
  information

Article

A Method of Human Activity Recognition in
Transitional Period

Lei Chen 1 , Shurui Fan 1,* , Vikram Kumar 2,* and Yating Jia 1

1 Tianjin Key Laboratory of Electronic Materials Devices, School of Electronics and Information Engineering,
Hebei University of Technology, Tianjin 300401, China; 201931903018@stu.hebut.edu.cn (L.C.);
ya1552715935@126.com (Y.J.)

2 Indian Institute of Information Technology, Una 177220, India
* Correspondence: fansr@hebut.edu.cn (S.F.); vikram@iiitu.ac.in (V.K.);

Tel.: +86-139-0201-3210 (S.F.); +91-98163-17024 (V.K.)

Received: 10 July 2020; Accepted: 26 August 2020; Published: 28 August 2020
����������
�������

Abstract: Human activity recognition (HAR) has been increasingly used in medical care, behavior
analysis, and entertainment industry to improve the experience of users. Most of the existing works
use fixed models to identify various activities. However, they do not adapt well to the dynamic nature
of human activities. We investigated the activity recognition with postural transition awareness.
The inertial sensor data was processed by filters and we used both time domain and frequency domain
of the signals to extract the feature set. For the corresponding posture classification, three feature
selection algorithms were considered to select 585 features to obtain the optimal feature subset for
the posture classification. And We adopted three classifiers (support vector machine, decision tree,
and random forest) for comparative analysis. After experiments, the support vector machine gave
better classification results than other two methods. By using the support vector machine, we could
achieve up to 98% accuracy in the Multi-class classification. Finally, the results were verified by
probability estimation.

Keywords: activity recognition; posture transitions; inertial sensor; feature selection; support
vector machine

1. Introduction

The human activity and posture transformation recognition is useful to provid users with
valuable situational awareness, thus become one of the hotspots in many fields such as medical
care, human-computer interaction, film and television production, and motion analysis [1]. The two
dominant approaches for human activity classification used in literature are Vision-based systems
and Wearable Sensor-based systems. Vision-based systems are widely used to detection of human
parts and identification of daily activities [2]. These systems process the collected visual data for
activity classification.

Wearable Sensor based systems consist of multiple inertial sensors connected to a human sensor
network. After receiving and executing system commands, the raw human body data would be given
feedback [3,4]. Inertial measurement (accelerometers and gyroscopes) units are used to measure the
triaxle angular velocity and the triaxle acceleration signals generated during human body movement [5].
Sensors available in smartphones, such as temperature sensors and pressure sensors, are useful to know
the surroundings [6]. The data collected from the sensors attached to the user and sensors installed in
the surroundings are proceed to provide situational awareness to the user [7]. One of the problems
of using accelerometer to detect the motion of an object is that it often affected by the gravitational
field in the measurement, and its value (g = 9.81 m/s2) is relatively high. However, many studies have
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found that gravity factors can be separated from body motion by filtering. When using three-axis
accelerometer, the induced gravity vector can also help determine the direction of the object relative
to the gravity axis [8]. The gyroscope measures the direction indirectly; that is, it first estimates the
angular velocity, and integrates the angular velocity to obtain the direction. However, a reference
initial angular position is needed to obtain the direction from the gyroscope [9]. Gyroscopes are also
prone to noise, resulting in different offsets which can be eliminated by filtering.

At present, many scholars have studied the problem of human behavior recognition based on
video data [10]. In [11], the authors proposed depth video-based HAR system to utilize skeleton joints
features indoors. They used processed depth maps to track human silhouettes and produce body joints
information in the of skeleton, then the hidden Markov model was trained by features calculated from
the joint information. The trained model was adopted to recognize various human activities with a
mean rate of 84.33% for nine daily routine activities of the elderly. Basbiker M, etc. [12] developed
an intelligent human recognition system. In multiple stages of the system, a series of digital image
processing technologies were used to extract the human activity feature data from the frame sequence,
and a robust neural networks was established to classify the activity models by using a multi-layer
feedforward perceptor network. However, the vision-based HAR is limited by spatial location, and
video data is relatively complex. It is easier to cause privacy leakage. In contrast, data based on inertial
measurement unit can avoid these problems very well, thus it is becoming a new trand of HAR.

The human activity recognition system has three types of feature extraction methods: temporal
features, frequency features, and a combination of the two [13]. The authors of [14] put forward an
algorithm named S-ELM-KRSL, which is more suitable for processing large-scale data with noises or
outliers to identify the motion sequence of body. After experiment, the scheme could detect symptoms
of mild cognitive impairment and dementia with satisfactory accuracy. In [15], Zhu, etc. proposed a
semi-supervised deep learning approach using temporal Ensembling of deep long short-term memory
to extract high-level features for human activity recognition. They investigated temporal Ensembling
with some randomness to enhance the generalization of the neural networks. Besides the use of
ensemble approach based on both labeled and unlabeled data, they also combined the supervised
and unsupervised losses and demonstrated the effectiveness of the semi-supervised learning scheme
in experimental results. The authors of [16] brought up a novel ensemble extreme learning machine
(ELM) algorithm, in which Gaussian random projection is employed to initialize the input weights of
base ELMs and more diversities had been generated to boost the performance of ensemble learning.
The algorithm demonstrated recognition accuracies of 97.35% and 98.88% on two datasets. However,
the training time of the algorithm is slightly longer. In [17], a feature selection algorithm based on
fast correlation filtering was developed to achieve data preprocessing and demonstrated that the
classification accuracy can reach up to 100%. However, the classification model only used the AIRS2
algorithm which may not be suitable for other classifier. Feature selection is based on well-defined
evaluation criteria to select the original feature set, which eliminates small correlations and unnecessary
features. The selected features don’t change the original representation of the feature set, and feature
selection helps online classification to be more flexible [18].
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Most human behavior recognition systems developed in the past ignored posture transitions
because the incidence of posture transitions is lower and the duration is shorter than other basic
physical activities [19]. However, the above assumptions depend on different applications and are not
applicable when multiple activities must be performed in a short period of time. On the other hand,
in many practical scenarios, such as fitness or disability monitoring systems, determining posture
transitions is critical because in these cases the user performs multiple tasks in a short period of
time [20]. In fact, in the case of human behavior recognition system and transient posture perception,
the classification will change slightly, and the absence of specified posture transformation may lead to
poor system performance [21].

A posture transition is a finite duration event determined by its start and end times. In general,
the time required for posture transitions between different individuals is different. The posture
transition is limited by the other two activities and represents the transition period between the
two activities [22]. Basic activities like standing and walking can be extended for a longer period of
time than posture transitions. The data collection of the two types of activities is also different. The
posture transformation needs to be repeated to obtain a separate sample. Since the basic activities are
continuous, multiple window samples can be obtained from a single test according to the limitation of
its time range [23].

The other works related to this paper are referred in [24,25]. We have researched a large number
of features on HAR assisted by an inertial measurement unit in the past. The various activity features
are classified hierarchical, and six basic activities can be identified with an average accuracy of 96.4%.
However, the transition period of activities was out of account.

This paper focuses on Human Activity Recognition with postural transition awareness. In this
paper, the motion of the human body was sensed by an accelerometer and a gyroscope of the inertial
measurement unit. The magnitude and direction of the acceleration can be measured by vertically
arranging the sensors in three-dimensional space. It can also be built on a single chip, and it is now
common to use three-axis accelerometers in some commercial electronic devices [26]. First, we analyzed
the six-axis signal data acquired by the inertial measurement unit, and thenpreprocessed to obtain a
variety of signals that can represent the action. The various signals obtained from the preprocessing
were extracted in the time domain and the frequency domain using various standard and original
measurement methods to characterize each active sample. Thereafter, we perform feature selection
according to the specific classification condition by using various feature selection algorithms. A variety
of machine learning methods are used to classify and selected the one with the highest classification
accuracy. Finally, we use support vector machine to classify the posture. Different kernel functions and
specific parameters are used to optimize the model.

Figure 1 shows the framework followed in this paper for Activity Recognition. The framework
consists of four modules: Data preprocessing, Feature Extraction and Selection, Classifier Selection,
and Classifier Evaluation. The details of each module are given in next sections. In Section 2,
we described the Data preprocessing, Feature extraction, and Data selection. Section 3 is focused on
the Classifier Selection. In Section 4, we discussed Classifier Selection and Results. We concluded the
paper in Section 5.
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2. Data Preprocessing and Feature Selection

2.1. Data Preprocessing

The role of this module is to process the activity data received from the sensors and extract the
variety of signals useful for activity recognition.

In this paper, we used the second generation human behavior recognition database available in
the University of California Irvine (UCI) public platform [27]. The data set includes 6 basic activities:
3 static poses (standing, sitting, lying) and 3 dynamic poses (walking, downstairs, upstairs) for
30 different volunteers (everyone, aged between 19 and 48, who was instructed to follow the activity
protocol when wearing an SGSII Smartphone at the waist as shown in Table 1), each volunteer was
asked to do it twice. In addition, all possible pose transitions that occur between the existing three
static poses are also available, including: standing-sitting (St-Si), sitting-standing (Si-St), sitting-lying
(Si-Li), lying-sitting (Li-Si), standing-lying (St-Li), and lying-standing (Li-St). The frequency of the
IMU was 100 Hz.

Table 1. Human activity recognition experiment protocol.

Serial Number Static Poses Time (s) Serial Number Dynamic Poses Time (s)

0 Start (standing) 0 8 Walk (1) 15
1 Stand (1) 15 9 Walk (2) 15
2 Sit (1) 15 10 Downstairs (1) 12
3 Stand (2) 15 11 Upstairs (1) 12
4 Lay down (1) 15 12 Downstairs (2) 12
5 Sit (2) 15 13 Upstairs (2) 12
6 Lay down (2) 15 14 Downsairs (3) 12
7 Stand (3) 15 15 Upstairs (3) 12

16 Stop 0

Table 1 shows all the activity tasks in order, and the corresponding time. In the process
of experiment, every posture transformation performed twice by each volunteer. 60 labels were
generated for each posture transformation which is accounting for 9% of all recorded experimental
data. The duration of each posture tranformation is different, and even reverse transitions (for example,
Stand-Sit and Sit-Stand). The average duration of posture transition is 3.7 s, while the basic activity is
about 20.1 s. The signals collected from one volunteer were extracted and the data of 12 movements
(6 basic movements and 6 posture transformation) were statistically analyzed as shown in Figure 2.
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Figure 2. The statistics of posture data.

We process the original sensor signals obtained from the accelerometer (ar (t)) and the gyroscope
(wr (t)) in three steps. First, we used a third-order median filter and a third-order low filter with a
cutoff frequency of 20 Hz. Second, Battworth filter is applied for (transfer function is H1 (ω)) noise
reduction, high-pass filter with a cutoff frequency of 0.3 Hz (transfer function is H2 (ω)) to eliminate
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the influence of DC bias in the gyroscope. Third, the acceleration signal is divided into gravity g (t)
and object motion acceleration a (t).

The sensor data is plotted as Figures 3 and 4. The red line is the acceleration signal in the X-axis,
the green line is the acceleration signal in Y-axis, and the blue line is the acceleration signal in Z-axis. It is
evident from Figures 3 and 4 that the sensor data in the attitude transition phase changes significantly.
The units used for the accelerations are g’s, while the gyroscope units are rad’seg. The horizontal axis
describes the sampling points which is corresponding to the time. All the preprocessed signals are
summarized in Table 2.
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Table 2. Sensor inertial signal preprocessing.

Name Quantity Formula

Acceleration signal tAcc (X,Y,Z) aτ(t) = H1(ar(t))
Body acceleration signal tAccBody (X,Y,Z) a(t) = H2(aτ(t))

Gravity signal tGravity (X,Y,Z) g(t) = aτ(t) − a(t)
Angular velocity signal tGyro (X,Y,Z) ω(t) = H2(H1ωr(t))

Acceleration differential signal tAccJerk (X,Y,Z) di f f (aτ(t))
Angular velocity diff- erential signal tGyroJerk (X,Y,Z) di f f (ω(t))

Acceleration amplitude signal tAccMag ‖aτ(t)‖
Angular velocity amp- litude signal tGyroMag ‖ω(t)‖

Gravity amplitude signal tGravityMag ‖g(t)‖
Acceleration and gravity angle signal tAccAng ∠(aτ(t), g(t))

Angular velocity and gravity angle signal tGyroAng ∠(ω(t), g(t))
Acceleration frequency domain signal fAcc (X,Y,Z) f f t(aτ(t))

Angular velocity fre- quency domain signal fGyro (X,Y,Z) f f t(ω(t))
Acceleration differential frequency domain signal fAccJerk (X,Y,Z) f f t(di f f (aτ(t)))



Information 2020, 11, 416 7 of 17

2.2. Feature Extraction

We used both the time and the frequency domain to extract the features. Table 3 shows the various
measures and formulas used for generating feature sets on a fixed width window of length N, and there
is 50% overlap between the two windows. The length of the window used in experiment is 2.56 s,
since a person typically takes 1.5 steps per second on average, each window requires at least one full
walking cycle.

Table 3. Feature Vector.

Function Function Description Formula

Mean (v) Sample mean v = 1
N

N∑
i=1

vi

Var (v) Sample variance 1
N−1

N∑
i=1

(vi − v)2

RMS (v) Root mean square RMS =
(

1
N
∑N

i=1 v2
i

)1/2

Energy (v) Average of the sum of squares P(v) = 1
N
∑N

i=1(vi)
2

Entropy (v) Information entropy E = −
N∑

i=1
vi log vi

Distance (v) Euclidean distance L2 = 1
N−1

√∑N
i=2(vi−1 − vi)

2

MaxfreqInd (v) Maximum frequency component argmax(vi)

MeanFreq (v) Frequency signal weighted average
∑ N

i=1(ivi)∑ N
j=1v j

EnergyBand (v,a,b) Spectral energy in the [a,b] band 1
a−b+1

∑ b
i=avi

2

In our past work, we extracted a total of 585 features to describe each active window [25]. From the
various features tabulated in Table 3, some new features are taken into account. These features are
extracted from each axis of the acceleration signal and the angular velocity signal. The statistical
features in Table 3 are also applicable to the x-axis, y-axis, z-axis, Mag, differential, and tilt angle
of acceleration and angular velocity. Table 3 shows the feature representation form calculated by
generating the metrics of the data set and the window signal of length 128. Taking the Mean (v) as
an example to perform feature calculation on different processed signals and corresponding feature
descriptions. Table 4 shows the characterization of the average value.

Table 4. Signal processing methods for feature average.

Characterization Explanation

tAcc-X-Mean The x-axis body acceleration signal after noise removal is averaged
according to the window length

tAcc-Y-Mean The y-axis body acceleration signal after noise removal is averaged
according to the window length

tAcc-Z-Mean The z-axis body acceleration signal after noise removal is averaged
according to the window length

tGyro-X-Mean The x-axis angular velocity signal after noise removal is averaged
according to the window length

tGyro-Y-Mean The y-axis angular velocity signal after noise removal is averaged
according to the window length

tGyro-Z-Mean The z-axis angular velocity signal after noise removal is averaged
according to the window length

tGravityAcc-X-Mean The gravity component of the x-axis acceleration signal is averaged
according to the length of the window

tGravityAcc-Y-Mean The gravity component of the y-axis acceleration signal is averaged
according to the length of the window

tGravityAcc-Z-Mean The gravity component of the z-axis acceleration signal is averaged
according to the length of the window
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Table 4. Cont.

Characterization Explanation

tAccJerk-X-Mean The derivative of the x-axis body acceleration signal is averaged
according to the length of the window

tAccJerk-Y-Mean The derivative of the y-axis body acceleration signal is averaged
according to the length of the window

tAccJerk-Z-Mean The derivative of the z-axis body acceleration signal is averaged
according to the length of the window

tGyroJerk-X-Mean The derivative of the gravity component of the x-axis acceleration
signal is averaged according to the length of the window

tGyroJerk-Y-Mean The derivative of the gravity component of the y-axis acceleration
signal is averaged according to the length of the window

tGyroJerk-Z-Mean The derivative of the gravity component of the z-axis acceleration
signal is averaged according to the length of the window

tAccMag-Mean The amplitude of the triaxial body acceleration signal is averaged
according to the length of the window

tGyroMag-Mean The amplitude of the three-axis angular velocity signal is averaged
according to the window length

tGravityAccMag-Mean The amplitude of the gravity component of the three-axis acceleration
signal is averaged according to the length of the window

tAccAng-Mean The angle between the acceleration signal and the direction of gravity
is averaged according to the length of the window

tGyroAng-Mean The angle between the angular velocity signal and the direction of
gravity is averaged according to the length of the window

2.3. Feature Selection

The objective of this step is to select the significant features from the feature set obtained in the
feature extraction module to the training model [28,29]. The feature selection methods adopted by
most researchers include Filter, Embedded, Wrapper. In this step, we used the filtering methods in the
feature selection algorithm. The basic principle of feature selection algorithm is shown in Figure 5.Information 2020, 11, x FOR PEER REVIEW 9 of 18 
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Figure 5. Filtered feature selection algorithm.

The algorithm uses divergence or correlation indicators to score each feature, and selects features
with scores greater than a threshold or selects the top K features with the largest scores. Specifically,
calculate the divergence of each feature, remove the features whose divergence is less than the
threshold/select the top k features with the largest score; calculate the correlation between each feature
and the label, and remove the features/selection with a correlation less than the threshold the top k
features with the largest scores.

The advantages of the filtered feature selection algorithm are mainly versatility, low complexity,
and fast running speed [30]. In this paper, three filtering feature selection algorithms, Relief-F,
Fisher-Score, and Chi-Square, were applied to select the features.
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The purpose of selected feature set is to classify the posture transformation between six basic
movements (walking, going upstairs, downstairs, sitting, standing, and lying) and to achieve this,
we selected 585 features. First, feature selection is made for the two categories: one is six basic actions,
and another is six posture transformations. The results are shown in Figure 6. Secondly, the multiple
classifications are characterized. The six basic movements are six categories, and another is all posture
transformations. The results are shown in Figure 7.

Information 2020, 11, x FOR PEER REVIEW 9 of 18 

 

 
Figure 5. Filtered feature selection algorithm. 

The algorithm uses divergence or correlation indicators to score each feature, and selects 
features with scores greater than a threshold or selects the top K features with the largest scores. 
Specifically, calculate the divergence of each feature, remove the features whose divergence is less 
than the threshold/select the top k features with the largest score; calculate the correlation between 
each feature and the label, and remove the features/selection with a correlation less than the 
threshold the top k features with the largest scores. 

The advantages of the filtered feature selection algorithm are mainly versatility, low 
complexity, and fast running speed [30]. In this paper, three filtering feature selection algorithms, 
Relief-F, Fisher-Score, and Chi-Square, were applied to select the features. 

The purpose of selected feature set is to classify the posture transformation between six basic 
movements (walking, going upstairs, downstairs, sitting, standing, and lying) and to achieve this, 
we selected 585 features. First, feature selection is made for the two categories: one is six basic 
actions, and another is six posture transformations. The results are shown in Figure 6. Secondly, the 
multiple classifications are characterized. The six basic movements are six categories, and another is 
all posture transformations. The results are shown in Figure 7. 

 
Figure 6. Three feature selection algorithm results in two categories. Figure 6. Three feature selection algorithm results in two categories.Information 2020, 11, x FOR PEER REVIEW 10 of 18 

 

 
Figure 7. Three feature selection algorithm results in multiple classification. 

In Figures 6 and 7, the abscissa refers to the number of features selected by the three feature 
selection algorithms, and the ordinate refers to the classification accuracy. It can be seen from 
Figures 6 and 7 that the classification accuracy increases gradually with increase in the number of 
selected features and approaches to 1. The ordering of the abscissa features in the three feature 
selection algorithms is sorted according to the scores of the features in the three algorithm principles. 

In order to further select features of smaller dimensions to classify human poses with higher 
accuracy, we first input the first feature selected by each algorithm, that is, the three features into the 
classifier for training, obtain a classification model, and test it. If the test accuracy does not reach the ideal 
value, the first two features selected by each feature selection algorithm are selected for classification 
training, and so on, the feature combination with the highest classification accuracy is selected. 

Finally, the features with highest score got from three feature selection methods were selected 
in the two categories: the maximum value in the fAcc (X) sequence, the frequency signal kurtosis in 
the fAcc (Y) sequence, and the sample range of the fAcc (X) sequence. In order to ensure 
classification accuracy in multiple classifications, 30 features (The top ten features selected by each 
feature selection method) were selected as shown in Table 5. 

Table 5. Selected features. 

SF. no. Feature Description Symbol Used 
1, 2 sequence mean tAcc (Y), tGravity (Y) 
3, 4 sequence median tAcc (Y), tGravity (Y) 
5, 6 maximum value in the sequence fAcc (Y), fGyro (X) 

7 standard deviation tAccJerk (X) 
8 frequency signal skew fAcc (Y) 
9 range fGyro (X) 

10, 11, 12, 13 quartile of the sequence tAccJerk (X), tGyroJerk (Z), tAccMag, tGravityMag 
14, 15, 16, 17 10th percentile tGyroJerk (Z), tAccMag, tGravityMag, tGyroAng 

18, 19, 20 25th percentile tAccMag, tGravityMag, fGyro (X) 
21, 22 50th percentile tAcc (Y), Gravity (Y) 

23, 24, 25, 26 75th percentile tGravity (Y), tGyroJerk (Z), tAccMag, tGravityMag 
27, 28, 29, 30 90th percentile tGyroJerk (Z), tAccMag, tGravityMag, tGyroAng 

3. Classifier Selection 

We used Support Vector Machine (SVM), which is a supervised machine learning algorithm 
developed in the last century and often used in statistical classification problems [31]. It was more 
often applied to the two-classification problem. The basic model is a linear classifier, which is 
transformed into a convex quadratic programming problem by maximizing the interval [32]. SVM is 
effective in high-dimensional space and suitable for situations where the dimensions are larger than 

Figure 7. Three feature selection algorithm results in multiple classification.

In Figures 6 and 7, the abscissa refers to the number of features selected by the three feature
selection algorithms, and the ordinate refers to the classification accuracy. It can be seen from Figures 6
and 7 that the classification accuracy increases gradually with increase in the number of selected
features and approaches to 1. The ordering of the abscissa features in the three feature selection
algorithms is sorted according to the scores of the features in the three algorithm principles.

In order to further select features of smaller dimensions to classify human poses with higher
accuracy, we first input the first feature selected by each algorithm, that is, the three features into the
classifier for training, obtain a classification model, and test it. If the test accuracy does not reach
the ideal value, the first two features selected by each feature selection algorithm are selected for
classification training, and so on, the feature combination with the highest classification accuracy
is selected.

Finally, the features with highest score got from three feature selection methods were selected in
the two categories: the maximum value in the fAcc (X) sequence, the frequency signal kurtosis in the
fAcc (Y) sequence, and the sample range of the fAcc (X) sequence. In order to ensure classification
accuracy in multiple classifications, 30 features (The top ten features selected by each feature selection
method) were selected as shown in Table 5.
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Table 5. Selected features.

SF. no. Feature Description Symbol Used

1, 2 sequence mean tAcc (Y), tGravity (Y)
3, 4 sequence median tAcc (Y), tGravity (Y)
5, 6 maximum value in the sequence fAcc (Y), fGyro (X)
7 standard deviation tAccJerk (X)
8 frequency signal skew fAcc (Y)
9 range fGyro (X)

10, 11, 12, 13 quartile of the sequence tAccJerk (X), tGyroJerk (Z), tAccMag, tGravityMag
14, 15, 16, 17 10th percentile tGyroJerk (Z), tAccMag, tGravityMag, tGyroAng

18, 19, 20 25th percentile tAccMag, tGravityMag, fGyro (X)
21, 22 50th percentile tAcc (Y), Gravity (Y)

23, 24, 25, 26 75th percentile tGravity (Y), tGyroJerk (Z), tAccMag, tGravityMag
27, 28, 29, 30 90th percentile tGyroJerk (Z), tAccMag, tGravityMag, tGyroAng

3. Classifier Selection

We used Support Vector Machine (SVM), which is a supervised machine learning algorithm
developed in the last century and often used in statistical classification problems [31]. It was more often
applied to the two-classification problem. The basic model is a linear classifier, which is transformed
into a convex quadratic programming problem by maximizing the interval [32]. SVM is effective in
high-dimensional space and suitable for situations where the dimensions are larger than the samples.
Different kernel functions can be formulated for different scenarios. Linear separable samples can be
classified by linear function. In diverse dimensions, the classifier shows different forms, such as a
straight line for two-dimensions as shown in Figure 8, a plane for three-dimension and hyperplane for
high-dimensional space.
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The decision tree is a tree that is constructed according to different strategies. By training the
input data, the decision tree can be constructed, which can classify the unknown data efficiently, that is,
predict the future based on the known [33]. It is a tree structure algorithm composed of root node,
internal node, and leaf node. The core idea of the decision tree algorithm is to select attributes based
on information gain and select the attribute with the largest information gain as the root [34]. The
root is the top classification condition, each node of the tree acts as a test point on the property. The
leaf node represents each category number, and the branch is on behalf of the output of each criteria.
A binary tree has two branches on each node, while a node in a multi-tree has more than two branches.

The random forest algorithm is mainly based on the model aggregation idea, and has high
precision in the classification and regression of high dimensional uncertainties [35]. The key idea under
the random forest classifier is to grow a large number of unbiased decision trees from the guided
samples, where each tree is voted for an activity class, and the random forest finally selects the most
voted classification in the forest [36]. The random forest starts by selecting guide samples from the
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original training data. Then learning each guide sample through the decision tree. Only a small
number of variables are available for binary partitioning on each node.

In the previous section, three filtering feature selection algorithms were used to select three
features for the two-category case, and 30 features were selected for the multi-classification case. Next,
for the different classification cases, three features and 30 features were respectively applied to the
three classifiers, and the test set classification accuracy is shown in Tables 6 and 7. According to the
analysis of the classification results, there is no significant difference between the classification accuracy
of the three sets of testers. We found that the results of the SVM are better than the other two. Precision,
recall and F1-score is the evaluation index of the classification results. Avg/total calculates the mean
value of entirety, which represents the overall situation of evaluation index. We used the features
selected by Fisher-Score, Relief-F and Chi-Square to train the SVM, and the training set accuracy is
shown in Table 8.

Table 6. Three classifier experimental results of two categories.

Test Set Classification Accuracy Precision Recall F1-Score

SVM 1.0
Class 1 1.00 1.00 1.00
Class 2 1.00 1.00 1.00

Avg/total 1.00 1.00 1.00

Decision tree 0.9767
Class 1 0.97 1.00 0.99
Class 2 1.00 0.75 0.86

Avg/total 0.98 0.98 0.98

Random forest 0.9827
Class 1 0.97 1.00 0.99
Class 2 1.00 0.75 0.86

Avg/total 0.98 0.98 0.98

Table 7. Three classifier experimental results of multiple classification

Test set Classification Accuracy Precision Recall F1-Score

SVM 0.9827 Avg/total 0.99 0.98 0.98
Decision tree 0.9792 Avg/total 0.98 0.98 0.98

Random forest 0.9801 Avg/total 0.98 0.98 0.98

Table 8. Training set results of SVM.

Fisher-Score Relief-F Chi-Square

Accuracy 0.954 0.988 0.976

4. Classification Results Analysis and Improvement

4.1. Classifier Parameter Selection

In this Module, we used the support vector machine as a common classifier to classify the pose.
The role of the kernel function is to map the input space to a high-dimensional space with certain
rules, and construct an optimal separation hyperplane in it, and finally achieve the effect of separating
nonlinear data [37]. We mainly used linear and Radial Basis Function.

If we learn and test the classifier model on the same subset of data, it will lead over-fitting
phenomenon which can be avoided by cross-validation.

The data of 30 volunteers in the original data set were divided: the data of the first 15 people were
used as the feature selection set, the data from th 16th to 26th person were used as the training set of
the classifier, and the others were used as the test set of the classifier.



Information 2020, 11, 416 12 of 17

4.1.1. Classifier Linear Kernel Parameter Selection

A commonly used parameter in a linear kernel is the penalty factor C. When the value of C is large,
the misclassification is less, the fitting to the sample is better, but it is easy to cause overfitting [38].
Although the possibility of misclassification becomes larger and the fit to the sample is degraded,
the prediction effect may be more desirable due to the influence of noise between the samples [39].

First, based on the three features selected in the previous section, the linear kernel support vector
machine is used to solve the two-class problem in behavior recognition. Figure 9 shows the selection
process for parameter C in the two classifications. Next, based on the 30 features selected in the previous
section, we used the linear kernel support vector machine to solve the seven classification problem in
behavior recognition. Figure 10 shows the selection process of parameter C in the multi-class.Information 2020, 11, x FOR PEER REVIEW 13 of 18 
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In Figures 9 and 10, the upper line represents the test set classification accuracy, and the lower
line represents the cross-validation average. The abscissa shows the change of the penalty factor C,
and the ordinate indicates the classification accuracy. It can be seen that with the increase of the penalty
factor C, the classification accuracy and cross-validation average of the test set increase, but when
the value of C is too large, the classification accuracy decreases slightly. In the process of processing
the data, the larger the value of C, the more the error cannot be tolerated, and the time required for
data processing will be longer. However, if the value of C is too small, we cannot guarantee that the
parameter can be applied to other data sets. However, It still has a better effect. Therefore, considering
the comprehensive consideration, we used the penalty factor value equals to 1. The 27th–29th people
in the database were used for cross-validation to calculate the average precision value, mean value
and standard deviation. We noticed that the classification accuracy of the test set is 0.973, the average
cross-validation is 0.956, and the standard deviation of cross-validation is 0.042, which can achieve the
desired effects. The factor C has a value of 1, and the classification accuracy of the test set is 0.975,
the cross-validation average is 0.972, and the cross-validation standard deviation is 0.033, which can
achieve the desired effect.
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4.1.2. Classifier RBF Kernel Parameter Selection

The radial basis function (RBF) is a localized kernel function whose role is to map samples to
high dimensional space. There are two main parameters in the classifier of RBF: the penalty factors C
and σ [40]. The parameter σ reflects the clustering of the points after the mapping. The smaller the
parameter σ, the distance between the mapped points tends to be equal, and the classification of the
points will be finer, which will easily lead to overfitting. The larger the parameter σ, the coarser the
classification will be, making it impossible to distinguish the data.

In the process of selecting the penalty factor C and the parameter σ, when the value of C is too
large, over-fitting is easy to occur. When the value of σ is too small, the more support vectors are,
the finer the classification is, and over-fitting easily occurs. And the increasing of the number of
support vectors affects the speed of training and prediction [41]. The cross-validation is also used to
determine whether the classification result has been over-fitted.

First, based on the three features selected in the previous section, the classifier of the radial basis
kernel was used to solve the two-class problem in behavior recognition. Figure 11 shows the selection
process of parameters C and σ in dichotomies. We used radial basis kernel support vector machine to
solve the seven classification problem in behavior recognition based on the 30 features selected in the
previous section. Figure 12 shows the selection process for parameters C and σ in the multi-category.
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There are two subgraphs in Figures 11 and 12. The abscissa shows the change of the parameter σ
and the ordinate shows the change of the parameter C. While Figures 11 and 12a shows the classification
accuracy of the test set, and Figures 11 and 12b represents the cross validation average. The darker the
color, the larger the value. When the penalty factor C is too small and the parameter value σ is too large,
the classification accuracy may not reach the ideal value. However, excessive pursuit of classification
accuracy may cause computational complexity. Considering comprehensively, when the penalty factor
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C is selected as 100 and the parameter is selected as 0.00001 in the second classification, the classification
accuracy of the test set is 0.973, the cross-validation average is 0.975, and the cross-validation standard
deviation is 0.011, which can achieve the desired effect, the penalty factor C in the seven classification.
When the parameter is selected and the parameter is 0.001, the classification accuracy of the test set
is 0.978, the average cross-validation is 0.938, and the cross-validation standard deviation is 0.057,
which can achieve the desired effect.

4.2. Probability Estimation

Commonly used SVM can only generate categories without probability. The probability estimation
can be used to transform the classification result of the support vector machine, that is, the probability
that a sample belongs to each category [42].

The probabilistic calibration used in this study is isotonic regression, which is a nonparametric
method. The core idea is to fit the deviation between the current classifier output and the real results.
Isotonic regression is suitable for cases with large sample sizes, and over-fitting is prone to occur
when the sample size is small. The Brier score can be used to evaluate the results of the probabilistic
calibration. The Brier score is a loss, so the smaller score is better [43]. In all categories in which N
predictions are aggregated, the Brier score measures the mean square error between the predicted
probability and the actual probability assigned to the category. Therefore, for a set of predictionsmeans
the lower the Brier score, the better the prediction calibration effects.

In this paper, we used data of five volunteers on which we used the support vector machine to
learn and classify, and then uses isotonic regression to probabilistically estimate the data compiled by
the volunteers. Due to individual differences, they completed each activity in different time actually.
In order to maintain the integrity of a whole set of actions, result of one volunteer was presented
only in Figure 13. In Figure 13, the abscissa is the test set data corresponding to different postures
randomly selected from the volunteer data, and the ordinate is the predicted probability value obtained
by estimating the probability of the data. The seven different colored lines represent the probability
that the data is predicted into seven categories.
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The Brier score is then used to evaluate the results of theprobability estimates. The average results
of five volunteers are shown in Table 9. The column labels in the table represent which actions the
selected data comes from, the row labels represent the seven categories, and the values in the table are
the obtained Brier scores. The Brier score on the diagonal in the table is relatively small, so the result
of the probability estimation achieves the desired effects. Comparing with the experiments adopted
SVM in the literature [44], SVM with kernel parameter selection adjustment has a significantly higher
effectiveness and accuracy in identifying “walking”, ”upstairs”, and “downstairs”.

Table 9. Brier score evaluation result of probability estimation.

Brier-Score Walking Upstairs Downstairs Sitting Standing Laying Posture
Transitions

Walking 0.0105 0.2801 0.2432 0.2746 0.2332 0.2702 0.1980
Upstairs 0.2741 0.0107 0.2648 0.3023 0.2332 0.3344 0.2365

Downstairs 0.2532 0.2890 0.0204 0.2833 0.2374 0.2562 0.2087
Sitting 0.2820 0.3172 0.2741 0.0116 0.2714 0.3172 0.2293

Standing 0.2046 0.2231 0.1968 0.2341 0.0082 0.2701 0.1753
Laying 0.2820 0.3321 0.2840 0.3187 0.2622 0.0181 0.2543

Posture transitions 0.1861 0.2142 0.1602 0.2194 0.1793 0.2433 0.0356

5. Conclusions

In recent years, research on behavioral recognition methods for transitional attitude perception
has become more and more widely used in many fields such as medical care. Based on the evaluated
human behavior recognition data set it is found that the three-axis acceleration values of different static
actions are significantly different, the three-axis angular velocity values are basically the same, and the
posture conversion data between static actions changes significantly. It is undeniable that the data of
the static posture is not always stable, as it cannot be guaranteed that the volunteer was completely
still while sitting (or standing or lying) during the experiment.

We used Fisher-Score, Relief-F, and Chi-Square to select 585 features to obtain relatively good
features set for classification. The features with higher scores were calculated using methods
such as maximum value, minimum value, variance, skewness, kurtosis, and information entropy.
The investigation shows that support vector machine gives better results than decision tree and random
forest. In the second classification, the classification accuracy of the linear kernel (C = 1) is 97%, and
the classification accuracy of the RBF kernel (C = 1, σ = 0.001) in the multi-class is 98%. Probability
estimation overcomes some of the shortcomings of SVM and can directly output the probability that
the data belongs to each category, thus making the results more intuitive.
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