related to the application
performance such as response time, etc., or (iii) SLA-level parameters such as availability,
cost, etc.

Metric Unit string Metric units can be, for example, (i) percentage, (ii) KBps, (iii) MBps, (iv) Bps, (vi) Yes/No,
etc.

Metric Data Type string Metric data types can be (i) integer, (ii) long, (iii) double, etc.

Metric Collecting Interval unsignedInt
The collecting period is an important parameter specially for the time-critical environment.
It indicates the monitoring frequency which represents the interval between each
measurement for the metric.

Metric History unsignedInt This property implies how many days the monitoring system keeps measured values of the
metric.

Metric Upper Limit decimal This property implies the maximum value of the metric that can be observed.

Metric Lower Limit decimal This property implies the minimum value of the metric that can be observed.

Metric Threshold decimal This property implies the threshold value of the metric that should be continuously checked.

hasMonitoringAgent Monitoring Agent ID This relation includes the monitoring agent which measures the metric instance.

Information 2021, 12, 40 11 of 22

4.6. Monitoring Agent Class

A monitoring agent is a collector able to continuously gather the values of metrics
and generate time-stamped monitoring data. It periodically transfers the monitoring data
to another component which is called the monitoring server. The monitoring agent class,
along with its own properties defined in the semantic model, is presented in Table 7.

Table 7. Monitoring agent class.

Property Name Range (Type) Rationale

Monitoring Agent ID unsignedInt This property allows a unique number to be generated when a new
individual monitoring agent is inserted into the system.

Monitoring Agent Logging boolean When this property is set to true, abnormal situations associated to
the monitoring agent will be logged.

Monitoring Agent Port unsignedInt
This is a port which the monitoring agent uses to distribute metrics
to monitoring server. It should be identical to the one defined for
the monitoring server.

hasMonitoringServer Monitoring Server ID This relation includes the ID of the monitoring server to which the
monitoring agent distributes measured values of metrics.

4.7. Monitoring Server Class

A monitoring server receives measured values of monitoring metrics sent from moni-
toring agents, as well as storing such values in the time series database (TSDB) [40]. The
monitoring server class, along with its own properties defined in the semantic model, is
presented in Table 8.

Table 8. Monitoring server class.

Property Name Range (Type) Rationale

Monitoring Server ID unsignedInt This property allows a unique number to be generated when a new
individual monitoring server is inserted into the system.

Monitoring Server Logging boolean When this property is set to true, abnormal situations associated to the
monitoring server will be logged.

Monitoring Server Bind Interface string The network interface such as eth0 to which the monitoring server’s
listener will bind.

Monitoring Server Port unsignedInt
Monitoring server will bind to this port and listen for metric messages
distributed by monitoring agents. This property should be identical to
the one defined for monitoring agents.

Monitoring Server Heart Beat unsignedInt This property implies the intensity based on which the monitoring
server’s heartbeat should check monitoring agents’ availability.

Monitoring Server Heart Retry unsignedInt The number of iterations for which the monitoring server heartbeat
will allow a monitoring agent to be down until it is declared as dead.

hasTSDB TSDB ID This relation includes the ID of TSDB which will be used to store all
measured monitoring metrics.

hasHost Host ID This relation includes the host where the monitoring server is located.

Table 9 shows a comparison among monitoring systems which can be employed to
monitor resource usage (such as CPU, memory, disk, etc.), service-related parameters (such
as response time, etc.) and even customised specific metrics. It should be noted that the
comparison presented here is based on the reviewed literature and upon our conducting
experiments with these tools.

Information 2021, 12, 40 12 of 22

Table 9. Comparison of monitoring tools widely used within fog environments.

Monitoring
Server Open Source License Scalability Alerting

InfluxDB Yes MIT Yes No
Prometheus Yes Apache 2 No Yes

Scout Yes Commercial No Yes
SWITCH Yes Apache 2 Yes Yes
NetData Yes GPL Yes Yes
Zabbix Yes GPL Yes Yes

cAdvisor is a widely used system specifically designed for measuring, aggregating and
showing resource utilisation of running containers such as CPU, memory, etc. However,
cAdvisor has restrictions with alert management. Moreover, cAdvisor itself displays
monitoring information measured during only the last 60 s. It means that it is not possible
to view any features further back with using only a standard installation of cAdvisor.
Nevertheless, cAdvisor is able to send the measured data to an external monitoring server
such as InfluxDB which also includes a TSDB for long-term storage of monitoring data. In
this way, one cAdvisor monitoring agent is responsible for data collection on each node.
Then, it sends the collected monitoring data to the InfluxDB monitoring server.

The Prometheus monitoring server [41] which includes a TSDB can be used along with
the cAdvisor monitoring agent as an open-source monitoring solution. This monitoring
system is able to gather monitoring metrics at various time intervals, and show the mon-
itoring measurements. Scout [42], which is a commercial container monitoring solution,
can store measured monitoring values taken from containers during a maximum of 30
days. This monitoring solution also supports notification and alerting of events specified
by predetermined thresholds. However, Scout similar to Prometheus may not be able to
appropriately offer turnkey scalability to handle large number of containers.

The SWITCH Monitoring System [43], which has an agent/server architecture, can
retrieve both host-level monitoring data (e.g., CPU and memory) and service-level param-
eters (e.g., response time and throughput). Since there is no built-in monitoring agent
already prepared for this monitoring platform, the monitoring agent able to measure
application-specific metrics should be developed by the service provider. The commu-
nication between the SWITCH monitoring agent and the SWITCH monitoring server is
implemented through the lightweight StatsD protocol [44] which can be exploited for many
programming languages such as Java, Python and C/C++. Netdata [45] is another popular
open-source monitoring system which provides real-time performance and health moni-
toring for infrastructure-related metrics (such as CPU, memory usage) and only specific
applications such as Nginx, MongoDB, fail2ban and MySQL. Zabbix [46] is an open-source
agent-based monitoring system. It runs on a standalone host which collects monitoring
data sent by the Zabbix Agents. The Zabbix monitoring system supports the alerting fea-
ture to trigger notification if any predefined situation occurs. The auto-discovery feature of
Zabbix may be inefficient [47]. This is because sometimes it may take around five minutes
to discover that a monitored node is no longer running in the environment.

4.8. TSDB Class

The monitoring data streams coming from monitoring agents are received by the
monitoring server and then stored in the TSDB database for long storage. The TSDB which
is a database optimised for time-stamped data can be employed to store all measured
values of monitoring metrics. The TSDB class along with its own properties defined in the
semantic model is presented in Table 10.

Information 2021, 12, 40 13 of 22

Table 10. Time series database (TSDB) class.

Property Name Range (Type) Rationale

TSDB ID unsignedInt This property allows a unique number to be generated when a new
individual TSDB is inserted into the system.

TSDB DB Username string The DB username of the TSDB backend.
TSDB DB Password string The DB password of the TSDB backend.

TSDB DB Name string The DB name of the TSDB backend.
hasHost Host ID This relation includes the Host where the TSDB is located.

In Table 11, a list of widely used TSDB databases and their features in a general
sense is provided. Use of Prometheus instead of InfluxDB might be preferred because
it stores a name and additional labels for each monitoring metric effectively only once,
whereas InfluxDB redundantly stores them for every timestamp. On the other hand, the
high availability of Prometheus may be compromised in terms of a durable long-term
storage [48]. Besides that, Prometheus is not truly horizontally scalable. However, it
supports partitioning via sharding and replication via federation.

Table 11. Comparison of widely used TSDB databases.

TSDB Open Source License Scalability High
Availability

InfluxDB Yes MIT Yes Yes
Prometheus Yes Apache2 No No
OpenTSDB Yes LGPL Yes Yes

Druid Yes Apache2 Yes Yes
Elasticsearch Yes Apache2 Yes Yes

Cassandra Yes Apache2 Yes Yes

OpenTSDB stores metrics in sorted order by the name of metric, timestamp, as well as
tags. Therefore, in order to perform filtering and aggregation, first of all it needs to scan all
row keys in the time interval, and then parse the tags to see if they match the filter criteria,
and finally perform the aggregation on the column data.

Druid stores metrics in column format, and it is capable of applying Lempel-Ziv Finite
(LZF) [49] compression. LZF, which is a fast compression algorithm, takes very little code
space and working memory. Druid’s configuration can be such that it ideally keeps all the
data in memory. Since Druid keeps bitmaps indexes for dimensions, it is able to efficiently
pick out only the rows which it needs to read.

Elasticsearch stores entries as JSON documents. All fields can be indexed and used in
a single query. Elasticsearch has a rich client library support which makes it operative by
many programming languages such as Java, Python, C/C++, etc.

Cassandra has its specific query language which is named cassandra query language
(CQL). CQL adds an abstraction layer in order to hide implementation details and provides
native syntaxes for collections and encodings. Cassandra drivers are available for different
programming languages, for example Python (DBAPI2), Java (JDBC), Node.JS (Helenus)
and C/C++.

4.9. Alarm Notification Class

Alarm notification is an alert system which will be triggered if any metric’s threshold
is violated. Violations of predefined thresholds have to be reported since even a small
amount of violation should not be overlooked. If any alarm notification is initiated, a set of
adaptation actions will need to happen in order to adapt the execution environment. The
alarm notification class, along with its own properties defined in the semantic model, is
presented in Table 12.

Information 2021, 12, 40 14 of 22

Table 12. Alarm notification class.

Property Name Range (Type) Rationale

Alarm Notification ID unsignedInt This property allows a unique number to be generated when a new
individual alarm notification is inserted into the system.

Alarm Notification Date dateTime This property specifies the date when a particular alarm
notification is triggered.

Alarm Notification Time dateTime This property specifies the time when a particular alarm
notification is triggered.

Alarm Notification Value decimal This property implies the current value of the metric which violates
the threshold.

hasMetric Metric ID Each alarm notification is associated to the violation of a specific
monitoring metric.

hasAdaptationRules Adaptation Rule ID For each predefined condition when a particular alarm notification
is triggered, specific adaptation rules need to be performed.

4.10. Adaptation Rules Class

If the system is going to experience an abnormal situation, for example it has run out
of free CPU cycles, adaptation actions should be taken at that condition, or ideally prior to
that situation in anticipation. To this end, different adaptation rules have to be specified
since the system should react to various changing conditions, and thus it can improve the
application performance and reach a higher level of resource utilisation. Adaptation rules
can be determined to react specifically to the increasing workload, whereas there are other
adaptation rules to react specifically to the decreasing workload. There are various possible
adaptation rules; for instance, (i) horizontal scaling by adding more microservices into the
pool of resources, (ii) vertical scaling by resizing the resources, e.g., to offer more bandwidth
or computational capacity allocated to microservices, (iii) live migration by moving running
microservices from the current infrastructure to another one, or (iv) microservices may be
elastically offloaded from a fog node to a specific cloud resource, e.g., if the CPU runs out
of free cycles or the memory on the fog node is exhausted. In some cases, such adaptation
rules are defined and upgraded by artificial intelligence methods used for prediction in the
near future based on collected historical monitoring data stored in the TSDB. To generate
adaptation rules, systems use learning algorithms; for example, reinforcement learning,
neural network, queuing theory, data mining, regression models, etc. The adaptation rules
class, along with its own properties defined in the semantic model, is presented in Table 13.

Table 13. Adaptation rules class.

Property Name Range (Type) Rationale

Adaptation Rule ID unsignedInt This property allows a unique number to be generated when a new
individual adaptation rule is inserted into the system.

Adaptation Rule Action string This property indicates a specific action defined by the adaptation rule to
be accomplished when a particular condition happens at runtime.

Adaptation Rule Condition string This property indicates a specific condition when the adaptation rule has
to be performed.

hasKnowledgeBase KB ID
This relation includes the knowledge base (KB) which will be used to
store all information about the environment when the adaptation rule is
performed.

4.11. Knowledge Base Class

The knowledge base (KB) may be used for optimisation, interoperability, analysing
and integration purposes. Maintaining a KB allows analysis of long-term trends and

Information 2021, 12, 40 15 of 22

supports capacity planning. All information about the environment can be stored in the KB
especially when a specific adaptation rule is performed to avoid application performance
reduction. Such information can be the response time, application throughput, resource
utilisation, characteristics of virtualisation platforms and workload before and after that
point. Afterwards, the information stored in the KB may be used as feedback to see how
effective adaptation rules help the system handle abnormal situations during execution.
The KB class along with its own properties defined in the semantic model is presented in
Table 14.

Table 14. Knowledge base class.

Property Name Range (Type) Rationale

KB ID unsignedInt This property allows a unique number to be generated
when a new individual KB is inserted into the system.

KB Username string The username of the KB backend.
KB Password string The password of the KB backend.

KB Name string The name of the KB backend.
hasHost Host ID This relation includes the host where the KB is located.

In order to implement the KB, resource description framework (RDF) triple-stores
currently offer some advantages over both RDBMS (relational database management
system) and NoSQL databases. For example, they do not require a complex schema
development in comparison to the way that relational databases do. RDF has features that
facilitate data merging even if the underlying schemas differ. While NoSQL databases are
all usually different from one another, triple-stores share the same underlying standards,
allowing organisations to swap one triple-store for another with minimal disruption.
Additionally, triple-stores can infer new knowledge from existing facts, and they can
also track where data has come from. There are several open-source RDF repositories
systems that can be chosen for implementing the KB. An overview of the most well-known
frameworks is provided in Table 15.

Table 15. Overview of widely used RDF triple stores.

Name Source License Supported Query Language

AllegroGraph No Commercial SPARQL
Virtuoso Yes Commercial SPARQL
Sesame Yes BSD SPARQL + SeRQL

Open Anzo Yes Eclipse Public SPARQL
BigData Yes GPL SPARQL

OWLIM-Lite No GPL SPARQL + SeRQL
Jena Fuseki Yes Apache 2 SPARQL + SeRQL

It should be noted that the type of data, queries and reasoning required for the KB
used in a specific use case will determine which RDF store would be the best candidate to
choose. A mechanism for evaluating the performance of different triple-stores is to run
an RDF benchmark. The most well-known of the RDF benchmarks is the Berlin SPARQL
benchmark (BSBM) [50].

4.12. Service-Level Agreement Class

A service-level agreement (SLA) is an agreement between a provider and a consumer.
SLA tends to ensure that a minimum level of service quality is maintained. The SLA class
along with its own properties defined in the semantic model is presented in Table 16.

Information 2021, 12, 40 16 of 22

Table 16. Service-level agreement class.

Property Name Range (Type) Rationale

SLA ID unsignedInt This property allows a unique number to be generated when a
new individual SLA is inserted into the system.

SLA Description string This is a freestyle textual description of the SLA.

SLA Start Time dateTime This property specifies the time when the SLA operation starts.

SLA Support Time Period unsignedInt This property specifies the time period when the SLA operation
should be supported.

SLA Recovery Time unsignedInt This property specifies the time period by which the system must
be recovered after an unplanned disruption in the SLA.

hasAvailability Availability ID This relation includes the level of availability agreed between
provider and consumer in the SLA.

hasSecurity Security ID This relation includes the level of security agreed between
provider and consumer in the SLA.

hasCost Cost ID This relation includes the cost plan agreed between provider and
consumer in the SLA.

hasProvider Provider ID This relation includes the ID of provider who is primarily
responsible for delivering the SLA.

hasConsumer Consumer ID This relation includes the ID of consumers who mainly select the
SLA definition that best fits their requirement.

4.13. Availability Class

Availability is a key characteristic of infrastructure or application that may be defined
in SLA. It is determined as the percentage of the time window in which the system is
capable of operating. The availability class, along with its own properties defined in the
semantic model, is presented in Table 17.

Table 17. Availability class.

Property Name Range (Type) Rationale

Availability ID unsignedInt This property allows a unique number to be generated when a new
individual availability is inserted into the system.

Availability Description string This is a freestyle textual description of the availability defined in SLA.

Availability Logging boolean When this property is set to true, abnormal situations associated to the
availability defined in SLA will be logged.

Availability Mechanism string This property specifies the mechanism exploited to provide the availability
defined in SLA.

Availability Standard string This property specifies the standard of mechanism exploited to provide the
availability defined in SLA.

Availability Requirement string This property specifies the requirement for the availability defined in SLA.

hasMetric Metric ID This relation includes the monitoring metric based on which the
availability is defined in SLA.

4.14. Security Class

Security is also a key demand used to protect data during transmission or storage that
may be defined in SLA. The security class along with its own properties defined in the
semantic model is presented in Table 18.

Information 2021, 12, 40 17 of 22

Table 18. Security class.

Property Name Range (Type) Rationale

Security ID unsignedInt This property allows a unique number to be generated when a new
individual security is inserted into the system.

Security Description string This is a freestyle textual description of the security defined in SLA.

Security Logging boolean When this property is set to true, abnormal situations associated to the
security defined in SLA will be logged.

Security Mechanism string This property specifies the mechanism exploited to provide the security
defined in SLA.

Security Standard string This property specifies the standard of mechanism exploited to provide
the security defined in SLA.

Security Requirement string This property specifies the requirement for the security defined in SLA.

hasMetric Metric ID This relation includes the monitoring metric based on which the security
is defined in SLA.

4.15. Cost Class

SLA is a legal document which can define the cost of infrastructure or service including
any possible penalty terms. The cost class along with its own properties defined in the
semantic model is presented in Table 19.

Table 19. Cost class.

Property Name Range (Type) Rationale

Cost ID unsignedInt This property allows a unique number to be generated when a new individual
cost is inserted into the system.

Cost Description string This is a freestyle textual description of the cost defined in SLA.

Cost Currency currency This property specifies the currency used in SLA.

Cost Pricing Model string This property specifies the pricing model exploited in SLA. It can be (i) free, (ii)
pay-per-use, (iii) flat fee, or any other option.

Cost Penalty string This property specifies the penalty which can be taken into account if the
provider violates any terms of SLA.

5. Microservice Data Portability

The right to data portability is considered as one of the main fundamental data subjects’
rights in the GDPR. According to Article 20 of the GDPR, the right to data portability
enables data subjects in Europe to acquire their own data from the data controller gathering
their data or transfer it to another data controller. A data controller is an organisation or any
other body which determines the purpose and means of own data processing operations.
From the user viewpoint, data subjects have three data portability rights according to the
GDPR:

(i). Right to receive their own data from data controllers. Upon request by data subjects,
they are granted the possibility to store their own data on their private storage device.
The right to transmit own data prevents the vendor lock-in situation and gives data
subjects ownership to their own data.

(ii). Right to transmit own data indirectly to another data controller. Data subjects may
request transmission and reuse of their own data among various data controllers,
either within the same business sector or in any other sector in which they are
interested.

(iii). Right to have their own data transmitted directly to another data controller. Upon
request by data subjects, their own data can be transmitted from a data controller

Information 2021, 12, 40 18 of 22

directly to another one, without any hindrance from data controller from whom the
own data is withdrawn. However, Article 20 of GDPR mentions a limitation for the
exercise of this right that this direct transmission has to be technically feasible.

In cloud continuum applications, microservices act as data controllers. They often
collect and transmit own data through various sensing probes used in IoT applications,
such as location trackers. Hence, microservices should adhere to the aforementioned data
portability rights. In the next sections, we outline prominent data portability methods,
discuss their similarities and differences, as well as their applicability in microservice-based
cloud continuum applications.

5.1. Common Open Application Programming Interface (API)

An API provides a suitable abstraction, which is considered as a widely used interface
to share, transmit and reuse data as well as content between services. It is a powerful
standard tool for expressing complex application specifications. Implementing a common
open API can facilitate data portability in an easy manner, which allows users to access
their data stored on whatever resource or transmit it to another one. The most prominent
point is that data can be accessed through the same API exposed by various services in
every programming language. However, designing a common open API is not an optimal
solution as different microservices are developed independently from others and they
may adhere to different programming approaches. Coupled with the fact that upgrading
an open API may have cumbersome consequences, different service developers, who
expose the same API, prefer to keep their code without any change. Therefore, once a
common open API is published, a long-term commitment has to be maintained even if the
underlying functionality would be grown or shifted. Besides this, the movement of data
from one microservice to another via a common open API may require storing the data
temporarily on a medium such as a local disk in advance.

5.2. Centralised Framework

A centralised method can be considered as a collaboration committed to building a
common portability framework which can connect all services together. Such a framework
enables seamless, direct, user-initiated data portability among service vendors participating
in the initiative. This service-to-service portability method is centred on the idea that data
subjects should be able to freely transfer their data from a data controller directly to
another one. This centralised method may lower the infrastructure costs with the common
framework and reduce friction among data controllers. The centralised framework is in
charge of converting a range of proprietary formats into a small number of canonical
formats (called data models) useful for transferring data. It means that the centralised
framework acts as intermediary among various proprietary formats, converting their data
to canonical formats that can be used for data transmission. It should be noted that the
centralised framework should not have access to the actual data either in transit or at
rest since data exchange will be in encrypted form between export and import. One of
the main examples of such a centralized method is the open-source data transfer project
(DTP), which has been formed by big data-driven companies including Google, Facebook,
Microsoft and Twitter.

5.3. Standard Formats

This method indicates storing data in commonly used standard formats such as JSON
(JavaScript object notation), XML (extensible markup language), TOSCA (Topology and
orchestration specification for cloud applications) or CSV (Comma separated values) file
archives. However, such standards format specific only the structure of the data and not
the intended meaning and use.

Information 2021, 12, 40 19 of 22

5.4. Core Vocabularies and Ontologies

Core vocabularies, which provide a catalogue of ontologies, are considered as sim-
plified, reusable and extensible data models that capture the fundamental characteristics
of a particular entity in a context-neutral fashion [51]. Core vocabularies are currently
expressed in different formats such as conceptual model and spreadsheet as well as the
RDF schema. Since the existing core vocabularies and ontologies may not fully cover data
controllers’ needs, data controllers can use vocabularies and ontologies from the core, and
add their own extensions to them. Approval of a formal consensual extension is a complex
process which can take some time, but it results in official approbation that will reassure
data controllers about the validity of the extension. As the main drawback, this approach
currently exhibits narrow scopes, and hence such framework needs to be taken into account
as complementary to existing ontologies.

5.5. Discussion

Table 20 presents an overview of the main challenges the GDPR poses to data porta-
bility methods in the context of microservice-based cloud continuum applications. As can
be seen, the comparison implies that most of the mentioned challenges pertaining to the ex-
isting data portability methods may be addressed by the centralised framework. However,
the success of this method highly depends on a high level of open consensual agreement
about how much data all participating data controllers, i.e., microservice vendors, are
willing to share as well as how much trust they would like to place in this framework.
Moreover, a single point of failure as an important challenge unfortunately is a part of this
centralised framework. It means that if this framework fails, a bottleneck in the centralised
framework will brings down the entire cloud continuum application. Therefore, none of
existing widely used data portability methods yet offer an integrated solution capable of
addressing the whole fundamental challenges. Consequently, our analysis of the technical
challenges in relation to existing data portability methods indicates that user rights activists
and development professionals need to collaborate more closely if they wish to put the
right to data portability into operation in cloud continuum applications.

Table 20. Overview of challenges in relation to data portability methods.

Common Open
API

Centralised
Framework

Standard
Formats

Core Vocabularies and
Ontologies

Data controllers incur data conversion
overhead Yes No No No

Redundant temporary data storage is
required on data controllers Yes No No No

Data controllers get involved in any
upgrade in data portability method Yes No No No

Storage size is drastically increased on data
controllers No No Yes Yes

Poor hardware prefetching performance
may impact data controllers No No No Yes

Significant investment is required by data
controllers No No No Yes

Long conversion time is required within
data controllers Yes No No No

Difficult to be consensual by all data
controllers Yes Yes Yes Yes

Limiting the freedom and right of data
controllers No No No No

Large effort in data structure design is
required by all data controllers No No No Yes

Single point of failure intrinsic to data
portability framework No Yes No No

Information 2021, 12, 40 20 of 22

6. Conclusions

The rapid growth of the cloud continuum has a great impact on the adoption of new,
microservice-based software engineering models. Such modern computing models are
aimed at increasing capabilities of cloud continuum infrastructures compared to traditional
architectures. This happens through the capability of placing services in the close proximity
of users or IoT devices, offering a low-latency response time for IoT applications. In
such a distributed computing environment, the latest trend in software engineering is the
microservices architecture intended to offer an efficient execution of container-based IoT
solutions adaptive in dynamic environments.

A systematic classification of notions has been presented in order to enable easier
understanding and facilitate interchangeability of cloud continuum applications using
microservices. This is because a broad variety of different isolated technologies which
have various interface characteristics need to be employed to implement such systems.
This research work presents a new semantic model which determines all components
and interrelations among them that are necessary in these cloud continuum computing
applications. The semantic model allows both the scientific community and professional
associations to approach a comprehensive understanding of all concepts required to be
employed in cloud continuum environments. As a consequence, the current interoperability
issue in cloud continuum computing models can be addressed, and hence concepts can be
translated from one information context to another without forcing rigid adherence to a
specific technology stack.

We also compared the existing data portability methods widely used by online data-
driven service providers. The aim of the comparison is to identify and establish a trade-off of
the strengths and drawbacks which have been encountered in the context of data portability
mechanisms. Our analysis shows that an integrated solution that fully meets all technical
challenges is currently unavailable and that further research is needed to ensure that next-
generation, microservice-based cloud continuum applications are GDPR-compliant.

Author Contributions: Data curation, S.T., D.A., Y.V., M.G. and G.M.; Microservices overview
S.T., D.A., Y.V.; Related work analysis, S.T., D.A., G.M.; Research methodology S.T., D.A., M.G.;
Microservice semantic model S.T., D.A., Y.V., M.G. and G.M.; Microservice data portability S.T., D.A.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Matheu-Garcia, S.N.; Hernandez-Ramos, J.L.; Skarmeta, A.F.; Baldini, G. Risk-based automated assessment and testing for the

cybersecurity certification and labelling of iot devices. Comput. Stand. Interfaces 2019, 62, 64–83. [CrossRef]
2. Bounagui, Y.; Mezrioui, A.; Hafiddi, H. Toward a unified framework for cloud computing governance: An approach for evaluating

and integrating it management and governance models. Comput. Stand. Interfaces 2019, 62, 98–118. [CrossRef]
3. Gupta, V.; Kaur, K.; Kaur, S. Developing small size low-cost software- defined networking switch using raspberry pi. Next Gener.

Netw. 2018, 147–152. [CrossRef]
4. Adam, G.; Kontaxis, P.; Doulos, L.; Madias, E.-N.; Bouroussis, C.; Topalis, F. Embedded microcontroller with a ccd camera as a

digi- tal lighting control system. Electronics 2019, 8, 33. [CrossRef]
5. Madumal, P.; Atukorale, A.S.; Usoof, H.A. Adaptive event tree- based hybrid cep computational model for fog computing

architecture. In Proceedings of the 2016 Sixteenth International Conference on Advances in ICT for Emerging Regions (ICTer),
IEEE, Negombo, Sri Lanka, 1–3 September 2016; pp. 5–12.

6. Casalicchio, E. Container orchestration: A survey. In Systems Modeling: Methodologies and Tools; Springer: Cham, Switzerland,
2019; pp. 221–235.

7. Kakakhel, S.R.U.; Mukkala, L.; Westerlund, T.; Plosila, J. Virtualization at the network edge: A technology perspective. In Pro-
ceedings of the 2018 Third International Conference on Fog and Mobile Edge Computing (FMEC), Barcelona, Spain, 23–26 April
2018; pp. 87–92.

8. Fernandez-Garcia, L.I.A.C.J.C.; Jesus, A.; Wang, J.Z. A flexible data acquisition system for storing the interactions on mashup user
interfaces. Comput. Stand. Interfaces 2018, 59, 10–34. [CrossRef]

http://doi.org/10.1016/j.csi.2018.08.003
http://doi.org/10.1016/j.csi.2018.09.001
http://doi.org/10.1007/978-981-10-6005-2_16
http://doi.org/10.3390/electronics8010033
http://doi.org/10.1016/j.csi.2018.02.002

Information 2021, 12, 40 21 of 22

9. Donassolo, B.; Fajjari, I.; Legrand, A.; Mertikopoulos, P. Fog based framework for iot service orchestration. In Proceedings of the
2019 16th IEEE Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 11–14 January 2019;
pp. 1–2.

10. Papageorgiou, N.; Apostolou, D.; Verginadis, Y.; Tsagkaropoulos, A.; Mentzas, G. Situation detection on the edge. In Proceedings
of the Workshops of the International Conference on Advanced Information Networking and Applications, Matsue, Japan,
27–29 March 2019; Springer: Cham, Switzerland, 2019; pp. 985–995.

11. Thönes, J. Microservices. IEEE Softw. 2015, 32, 116. [CrossRef]
12. Tsakos, K.; Petrakis, E.G. Service oriented architecture for interconnecting lora devices with the cloud. In Proceedings of the

International Conference on Advanced Information Networking and Applications, Matsue, Japan, 27–29 March 2019; Springer:
Cham, Switzerland, 2019; pp. 1082–1093.

13. Todoli-Ferrandis, D.; Silvestre-Blanes, J.; Santonja-Climent, S.; Sempere-Paya, V.; Vera-Perez, J. Deploy & forget wireless sensor
networks for itinerant applications. Comput. Stand. Interfaces 2018, 56, 27–40.

14. Stubbs, J.; Moreira, W.; Dooley, R. Distributed systems of microservices using docker and serfnode. In Proceedings of the 2015 7th
International Workshop on Science Gateways, Budapest, Hungary, 3–5 June 2015; pp. 34–39.

15. Marinakis, V.; Doukas, H. An advanced IoT-based system for intelligent energy management in buildings. Sensors 2018, 18, 610.
[CrossRef]

16. Lavalle, A.; Teruel, M.A.; Maté, A.; Trujillo, J. Improving Sustainability of Smart Cities through Visualization Techniques for Big
Data from IoT Devices. Sustainability 2020, 12, 5595. [CrossRef]

17. Durmus, D. Real-Time Sensing and Control of Integrative Horticultural Lighting Systems. J. Multidiscip. Sci. J. 2020, 3, 266–274.
[CrossRef]

18. Gagliardi, G.; Lupia, M.; Cario, G.; Tedesco, F.; Cicchello Gaccio, F.; Lo Scudo, F.; Casavola, A. Advanced Adaptive Street Lighting
Systems for Smart Cities. Smart Cities 2020, 3, 1495–1512. [CrossRef]

19. He, Y.; Fu, B.; Yu, J.; Li, R.; Jiang, R. Efficient Learning of Healthcare Data from IoT Devices by Edge Convolution Neural
Networks. Appl. Sci. 2020, 10, 8934. [CrossRef]

20. Noura, M.; Atiquzzaman, M.; Gaedke, M. Interoperability in internet of things: Taxonomies and open challenges. Mob. Netw.
Appl. 2018, 1–14. [CrossRef]

21. Koo, J.; Oh, S.-R.; Kim, Y.-G. Device identification interoperability in heterogeneous iot platforms. Sensors 2019, 19, 1433.
[CrossRef] [PubMed]

22. Kalatzis, N.; Routis, G.; Marinellis, Y.; Avgeris, M.; Roussaki, I.; Papavassiliou, S.; Anagnostou, M. Semantic interoperability for
iot plat-forms in support of decision making: An experiment on early wild fire detection. Sensors 2019, 19, 528. [CrossRef]

23. Ahmad, A.; Cuomo, S.; Wu, W.; Jeon, G. Intelligent algorithms and standards for interoperability in internet of things. Future
Gener. Comput. Syst. 2018. [CrossRef]

24. Fortino, G.; Savaglio, C.; Palau, C.E.; de Puga, J.S.; Ganzha, M.; Paprzycki, M.; Montesinos, M.; Liotta, A.; Llop, M. Towards multi-
layer interoperability of heterogeneous iot platforms: The interiot approach. In Integration, Interconnection, and Interoperability of
IoT Systems; Springer: Berlin/Heidelberg, Germany, 2018; pp. 199–232.

25. Garcia, A.L.; del Castillo, E.F.; Fernandez, P.O. Standards for enabling heterogeneous iaas cloud federations. Comput. Stand.
Interfaces 2016, 47, 19–23. [CrossRef]

26. Kemppainen, P. Pharma industrial internet: A reference model based on 5g public private partnership infrastructure, industrial
internet consortium reference architecture and pharma industry standards. Nord. Balt. J. Inf. Commun. Technol. 2016, 2016, 141–162.

27. Yang, S.-R.; Tseng, Y.-J.; Huang, C.-C.; Lin, W.-C. Multi-access edge computing enhanced video streaming: Proof-of-concept
implementation and prediction/qoe models. IEEE Trans. Veh. Technol. 2019, 68, 1888–1902. [CrossRef]

28. Open Edge Computing Initiative 2019. Available online: http://openedgecomputing.org/ (accessed on 15 April 2019).
29. Yannuzzi, M.; Irons-Mclean, R.; Van-Lingen, F.; Raghav, S.; Somaraju, A.; Byers, C.; Zhang, T.; Jain, A.; Curado, J.; Carrera, D.;

et al. Toward a converged openfog and etsi mano architecture. In Proceedings of the 2017 IEEE Fog World Congress (FWC),
Santa Clara, CA, USA, 30 October–1 November 2017; pp. 1–6.

30. Open19 Foundation 2019. Available online: https://www.open19.org/ (accessed on 15 April 2019).
31. EdgeX Foundry 2019. Available online: https://www.edgexfoundry.org/ (accessed on 15 April 2019).
32. EdgeCross Consortium 2019. Available online: https://www.edgecross.org/en/ (accessed on 15 April 2019).
33. Cretella, G.; Martino, B.D. A semantic engine for porting applications to the cloud and among clouds. Softw. Pract. Exp. 2015,

45, 1619–1637. [CrossRef]
34. Han, T.; Sim, K.M. An ontology-enhanced cloud service discovery system. In Proceedings of the International Multi Conference

of Engineers and Computer Scientists, Hong Kong, China, 17–19 March 2010; Volume 1, pp. 17–19.
35. Bassiliades, N.; Symeonidis, M.; Gouvas, P.; Kontopoulos, E.; Med-itskos, G.; Vlahavas, I. Paasport semantic model: An ontology

for a platform-as-a-service semantically interoperable marketplace. Data Knowl. Eng. 2018, 113, 81–115. [CrossRef]
36. Agarwal, R.; Fernandez, D.G.; Elsaleh, T.; Gyrard, A.; Lanza, J.; Sanchez, L.; Georgantas, N.; Issarny, V. Unified iot ontology

to enable interoperability and federation of testbeds. In Proceedings of the 2016 IEEE 3rd World Forum on Internet of Things
(WF-IoT), Reston, VA, USA, 12–14 December 2016; pp. 70–75.

37. Sahlmann, K.; Schwotzer, T. Ontology-based virtual iot devices for edge computing. In Proceedings of the 8th International
Conference on the Internet of Things, Santa Barbara, CA, USA, 15–18 October 2018; p. 15.

http://doi.org/10.1109/MS.2015.11
http://doi.org/10.3390/s18020610
http://doi.org/10.3390/su12145595
http://doi.org/10.3390/j3030020
http://doi.org/10.3390/smartcities3040071
http://doi.org/10.3390/app10248934
http://doi.org/10.1007/s11036-018-1089-9
http://doi.org/10.3390/s19061433
http://www.ncbi.nlm.nih.gov/pubmed/30909580
http://doi.org/10.3390/s19030528
http://doi.org/10.1016/j.future.2018.11.015
http://doi.org/10.1016/j.csi.2016.02.002
http://doi.org/10.1109/TVT.2018.2889196
http://openedgecomputing.org/
https://www.open19.org/
https://www.edgexfoundry.org/
https://www.edgecross.org/en/
http://doi.org/10.1002/spe.2304
http://doi.org/10.1016/j.datak.2017.11.001

Information 2021, 12, 40 22 of 22

38. Sahlmann, K.; Scheffler, T.; Schnor, B. Ontology-driven device descriptions for iot network management. In Proceedings of the
2018 Global Internet of Things Summit (GIoTS), Bilbao, Spain, 4–7 June 2018; pp. 1–6.

39. Androcec, D.; Vrcek, N. Ontologies for platform as service apis inter-operability. Cybern. Inf. Technol. 2016, 16, 29–44.
40. Naqvi, S.N.Z.; Yfantidou, S.; Zimanyi, E. Time series databases and influxdb. In Studienarbeit; Université Libre de Bruxelles:

Brussels, Belgium, 17 December 2017.
41. Kumari, M.; Vishwanathan, A.; Dash, D. Real-time cloud monitoring solution using prometheus tool and predictive analysis

using arimamodel. Int. J. Eng. Sci. 2018, 8, 18338.
42. Scout 2019. Available online: https://scoutapp.com/ (accessed on 15 April 2019).
43. Taherizadeh, S.; Stankovski, V. Dynamic multi-level auto-scaling rules for containerized applications. Comput. J. 2018, 62, 174–197.

[CrossRef]
44. The StatsD protocol 2019. Available online: https://github.com/etsy/statsd/wiki (accessed on 15 April 2019).
45. Netdata 2019. Available online: https://my-netdata.io/ (accessed on 15 April 2019).
46. Petruti, C.-M.; Puiu, B.-A.; Ivanciu, I.-A.; Dobrota, V. Automatic management solution in cloud using ntopng and Zabbix. In

Proceedings of the 2018 17thRoEduNet Conference: Networking in Education and Research (RoE-duNet), Cluj-Napoca, Romania,
6–8 September 2018; pp. 1–6.

47. Taherizadeh, S.; Jones, A.C.; Taylor, I.; Zhao, Z.; Stankovski, V. Monitoring self-adaptive applications within edge computing
frameworks: A state-of-the-art review. J. Syst. Softw. 2018, 136, 19–38. [CrossRef]

48. Bader, A.; Kopp, O.; Falkenthal, M. Survey and comparison of opensource time series databases. In Datenbanksysteme für Business,
Technologie und Web (BTW 2017)-Workshopband; Gesellschaft für Informatik e.V.: Bonn, Germany, 2017; pp. 249–268.

49. Jeyakumar, V.; Madani, O.; Parandeh, A.; Kulshreshtha, A.; Zeng, W.; Yadav, N. Explainit!—A declarative root-cause analysis
engine for timeseries data (extended version). arXiv 2019, arXiv:1903.08132.

50. Bizer, C.; Schultz, A. The berlin sparql benchmark. Int. J. Semant. Web Inf. Syst. (IJSWIS) 2009, 5, 1–24. [CrossRef]
51. Taherizadeh, S.; Stankovski, V.; Grobelnik, M. A capillary computing architecture for dynamic internet of things: Orchestration of

microservices from edge devices to fog and cloud providers. Sensors 2018, 18, 2938. [CrossRef]

https://scoutapp.com/
http://doi.org/10.1093/comjnl/bxy043
https://github.com/etsy/statsd/wiki
https://my-netdata.io/
http://doi.org/10.1016/j.jss.2017.10.033
http://doi.org/10.4018/jswis.2009040101
http://doi.org/10.3390/s18092938

	Introduction
	Related Work
	Research Methodology
	Microservice Semantic Model
	Sevice Cluster
	Microservice Instance Class
	Image Class
	Host Class
	Metric Class
	Monitoring Agent Class
	Monitoring Server Class
	TSDB Class
	Alarm Notification Class
	Adaptation Rules Class
	Knowledge Base Class
	Service-Level Agreement Class
	Availability Class
	Security Class
	Cost Class

	Microservice Data Portability
	Common Open Application Programming Interface (API)
	Centralised Framework
	Standard Formats
	Core Vocabularies and Ontologies
	Discussion

	Conclusions
	References

