
 information

Article

A Proposal of Fault Tree Analysis for Embedded
Control Software

Masakazu Takahashi 1,* , Yunarso Anang 2 and Yoshimichi Watanabe 1

1 Department of Computer Science and Engineering, University of Yamanashi, Kofu,
Yamanashi 400-8511, Japan; nabe@yamanashi.ac.jp

2 Department of Computational Statistics, Politeknik Statistika STIS, East Jakarta 13330, Indonesia;
anang@stis.ac.id

* Correspondence: mtakahashi@yamanashi.ac.jp; Tel.: +81-55-220-8585

Received: 27 July 2020; Accepted: 17 August 2020; Published: 19 August 2020
����������
�������

Abstract: There are many industrial products in our life, and the actions of those products are
controlled by embedded control software (ECSW). Recently, many troubles have been caused
by ECSW. To avoid those troubles, it is necessary to clarify the causes of the troubles and take
countermeasures. However, the results of those tasks depend on the skills of the analyst. This paper
proposes an analytic method that clarifies the causes of troubles by applying fault tree analysis
(FTA) to the ECSW. The characteristics of the proposed method are as follows: Preparation of
fault tree templates (FTTs) corresponding to instructions of the ECSW, and definition of the FT
development rules by combining FTTs according to the back-tracing of the instruction execution
process. By complying with the proposed method strictly, when an analyst who has studied computer
science and safety engineering for 2–3 years conducts FTA, the analyst can obtain an appropriate result
of FTA. This indicates that the safety level of ECSW will improve. As a result of applying the proposed
method to existing ECSWs, we find that we can obtain the result of FTA at the appropriate level.

Keywords: fault tree analysis; embedded control software; safety analysis; industrial products

1. Introduction

This paper proposes an analysis method of unexpected events (top events) caused in embedded
control software (ECSW) for industrial products written in the C language. The proposed method
realizes a safe ECSW by analyzing the causes of a top event and taking countermeasures.

Industrial products dealt with by this paper are home electronic products, medical equipment,
product facilities, automobiles, aircrafts, space equipment, etc. ECSW is software that controls motions
of an industrial product. We assume that the target ECSW has the following characteristics: Working
on a single-chip CPU with a single-core, having several thousands of lines of code (KLOC), written
in the C language, and not using newly developed technologies. The reason those assumptions are
adopted is as follows: The rate of usage of the single-core CPU is about 60%, the median of lines of
code (LOC) is 6.7 KLOC, the rate of usage of the C language is about 60%, and the rate of development
without newly developed technologies is 80% [1]. The reason the median of LOC is used is as follows:
Even the LOC of ECSW is distributed from 0.1 to 1551 KLOC, the average of the LOC is 41 KLOC, and
the rate of ECSW with over 50 KLOC is under 10%. Additionally, as the large-scaled ECSW is built by
combining several control equipment using a network and/or data-bus, the LOC of ECSW installed
into individual equipment is nearly the same as the LOC of the target ECSW. Fault tree analysis (FTA)
is a safety analysis method that identifies the causes of a top event (fundamental events) by tracing
logical relationships between a top event and its causes. In FTA, the logical relationships between a top
event and fundamental events are shown as tree structures called the fault tree (FT).

Information 2020, 11, 402; doi:10.3390/info11090402 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
https://orcid.org/0000-0003-1778-9119
http://dx.doi.org/10.3390/info11090402
http://www.mdpi.com/journal/information
https://www.mdpi.com/2078-2489/11/9/402?type=check_update&version=2

Information 2020, 11, 402 2 of 22

In the past, the completeness of the developed FTs depended on the skills and experiences of the
analyst. There exists a problem where the analyst sometimes omits the events in the FT that are well
known from his experiences, and other analysts sometimes cannot understand the reason why the FT
is developed. By applying the proposed method, analysts are able to conduct FTA in the code level of
the ECSW. Analysts who have studied computer science and safety engineering for 2–3 years will be
able to conduct adequate FTA. As the proposed method defines the concrete FT development rules,
even those with less experience will easily understand the FT analysis. Additionally, FTs are developed
within adequate time using the developed FTA support tools (FTs with ECSW having several hundred
LOC can be developed within 1 to 2 h). As a result, the safety level of the ECSW can be improved
using the proposed method.

These days, accidents of industrial products resulting from a top event of ECSW have become
an issue. To avoid the top event of the ECSW, countermeasures for the top event have to be taken,
in addition to the conduction of appropriate design and tests. There exists an FTA as a method that
identifies the fundamental events from the top event. Many FTA methods have already been proposed
as an analysis method for the ECSW, but those proposals have some problems, such as the unclearness
in the FTA conduction sequence, and inconsistency in the FT analytic granularity (function level and
component level). Therefore, the developed FT includes some differences (oversights in the items
investigated and variance in the granularity for the items investigated) depending on the experiences
and skills of the analyst. As a result, there exist some cases where the results of FTA become insufficient.
This paper proposes an analysis method that can develop equivalent and appropriate FT whenever an
analyst conducts FTA.

Here, we shall discuss an overview of the FTA related to ECSW proposed in this paper. Before
conducting FTA for ECSW, we conduct a system-level FTA for a system-level fault and clarify the
hardware and software faults and parts (instruction of ECSW) that cause a system-level fault. FTA
is executed for the software fault. First, we will discuss top events (Faults). The top event of the
ECSW, which is the subject of the analysis, is defined as an unexpected event occurring under a certain
condition: For example, functions do not start (or stop) at a designated timing, processing becomes
frequent, data are not updated at the designated timing, or calculation results deviate from the permitted
range. Simple programming errors should be detected in tests, and as these are carried out essentially
and efficiently, such errors are not covered here. Next, we will discuss the procedure for executing FTA
for ECSW. Regarding the instruction and the top event as the starting state, the instructions executed
and events that occurred immediately before (middle events) are clarified. If this reverse tracking
work is repeated, we can reach the fundamental events and the instructions causing them. To perform
reverse tracking work, it is necessary to prepare (a) a method for clarifying the relationship between
the events prior to and after the execution of each instruction, and (b) a method for determining
instructions executed immediately before the instruction being executed. For (a), we prepare an FT
template expressing the relationship between the events before and after executing each instruction.
For (b), we define rules for identifying instructions executed immediately before instructions currently
being executed. The input of the proposed method is as follows: The fault of software, the instruction
that causes the fault, and the source code (besides, information on the ECSW structure extracted from
ECSW is issued, details are described in Section 3.3.2). The output is the developed FTs.

The rest of this paper is organized as follows. Section 2 describes the related works. Section 3
describes the occurrence process of the top event, the development of the FT template, the definition of
the FT development rules, and the prototyped FTA support tools. Section 4 describes the application
and evaluation of the proposed method and the issues related to the proposed method. Finally,
Section 5 describes the summary of this research.

Information 2020, 11, 402 3 of 22

2. Related Works

In this section, we provide an outline of the establishment of standards related to ECSW safety in
the industrial field, the ECSW safety analysis method, and the methods to improve reliability using
FTA and related methods.

First, we discuss the ECSW development standards in various industrial fields. The reason for
establishing development standards is based on the idea that a high level of safety can be realized by
developing ECSW in accordance with appropriate standards. Supervisory authorities for industrial
products are required to have a high level of safety and have imposed a duty on the manufacturing
companies to develop ECSW that conforms to the development standards. Examples of such regulations
are JIS T 2304 [2], IEC 62,304 [3], and IEC 82304-1 [4] in the medical devices field; Good Automated
Manufacturing Practice [5] in the pharmaceutical manufacturing field; ISO 26262 [6] in the automobile
field; and DO-178C [7] and JAXA JMR-001 [8] in the aerospace field.

Next, we discuss the various types of safety analysis methods. Takahashi et al. proposed a
method to clarify the faults that might happen in ECWS for pharmaceutical manufacturing devices,
as well as to clarify the countermeasure comprehensively using Failure Mode and Effects Analysis
(FMEA) [9]. Weber et al. analyzed the causes of faults using FTA for ECSW in aerospace, which is
written in assembly language [10]. Thapaliya et al. proposed an FTA method for the preliminary design
written in Unified Modeling Language (UML), which is a representative object-oriented modeling
language [11]. Leveson et al. prepared a fault tree (FT) Template that clarifies the causes of faults
for each fundamental software instruction and showed that an FT can be developed related to faults
by combining these [12,13]. However, as the method of combining the FT templates to develop
an FT is not defined, the level of completeness of the FT is dependent on the ability of the analyst.
Therefore, Takahashi et al. proposed rules for combining FT templates and developing an FT while
reverse-tracking the process in which faults occur [14]. Park et al., with regard to a nuclear power plant
control system developed using a Function Block Diagram with a Programmable Logic Controller,
proposed a method in which the FT is developed by preparing and combining FT templates in relation
to the Function Block [15]. Hansen et al. demonstrated a method in which a Hazard and Operability
Study (HAZOP) is applied to the software written in UML [16]. Hulin et al. defined HAZOP guide
words used when applying HAZOP to software and applied these to software in which a high level of
safety is required [17]. Weiss applied System Theoretic Process Analysis (STPA), which is a hazard
analysis method resulting from interactions between system components, to ECSW of an earth orbiting
satellite [18]. Furthermore, Takahashi et al. have proposed a method in which STPA is applied to
embedded software described in UML, and software hazards are clarified [19]. Although such methods
have contributed to the improvement in ECSW safety, they have not been put into widespread use.

Finally, we discuss the applications of FTA and related methods. Kloos et al. proposed a test
case development and execution method for the top event of safety-critical ECSW and showed the
improvement in the test coverage [20]. Chen et al. proposed the FT development method. The method
develops the state machine-type failure model using EAST-ADL and develops the FT by applying the
Hip-HOPS [21], where EAST-ADL is a modeling language for the automotive embedded system, and
Hip-HOPS is a dependency analysis method. Trawczynski et al. proposed a method for discovering the
problem that cannot be found using the classical method [22]. The method randomly injects faults into
the Distributed Brake System, evaluates the effects by the injected faults to the system, and identifies
the faults. Dabboussi et al. proposed a method to develop FTs related to the top event of the vehicular
ad hoc network (VANET). This method develops reliability block diagrams of VANET equipment,
creates the FT from the diagram configuration, and calculates the reliability of the VANET using fault
data (mean time between failure, availability, etc.) for equipment that is included in the VANET [23].

3. Proposed FTA Method

In this section, we describe the proposed method, the FT template, the FT development rules, and
the FT support tool, which are described in Sections 3.1–3.4, respectively.

Information 2020, 11, 402 4 of 22

3.1. Overview of the Proposed Method

In this subsection, we provide an overview of the ECSW top event occurrence process, the FT
Template, the FT development rules, and the proposed method.

3.1.1. Execution Process of the Top Event

First, we explain the top event of ECSW. In general, when conducting FTA for an embedded
system, the system-level FTA for the fault is conducted, and the faults (the top event) for hardware and
software are clarified. The system-level FTA is shown in Figure 2. The proposed method is applied to
the software fault. The software fault is considered as follows: The value of the specific variable is too
large or small, and the function cannot invoke or cannot terminate, etc.

Next, we explain the occurrence process of the top event. We describe the process by which top
events occur in the ECSW. First, we assume the ECSW operates normally until a certain instruction is
executed. Then, after the next instruction is executed, it is assumed that a slight deviation occurs from
the normal state and a top event occurs when executing the n-th instruction. Here, the j-th executed
instruction is described as Ij, and the j-th occurring event as <Eventj>. The sequence of instructions and
events from the time at which the fundamental event occurs to the time at which the top event occurs
can be described as follows. This is referred to as an execution process. The execution process includes
a return from interruption, branches by a condition branch instruction, and confluences by a repeat
instruction. For example, the execution process of I101 in Figure 1 shows a return from interruption,
and <Event2201> shows the branch by the condition branch instruction.

Information 2020, 11, x FOR PEER REVIEW 4 of 23

3. Proposed FTA Method

In this section, we describe the proposed method, the FT template, the FT development rules,
and the FT support tool, which are described in Sections 3.1–3.4, respectively.

3.1. Overview of the Proposed Method

In this subsection, we provide an overview of the ECSW top event occurrence process, the FT
Template, the FT development rules, and the proposed method.

3.1.1. Execution Process of the Top Event

First, we explain the top event of ECSW. In general, when conducting FTA for an embedded
system, the system-level FTA for the fault is conducted, and the faults (the top event) for hardware
and software are clarified. The system-level FTA is shown in Figure 2. The proposed method is
applied to the software fault. The software fault is considered as follows: The value of the specific
variable is too large or small, and the function cannot invoke or cannot terminate, etc.

Next, we explain the occurrence process of the top event. We describe the process by which top
events occur in the ECSW. First, we assume the ECSW operates normally until a certain instruction
is executed. Then, after the next instruction is executed, it is assumed that a slight deviation occurs
from the normal state and a top event occurs when executing the n-th instruction. Here, the j-th
executed instruction is described as Ij, and the j-th occurring event as <Eventj>. The sequence of
instructions and events from the time at which the fundamental event occurs to the time at which the
top event occurs can be described as follows. This is referred to as an execution process. The execution
process includes a return from interruption, branches by a condition branch instruction, and
confluences by a repeat instruction. For example, the execution process of I101 in Figure 1 shows a
return from interruption, and <Event2201> shows the branch by the condition branch instruction.

Figure 1. Example of an execution process.

3.1.2. FT Templates and FT Development Rules

Here, we describe the FT Template and FT development rules. With <Eventn> and In as the
starting point of Figure 1, if we perform reverse-tracking on the execution process, we can reach
<Event1> and I1. Therefore, a method for determining Ij–1, which is a precondition for executing Ij, is
defined as the FT Development Rules (FDRs). Additionally, the relationship between the change from
<Eventj> to <Eventj–1> before and after executing Ij is defined as the FT Template (FTT). Hereafter,
from the perspective of simplifying the understanding of the explanation of the algorithm, the top
event is defined as <Event1>, the instruction generating this as I1, the fundamental event as <Eventn>,
and the instruction generating this as In by numbering the index in reverse order. The suffix j in Ij and
<Eventj> is used to identify them uniquely and does not mean the order of execution.

3.1.3. Outline of the Proposed Method

To conduct FTA for the ECSW using the proposed method, it is necessary to decide the top event
and instruction that causes the top event. There are two types of top events. One is the top event that
is caused by the ECSW itself; the other is the top event that is caused by the combination of the
hardware’s action and ECSW’s behavior under specific conditions. The former events are as follows:

I1 <Event1> ･･･ Ij-1<Eventj-1> Ij <Eventj> ･･･ In <Eventn>

I101 <Event101> I102

<Event201> I202

Interrupt

Branch

Figure 1. Example of an execution process.

3.1.2. FT Templates and FT Development Rules

Here, we describe the FT Template and FT development rules. With <Eventn> and In as the
starting point of Figure 1, if we perform reverse-tracking on the execution process, we can reach
<Event1> and I1. Therefore, a method for determining Ij–1, which is a precondition for executing Ij, is
defined as the FT Development Rules (FDRs). Additionally, the relationship between the change from
<Eventj> to <Eventj–1> before and after executing Ij is defined as the FT Template (FTT). Hereafter,
from the perspective of simplifying the understanding of the explanation of the algorithm, the top
event is defined as <Event1>, the instruction generating this as I1, the fundamental event as <Eventn>,
and the instruction generating this as In by numbering the index in reverse order. The suffix j in Ij and
<Eventj> is used to identify them uniquely and does not mean the order of execution.

3.1.3. Outline of the Proposed Method

To conduct FTA for the ECSW using the proposed method, it is necessary to decide the top
event and instruction that causes the top event. There are two types of top events. One is the top
event that is caused by the ECSW itself; the other is the top event that is caused by the combination
of the hardware’s action and ECSW’s behavior under specific conditions. The former events are
as follows: The overflow and underflow of the variable, and non-formation of the conditions for
starting and stopping the function. The instructions that cause such top events are as follows: The
instruction that calculates the value of the variable, and the instruction that executes and terminates

Information 2020, 11, 402 5 of 22

the specific function. The latter events are not needed, as the ECWS’s behavior itself is inappropriate.
By conducting the system-level safety analysis (FMEA and/or STPA, etc.) for the industrial product,
it is necessary to clarify the combination of both the hardware’s action and ECSW’s behavior under the
specific condition (the system-level safety analysis is beyond this research). These top events are as
follows: The value of the variable exceeds the threshold, and it either invokes or does not invoke the
specific function under the specific conditions. Those instructions that cause those top events are the
same as the instructions such that the ECSW itself causes the top event. In the following explanation,
it is assumed that the ECSW’s top event and instructions have already been identified.

Figure 2 shows an overview of the proposed method that consists of the preparation stage and the
development stage. In the preparation stage, we analyze the existing ECSW, and develop a FTT for
instructions used with a high degree of frequency (described later in Section 3.2). In addition, we define
the FDR (described later in Section 3.3). The FT corresponding to the top event is developed during the
development stage. First, the top event and the instruction that causes the top event are defined by
conducting system-level safety analysis. Next, pre-processing is performed in the ECSW to be analyzed.
During pre-processing, instructions for which FTT has not been prepared are replaced with instructions
for which the equivalent FTT has been prepared. Third, the pre-processed ECSW is analyzed, and
the ECSW information required for FTA is extracted. Finally, based on the last pre-processed ECSW,
the top event, the ECSW information, the FTT, and the FDR are used to develop the FT. The reason the
pre-processing is performed is that it is difficult to prepare FTT for all instructions in the C language in
the view of cost. When new frequently used instructions appear, the FTTs for these instructions are
developed and added. As FTT only stipulates the relationship between the events before and after
executing the instruction, there is no impact on existing FTTs and the FDR.

Information 2020, 11, x FOR PEER REVIEW 5 of 23

The overflow and underflow of the variable, and non-formation of the conditions for starting and
stopping the function. The instructions that cause such top events are as follows: The instruction that
calculates the value of the variable, and the instruction that executes and terminates the specific
function. The latter events are not needed, as the ECWS’s behavior itself is inappropriate. By
conducting the system-level safety analysis (FMEA and/or STPA, etc.) for the industrial product, it is
necessary to clarify the combination of both the hardware’s action and ECSW’s behavior under the
specific condition (the system-level safety analysis is beyond this research). These top events are as
follows: The value of the variable exceeds the threshold, and it either invokes or does not invoke the
specific function under the specific conditions. Those instructions that cause those top events are the
same as the instructions such that the ECSW itself causes the top event. In the following explanation,
it is assumed that the ECSW’s top event and instructions have already been identified.

Figure 2 shows an overview of the proposed method that consists of the preparation stage and
the development stage. In the preparation stage, we analyze the existing ECSW, and develop a FTT
for instructions used with a high degree of frequency (described later in Section 3.2). In addition, we
define the FDR (described later in Section 3.3). The FT corresponding to the top event is developed
during the development stage. First, the top event and the instruction that causes the top event are
defined by conducting system-level safety analysis. Next, pre-processing is performed in the ECSW
to be analyzed. During pre-processing, instructions for which FTT has not been prepared are replaced
with instructions for which the equivalent FTT has been prepared. Third, the pre-processed ECSW is
analyzed, and the ECSW information required for FTA is extracted. Finally, based on the last pre-
processed ECSW, the top event, the ECSW information, the FTT, and the FDR are used to develop
the FT. The reason the pre-processing is performed is that it is difficult to prepare FTT for all
instructions in the C language in the view of cost. When new frequently used instructions appear, the
FTTs for these instructions are developed and added. As FTT only stipulates the relationship between
the events before and after executing the instruction, there is no impact on existing FTTs and the FDR.

Figure 2. Outline of the proposed method.

3.2. FT Templates

In this subsection, we discuss FTTs. In this research, we analyze the existing ECSW, and prepare
FTTs for nine types of frequently used instructions. The reason we analyze the existing ECSW is that
the instructions frequently used in FTA and their FTT can be revealed because the ECSW does not

Target
ECSW

Extract
ECSW

Information
(ECSW

analysis tool)

Develop FT
(FTA support

tool)

FT for
Target

Top Event

ECSW
Information

Target
Top Event

FT
Templates

FT
Development

Rules

[FT Development Procedure]

Use Use

[Preparation of FT Templates and FT Development Rules before Developing FT]

: Process (tool)

: Data

: Database

Pre-
processing

ECSW

Pre-
processed

ECSW

System
Level
FTA

(Out of
scope)

ECSW ‘s
Top Event,
Instruction

Figure 2. Outline of the proposed method.

3.2. FT Templates

In this subsection, we discuss FTTs. In this research, we analyze the existing ECSW, and prepare
FTTs for nine types of frequently used instructions. The reason we analyze the existing ECSW is that
the instructions frequently used in FTA and their FTT can be revealed because the ECSW does not
use the newly developed technologies. Additionally, as the FTT shows only the relationship between
events before and after the execution of the instructions, the addition of new FTTs does not affect other
existing FTTs.

Information 2020, 11, 402 6 of 22

In Figure 3, we show the symbols used in FTT. As the symbols used for the supplementary
explanation are only shown in the notes, these do not affect the meaning of the FT.

Information 2020, 11, x FOR PEER REVIEW 6 of 23

use the newly developed technologies. Additionally, as the FTT shows only the relationship between
events before and after the execution of the instructions, the addition of new FTTs does not affect
other existing FTTs.

In Figure 3, we show the symbols used in FTT. As the symbols used for the supplementary
explanation are only shown in the notes, these do not affect the meaning of the FT.

Figure 3. Fault tree (FT) symbols used in fault tree template (FTT).

3.2.1. FTT for Assignment Statement

Figure 4 shows the FTT for the assignment (variable = expression (value)). This FTT indicates
that an assignment causes an event when the substituted value generates an event, or the operator
generates an event. This FTT is the same as the FTT in [12].

Figure 4. FTT for assign statement.

3.2.2. FTT for Block If Statement

Figure 5 shows the FTT for block if statement (if (condition1) {statement} else if (condition2)
{statement} - - - else {statement}). This FTT indicates that the block if statement generates an event in
the case one or more events occur within the condition node. Furthermore, an event occurs in the
case “the i-th condition node is established” and “the i-th process causes an event,” or in the cases
the “else node is established” and the “else node processing causes an event.”

Figure 5. FTT for block if statement.

(a) event
(top event, middle event)

(b) fundamental event
(do not divide further)

(c) undeployment event
(do not deploy any more)

(d) and gate symbol

(e) or gate symbol

TOP
EVENT

MIDDLE
EVENT

Fundamental
Event

Fundamental
Event

Fundamental
Event

Sample of Fault Tree(ｆ) supplementary explanation

assignment stmt. causes event

value is incorrect operand is incorrect

Inputted value causes event operator causes event

Block if stmt. causes event

・・・

1st cond. true
prior to if inst.

1st inst. gr.
cause event

nth cond. true
prior to if inst.

nth inst. gr.
cause event

else inst. true
prior to if inst.

else inst. gr.
cause event・・・

1st if clause
causes event

nth if clause
causes event

else clause
causes event

Figure 3. Fault tree (FT) symbols used in fault tree template (FTT).

3.2.1. FTT for Assignment Statement

Figure 4 shows the FTT for the assignment (variable = expression (value)). This FTT indicates
that an assignment causes an event when the substituted value generates an event, or the operator
generates an event. This FTT is the same as the FTT in [12].

Information 2020, 11, x FOR PEER REVIEW 6 of 23

use the newly developed technologies. Additionally, as the FTT shows only the relationship between
events before and after the execution of the instructions, the addition of new FTTs does not affect
other existing FTTs.

In Figure 3, we show the symbols used in FTT. As the symbols used for the supplementary
explanation are only shown in the notes, these do not affect the meaning of the FT.

Figure 3. Fault tree (FT) symbols used in fault tree template (FTT).

3.2.1. FTT for Assignment Statement

Figure 4 shows the FTT for the assignment (variable = expression (value)). This FTT indicates
that an assignment causes an event when the substituted value generates an event, or the operator
generates an event. This FTT is the same as the FTT in [12].

Figure 4. FTT for assign statement.

3.2.2. FTT for Block If Statement

Figure 5 shows the FTT for block if statement (if (condition1) {statement} else if (condition2)
{statement} - - - else {statement}). This FTT indicates that the block if statement generates an event in
the case one or more events occur within the condition node. Furthermore, an event occurs in the
case “the i-th condition node is established” and “the i-th process causes an event,” or in the cases
the “else node is established” and the “else node processing causes an event.”

Figure 5. FTT for block if statement.

(a) event
(top event, middle event)

(b) fundamental event
(do not divide further)

(c) undeployment event
(do not deploy any more)

(d) and gate symbol

(e) or gate symbol

TOP
EVENT

MIDDLE
EVENT

Fundamental
Event

Fundamental
Event

Fundamental
Event

Sample of Fault Tree(ｆ) supplementary explanation

assignment stmt. causes event

value is incorrect operand is incorrect

Inputted value causes event operator causes event

Block if stmt. causes event

・・・

1st cond. true
prior to if inst.

1st inst. gr.
cause event

nth cond. true
prior to if inst.

nth inst. gr.
cause event

else inst. true
prior to if inst.

else inst. gr.
cause event・・・

1st if clause
causes event

nth if clause
causes event

else clause
causes event

Figure 4. FTT for assign statement.

3.2.2. FTT for Block If Statement

Figure 5 shows the FTT for block if statement (if (condition1) {statement} else if (condition2)
{statement} - - - else {statement}). This FTT indicates that the block if statement generates an event
in the case one or more events occur within the condition node. Furthermore, an event occurs in the
case “the i-th condition node is established” and “the i-th process causes an event,” or in the cases the
“else node is established” and the “else node processing causes an event.”

Information 2020, 11, x FOR PEER REVIEW 6 of 23

use the newly developed technologies. Additionally, as the FTT shows only the relationship between
events before and after the execution of the instructions, the addition of new FTTs does not affect
other existing FTTs.

In Figure 3, we show the symbols used in FTT. As the symbols used for the supplementary
explanation are only shown in the notes, these do not affect the meaning of the FT.

Figure 3. Fault tree (FT) symbols used in fault tree template (FTT).

3.2.1. FTT for Assignment Statement

Figure 4 shows the FTT for the assignment (variable = expression (value)). This FTT indicates
that an assignment causes an event when the substituted value generates an event, or the operator
generates an event. This FTT is the same as the FTT in [12].

Figure 4. FTT for assign statement.

3.2.2. FTT for Block If Statement

Figure 5 shows the FTT for block if statement (if (condition1) {statement} else if (condition2)
{statement} - - - else {statement}). This FTT indicates that the block if statement generates an event in
the case one or more events occur within the condition node. Furthermore, an event occurs in the
case “the i-th condition node is established” and “the i-th process causes an event,” or in the cases
the “else node is established” and the “else node processing causes an event.”

Figure 5. FTT for block if statement.

(a) event
(top event, middle event)

(b) fundamental event
(do not divide further)

(c) undeployment event
(do not deploy any more)

(d) and gate symbol

(e) or gate symbol

TOP
EVENT

MIDDLE
EVENT

Fundamental
Event

Fundamental
Event

Fundamental
Event

Sample of Fault Tree(ｆ) supplementary explanation

assignment stmt. causes event

value is incorrect operand is incorrect

Inputted value causes event operator causes event

Block if stmt. causes event

・・・

1st cond. true
prior to if inst.

1st inst. gr.
cause event

nth cond. true
prior to if inst.

nth inst. gr.
cause event

else inst. true
prior to if inst.

else inst. gr.
cause event・・・

1st if clause
causes event

nth if clause
causes event

else clause
causes event

Figure 5. FTT for block if statement.

3.2.3. FTT for While Statement

Figure 6 shows the FTT for the while statement (while (condition) {statement}). This FTT shows
that the while statement causes an event in the case “the event occurs because the while statement is
not executed,” or “the event occurs because the while statement is executed.” The former expresses
cases in which the while statement is not executed while the repeated conditions are not established,

Information 2020, 11, 402 7 of 22

whereas the latter shows that the repeated conditions are established, and the event occurs because the
statement execution is repeated n-times (including the repeat limit in a while loop). This FTT is similar
to the FTT in [12].

Information 2020, 11, x FOR PEER REVIEW 7 of 23

3.2.3. FTT for While Statement

Figure 6 shows the FTT for the while statement (while (condition) {statement}). This FTT shows
that the while statement causes an event in the case “the event occurs because the while statement is
not executed,” or “the event occurs because the while statement is executed.” The former expresses
cases in which the while statement is not executed while the repeated conditions are not established,
whereas the latter shows that the repeated conditions are established, and the event occurs because
the statement execution is repeated n-times (including the repeat limit in a while loop). This FTT is
similar to the FTT in [12].

Figure 6. FTT for while statement.

3.2.4. FTT for Function Call

Figure 7 shows the FTT for the function call statement. This FTT expresses the fact that the
function call statement generates an event in the case the function parameters generate an event, or
the function is not appropriately started. This FTT is similar to the FFT in [12].

Figure 7. FTT for function call.

3.2.5. FTT for Interrupt

Figure 8 shows the FTT for the interrupt. This FTT expresses the fact that an interrupt generates
an event in the case “the event occurs when the interrupt occurs,” or “the event occurs because the
interrupt does not occur.” The former refers to the case where the interrupt is generated, and as the
interrupt routine is executed, the event occurs. The latter can be divided into cases where the
interrupt is not generated and cases where it is disabled. In cases where the interrupt is not generated,
this expresses cases in which the interrupt does not occur, and because the interrupt routine is not
executed, the event occurs. Cases where the interrupt is disabled express cases where the event occurs
because the interrupt is disabled (prohibited).

while statement causes event

event prior to
while stmt.

cond. false
prior to while

cond. true
prior to while nth iteration causes event

statement does not
execute

statement executes
n-times causes event

function (p1, p2, - - -)causes event

p1, p2, - - - are incorrect fail of function causing event

arguments
cause event

inexecution of
function cause event

Figure 6. FTT for while statement.

3.2.4. FTT for Function Call

Figure 7 shows the FTT for the function call statement. This FTT expresses the fact that the
function call statement generates an event in the case the function parameters generate an event, or the
function is not appropriately started. This FTT is similar to the FFT in [12].

Information 2020, 11, x FOR PEER REVIEW 7 of 23

3.2.3. FTT for While Statement

Figure 6 shows the FTT for the while statement (while (condition) {statement}). This FTT shows
that the while statement causes an event in the case “the event occurs because the while statement is
not executed,” or “the event occurs because the while statement is executed.” The former expresses
cases in which the while statement is not executed while the repeated conditions are not established,
whereas the latter shows that the repeated conditions are established, and the event occurs because
the statement execution is repeated n-times (including the repeat limit in a while loop). This FTT is
similar to the FTT in [12].

Figure 6. FTT for while statement.

3.2.4. FTT for Function Call

Figure 7 shows the FTT for the function call statement. This FTT expresses the fact that the
function call statement generates an event in the case the function parameters generate an event, or
the function is not appropriately started. This FTT is similar to the FFT in [12].

Figure 7. FTT for function call.

3.2.5. FTT for Interrupt

Figure 8 shows the FTT for the interrupt. This FTT expresses the fact that an interrupt generates
an event in the case “the event occurs when the interrupt occurs,” or “the event occurs because the
interrupt does not occur.” The former refers to the case where the interrupt is generated, and as the
interrupt routine is executed, the event occurs. The latter can be divided into cases where the
interrupt is not generated and cases where it is disabled. In cases where the interrupt is not generated,
this expresses cases in which the interrupt does not occur, and because the interrupt routine is not
executed, the event occurs. Cases where the interrupt is disabled express cases where the event occurs
because the interrupt is disabled (prohibited).

while statement causes event

event prior to
while stmt.

cond. false
prior to while

cond. true
prior to while nth iteration causes event

statement does not
execute

statement executes
n-times causes event

function (p1, p2, - - -)causes event

p1, p2, - - - are incorrect fail of function causing event

arguments
cause event

inexecution of
function cause event

Figure 7. FTT for function call.

3.2.5. FTT for Interrupt

Figure 8 shows the FTT for the interrupt. This FTT expresses the fact that an interrupt generates
an event in the case “the event occurs when the interrupt occurs,” or “the event occurs because the
interrupt does not occur.” The former refers to the case where the interrupt is generated, and as
the interrupt routine is executed, the event occurs. The latter can be divided into cases where the
interrupt is not generated and cases where it is disabled. In cases where the interrupt is not generated,
this expresses cases in which the interrupt does not occur, and because the interrupt routine is not
executed, the event occurs. Cases where the interrupt is disabled express cases where the event occurs
because the interrupt is disabled (prohibited).Information 2020, 11, x FOR PEER REVIEW 8 of 23

Figure 8. FTT for interrupt.

3.2.6. FTT for Global Variables

Figure 9 shows the FTT for the global variables. Global variables can exist anywhere within the
ECSW. This FTT expresses the fact that in cases where a global variable causes the event, there is a
relationship with one or more instructions in which the used global variable is set for the value.

Figure 9. FTT for global variables.

3.2.7. FTT for Local Variables

Figure 10 shows the FTT for the local variables. Local variables exist within the relevant variable
scope (instruction, function, etc.). This FTT expresses the fact that local variables cause events when
there is a relationship with an instruction in which the local variable is set in the value immediately
before.

Figure 10. FTT for local variables.

3.2.8. FTT for Array

Figure 11 shows the FTT for an array. This FTT expresses the fact that “index of the array
becomes less than 0,” “the array causes the event when the N-th element does not exist (out of range,
illegal index access),” or “the value stored in the N-th element is inappropriate.”

interrupt routine causes event

interrupt
occurs

execution of module
causes event

interrupt does not occur non-execution of module causes event

interrupt
disabled

interrupt occurs
cause event

interrupt does not occur
cause event

global variables causes event

・・・.

・・・.global variable-1 is set value global variable-n is set valueglobal variable-2 is set value

global variable-1
causes event

global variable-2
causes event

global variable-n
causes event

local variables causes event

・・・.

・・・.local variable-1 is set value local variable-n is set valuelocal variable-2 is set value

local variable-1
causes event

local variable-2
causes event

local variable-n
causes event

Figure 8. FTT for interrupt.

Information 2020, 11, 402 8 of 22

3.2.6. FTT for Global Variables

Figure 9 shows the FTT for the global variables. Global variables can exist anywhere within the
ECSW. This FTT expresses the fact that in cases where a global variable causes the event, there is a
relationship with one or more instructions in which the used global variable is set for the value.

Information 2020, 11, x FOR PEER REVIEW 8 of 23

Figure 8. FTT for interrupt.

3.2.6. FTT for Global Variables

Figure 9 shows the FTT for the global variables. Global variables can exist anywhere within the
ECSW. This FTT expresses the fact that in cases where a global variable causes the event, there is a
relationship with one or more instructions in which the used global variable is set for the value.

Figure 9. FTT for global variables.

3.2.7. FTT for Local Variables

Figure 10 shows the FTT for the local variables. Local variables exist within the relevant variable
scope (instruction, function, etc.). This FTT expresses the fact that local variables cause events when
there is a relationship with an instruction in which the local variable is set in the value immediately
before.

Figure 10. FTT for local variables.

3.2.8. FTT for Array

Figure 11 shows the FTT for an array. This FTT expresses the fact that “index of the array
becomes less than 0,” “the array causes the event when the N-th element does not exist (out of range,
illegal index access),” or “the value stored in the N-th element is inappropriate.”

interrupt routine causes event

interrupt
occurs

execution of module
causes event

interrupt does not occur non-execution of module causes event

interrupt
disabled

interrupt occurs
cause event

interrupt does not occur
cause event

global variables causes event

・・・.

・・・.global variable-1 is set value global variable-n is set valueglobal variable-2 is set value

global variable-1
causes event

global variable-2
causes event

global variable-n
causes event

local variables causes event

・・・.

・・・.local variable-1 is set value local variable-n is set valuelocal variable-2 is set value

local variable-1
causes event

local variable-2
causes event

local variable-n
causes event

Figure 9. FTT for global variables.

3.2.7. FTT for Local Variables

Figure 10 shows the FTT for the local variables. Local variables exist within the relevant variable
scope (instruction, function, etc.). This FTT expresses the fact that local variables cause events when there
is a relationship with an instruction in which the local variable is set in the value immediately before.

Information 2020, 11, x FOR PEER REVIEW 8 of 23

Figure 8. FTT for interrupt.

3.2.6. FTT for Global Variables

Figure 9 shows the FTT for the global variables. Global variables can exist anywhere within the
ECSW. This FTT expresses the fact that in cases where a global variable causes the event, there is a
relationship with one or more instructions in which the used global variable is set for the value.

Figure 9. FTT for global variables.

3.2.7. FTT for Local Variables

Figure 10 shows the FTT for the local variables. Local variables exist within the relevant variable
scope (instruction, function, etc.). This FTT expresses the fact that local variables cause events when
there is a relationship with an instruction in which the local variable is set in the value immediately
before.

Figure 10. FTT for local variables.

3.2.8. FTT for Array

Figure 11 shows the FTT for an array. This FTT expresses the fact that “index of the array
becomes less than 0,” “the array causes the event when the N-th element does not exist (out of range,
illegal index access),” or “the value stored in the N-th element is inappropriate.”

interrupt routine causes event

interrupt
occurs

execution of module
causes event

interrupt does not occur non-execution of module causes event

interrupt
disabled

interrupt occurs
cause event

interrupt does not occur
cause event

global variables causes event

・・・.

・・・.global variable-1 is set value global variable-n is set valueglobal variable-2 is set value

global variable-1
causes event

global variable-2
causes event

global variable-n
causes event

local variables causes event

・・・.

・・・.local variable-1 is set value local variable-n is set valuelocal variable-2 is set value

local variable-1
causes event

local variable-2
causes event

local variable-n
causes event

Figure 10. FTT for local variables.

3.2.8. FTT for Array

Figure 11 shows the FTT for an array. This FTT expresses the fact that “index of the array becomes
less than 0,” “the array causes the event when the N-th element does not exist (out of range, illegal
index access),” or “the value stored in the N-th element is inappropriate.”Information 2020, 11, x FOR PEER REVIEW 9 of 23

Figure 11. FTT for array.

3.2.9. FTT for Pointer

Figure 12 shows the FTT for a pointer. This FTT expresses the fact that the pointer causes an
event when the address referenced by the pointer does not exist, the address is referenced by the
other pointer, or the value stored in the address referenced by the pointer is inappropriate.

Figure 12. FTT for pointer.

3.2.10. FTT for Hierarchical Instruction

Here, we shall discuss an FTT when an instruction is hierarchically combined. Hereinafter, we
refer to this kind of instruction as a hierarchical instruction. For example, an instruction where a
tracked instruction exists within a controlled instruction, such as a block if instruction or while
instruction, etc., is a hierarchical instruction. In this case, the controlled instruction including the
tracked instruction is seen as one instruction, and to express that targeted instruction is executed
when the conditions in the controlled instruction are established, FFTs are combined in the order of
controlled instruction to targeted instruction. If the hierarchical instruction has three or more layers,
the hierarchical instruction is seen as being within the scope of the furthest external instruction, and
it connects the FTT from the furthest external instruction to the nearest internal instruction. At this
time, the layer number for the furthest external layer is referred to as Lmax, and the nearest internal
hierarchical instruction is set to “1.” The method of developing the FT for the hierarchical instruction
is explained later under FT development rules in Section 3.3.

3.3. FT Development Rules

In this subsection, we discuss static program slicing (hereinafter, slicing) used to determine
instructions executed just before the instruction being executed. Next, we discuss the ECSW
information required for executing FTA. Third, we discuss FT development rules. Finally, we discuss
FTA support tools.

3.3.1. Slicing

Slicing is a method of extracting all instructions that impact the calculation results for the
variables focused on in the program, and the extracted instruction groups are called slices [24]. When
the same input is applied to the original program and the slice, the calculation results for the variable

Element N of Array causes event

Number of Elements is less than NValue of Element N is calculated
incorrectly

N < 0 causes event Element N does not exist causes
event

Value of Element N is incorrect

Element N exist causes event

pointer causes event

Value of address is incorrect Content pointed by address
is incorrect

Stored content is incorrectValue of address is incorrect

Address exist cause eventAddress does not exist
cause event

Other pointer operates content
incorrectly

Other pointer references
same address cause event

Figure 11. FTT for array.

3.2.9. FTT for Pointer

Figure 12 shows the FTT for a pointer. This FTT expresses the fact that the pointer causes an
event when the address referenced by the pointer does not exist, the address is referenced by the other
pointer, or the value stored in the address referenced by the pointer is inappropriate.

Information 2020, 11, 402 9 of 22

Information 2020, 11, x FOR PEER REVIEW 9 of 23

Figure 11. FTT for array.

3.2.9. FTT for Pointer

Figure 12 shows the FTT for a pointer. This FTT expresses the fact that the pointer causes an
event when the address referenced by the pointer does not exist, the address is referenced by the
other pointer, or the value stored in the address referenced by the pointer is inappropriate.

Figure 12. FTT for pointer.

3.2.10. FTT for Hierarchical Instruction

Here, we shall discuss an FTT when an instruction is hierarchically combined. Hereinafter, we
refer to this kind of instruction as a hierarchical instruction. For example, an instruction where a
tracked instruction exists within a controlled instruction, such as a block if instruction or while
instruction, etc., is a hierarchical instruction. In this case, the controlled instruction including the
tracked instruction is seen as one instruction, and to express that targeted instruction is executed
when the conditions in the controlled instruction are established, FFTs are combined in the order of
controlled instruction to targeted instruction. If the hierarchical instruction has three or more layers,
the hierarchical instruction is seen as being within the scope of the furthest external instruction, and
it connects the FTT from the furthest external instruction to the nearest internal instruction. At this
time, the layer number for the furthest external layer is referred to as Lmax, and the nearest internal
hierarchical instruction is set to “1.” The method of developing the FT for the hierarchical instruction
is explained later under FT development rules in Section 3.3.

3.3. FT Development Rules

In this subsection, we discuss static program slicing (hereinafter, slicing) used to determine
instructions executed just before the instruction being executed. Next, we discuss the ECSW
information required for executing FTA. Third, we discuss FT development rules. Finally, we discuss
FTA support tools.

3.3.1. Slicing

Slicing is a method of extracting all instructions that impact the calculation results for the
variables focused on in the program, and the extracted instruction groups are called slices [24]. When
the same input is applied to the original program and the slice, the calculation results for the variable

Element N of Array causes event

Number of Elements is less than NValue of Element N is calculated
incorrectly

N < 0 causes event Element N does not exist causes
event

Value of Element N is incorrect

Element N exist causes event

pointer causes event

Value of address is incorrect Content pointed by address
is incorrect

Stored content is incorrectValue of address is incorrect

Address exist cause eventAddress does not exist
cause event

Other pointer operates content
incorrectly

Other pointer references
same address cause event

Figure 12. FTT for pointer.

3.2.10. FTT for Hierarchical Instruction

Here, we shall discuss an FTT when an instruction is hierarchically combined. Hereinafter, we refer
to this kind of instruction as a hierarchical instruction. For example, an instruction where a tracked
instruction exists within a controlled instruction, such as a block if instruction or while instruction, etc.,
is a hierarchical instruction. In this case, the controlled instruction including the tracked instruction is
seen as one instruction, and to express that targeted instruction is executed when the conditions in
the controlled instruction are established, FFTs are combined in the order of controlled instruction to
targeted instruction. If the hierarchical instruction has three or more layers, the hierarchical instruction
is seen as being within the scope of the furthest external instruction, and it connects the FTT from the
furthest external instruction to the nearest internal instruction. At this time, the layer number for the
furthest external layer is referred to as Lmax, and the nearest internal hierarchical instruction is set
to “1.” The method of developing the FT for the hierarchical instruction is explained later under FT
development rules in Section 3.3.

3.3. FT Development Rules

In this subsection, we discuss static program slicing (hereinafter, slicing) used to determine
instructions executed just before the instruction being executed. Next, we discuss the ECSW information
required for executing FTA. Third, we discuss FT development rules. Finally, we discuss FTA
support tools.

3.3.1. Slicing

Slicing is a method of extracting all instructions that impact the calculation results for the variables
focused on in the program, and the extracted instruction groups are called slices [24]. When the
same input is applied to the original program and the slice, the calculation results for the variable
that is being focused on shall be the same. A slice is a collection of all instructions with the control
dependency on the focused instruction and with the data dependency on the variables included in
the focused instruction. Here, a data dependency from Is to It means that the variable values set in Is

can be referenced with It. A control dependency from Is to It means that Is is a branched instruction,
and It is included within that branch, or Is is a repeated instruction, and It is included within the
repetitions. The data dependency and control dependency from Is to It are described respectively
as DD(Is)→ It, CD(Is)→ It. Furthermore, Is and It can be expressed as “instruction line number +

target variable.” Here, to obtain the instruction In that generated <Eventn> from I1 that generated
<Event1>, you need to follow the reverse-direction data dependency and reverse-direction control
dependency. Instructions with a reverse-direction data dependency have the Is set for the value
referenced by It and the instructions with a reverse-direction control dependency have branches in
which It is included or a repetitive Is. From here, these are described as RDD(It)→ Is, and RCD(It)
→ Is, respectively. These can obtain the data dependency and control dependency, respectively. In
general terms, the correspondences from It to Is are one-to-many.

Information 2020, 11, 402 10 of 22

3.3.2. ECSW Information Required for FTA

Table 1 shows a list of information extracted from ECSW. This information is input into the FTA
support tool.

Table 1. List of information extracted from embedded control software (ECSW).

Information Name Content

RDD list Instructions with reverse-direction data dependency
RCD list Instructions with reverse direction control dependency

Variable list Variable name, type, valid scope, and substitution in the relevant variable
Substitution list Substitute line, substitute expression (substituted variable name and operator)

Function list Function name, return value type, function scope, dummy arguments, start-up type (cycle,
interrupts), interrupt disabled timing, interrupt abled timing

Function call list Called function name, calling position, argument
Instruction list Instruction name, execution conditions, member block statement, nest number in member nest

Hierarchical instruction list Instruction name, execution conditions, member statement, nest number maximum value

3.3.3. FT Development Rules

Here, we explain the terms used in the FT Development Rules (FDR). The event at the top of
each FTT (event immediately after executing the instruction) is referred to as the Top Event (TEvent),
and the event at the bottom (event immediately before executing the instruction) is referred to as the
Bottom Event (BEvent). The FTT has one TEvent and multiple BEvents. In addition, Φ expresses the
FT initial state, and it only has one joint TEvent and BEvent. If Null is entered in the BEvent, this
indicates that the event can no longer be tracked.

Figure 13 shows an overview of the FDR. The FT under development (dFT) refers to the FT being
developed. After the first time that Φ is set for dFT, the FT setting is expressed with “→”. Next, we
determine <Event1> and I1, and set <Event1> for the dFT initial state BEvent1. Here, <Event1> is a
software fault resulting from the system-level FTA and I1 is the instruction that causes the <Event1>.
Furthermore, FTs are developed until the content of all BEvents in dFT are Null. At this time, the FT is
the completed version of the FT.

Information 2020, 11, x FOR PEER REVIEW 11 of 23

in the BEvent or the partial FT within the hierarchical instruction. First, in step 1 of Figure 14, Φ is
substituted for wFT and initialized. Next, in step 2, the instructions included in the wFT BEvent are
acquired, and a partial FT related to the instruction is developed. The development of the FT can be
classified into cases where the instruction is a hierarchical instruction (RCD(I) not = φ + φ), as shown
in step 2.1, or is a non-hierarchical instruction (RDD(I) = φ + φ), as shown in step 2.2. Here, φ + φ
means the instruction line number and the target variable does not exist. In the case of a hierarchical
instruction, the FTT of instruction for each layer is combined from the most outer layer (hierarchy
Lmax) to the most inner layer. Step 2.1.1 obtains the hierarchical instruction in which Ig is included and
calculates the Lmax, which is the maximum layer of the hierarchical instruction and layer L where Ig
exists. In step 2.1.3, the FTT corresponding to Ig is regarded as wFT. In step 2.1.4, BEvent in dFT is
regarded as TEvent in wFT. Step 2.1.5 calculates all the BEvents in wFT. Step 2.1.6 combines the FTT
for the global variable with wFT when the BEvent includes the global variables, and the FTT for local
variables with wFT when the BEvent includes the local variables, and then wFT is combined with
dFT. Finally, in step 2.1.7, this operation is repeated until it reaches a hierarchy in which the
instruction being tracked exists. Next, the wFT is joined to the dFT to develop a new dFT. In the case
it is not a hierarchical instruction, the FTT for this instruction is joined to the wFT, and, in a way,
similar to the hierarchical instruction case, the FTT for global variables or local variables is combined
with the wFT and, if necessary, the contents of the TEvent and the BEvents are modified. Then, the
wFT is combined with the dFT to make a new dFT. Finally, in step 3, the developed dFT is returned.

Figure 13. FT development rules -overview.

(a) FT development rules -details of FT developed in Figure 13 (1/5)—Outline of development of FT

Figure 13. FT development rules -overview.

Figure 14 shows the development procedure for the FT under operation corresponding to the
dFT BEvent (wFT) (section of dFT within Figure 14). Figure 14 describes the details in the module,
while the development of FT (dFT) is described in Figure 13. wFT refers to the instructions included
in the BEvent or the partial FT within the hierarchical instruction. First, in step 1 of Figure 14, Φ is
substituted for wFT and initialized. Next, in step 2, the instructions included in the wFT BEvent are
acquired, and a partial FT related to the instruction is developed. The development of the FT can be
classified into cases where the instruction is a hierarchical instruction (RCD(I) not = ϕ + ϕ), as shown

Information 2020, 11, 402 11 of 22

in step 2.1, or is a non-hierarchical instruction (RDD(I) = ϕ + ϕ), as shown in step 2.2. Here, ϕ + ϕ

means the instruction line number and the target variable does not exist. In the case of a hierarchical
instruction, the FTT of instruction for each layer is combined from the most outer layer (hierarchy
Lmax) to the most inner layer. Step 2.1.1 obtains the hierarchical instruction in which Ig is included and
calculates the Lmax, which is the maximum layer of the hierarchical instruction and layer L where Ig

exists. In step 2.1.3, the FTT corresponding to Ig is regarded as wFT. In step 2.1.4, BEvent in dFT is
regarded as TEvent in wFT. Step 2.1.5 calculates all the BEvents in wFT. Step 2.1.6 combines the FTT
for the global variable with wFT when the BEvent includes the global variables, and the FTT for local
variables with wFT when the BEvent includes the local variables, and then wFT is combined with dFT.
Finally, in step 2.1.7, this operation is repeated until it reaches a hierarchy in which the instruction
being tracked exists. Next, the wFT is joined to the dFT to develop a new dFT. In the case it is not a
hierarchical instruction, the FTT for this instruction is joined to the wFT, and, in a way, similar to the
hierarchical instruction case, the FTT for global variables or local variables is combined with the wFT
and, if necessary, the contents of the TEvent and the BEvents are modified. Then, the wFT is combined
with the dFT to make a new dFT. Finally, in step 3, the developed dFT is returned.

3.4. FTA Support Tool

We prototyped an FTA support tool. For the development language, Java language and Apache
POI were used. Apache POI is an API that is used to read and write Microsoft Excel format data in the
Java application. As shown in Figure 2, the FTA support tool comprises the ECSW pre-processing
tool, the information extraction tool, and the FTA support tool. The pre-processing tool converts
ECSW instructions into instructions prepared for FFT. The information extraction tool extracts ECSW
information shown in Table 1 from the replaced ECSW. The FTA support tool takes the replaced
ECSW, the ECSW information, top event (<Event1>), and the instructions generating this event (I1)
as input, and develops the FT. The FTA support tool shows the dFT draft to the analyst. The analyst
confirms and modifies the content of the dFT’s BEvent. The FTA support tool specifies the instruction
executed immediately before based on the modified BEvent, develops a dFT by adding the FTT for this
instruction, and shows the dFT to the analyst, and the analyst modifies the dFT. The analyst completes
the FT by repeating this process. The FTA support tool creates the dFT in CSV format, which is then
displayed using a spreadsheet application (Microsoft Excel). The reason the spreadsheet application is
used is that the display style depends on the user favor. The user can change the displaying application
easily. Additionally, as the dFT data are in CSV format, it can be exchanged easily between the FTA
support tool, other displaying applications, and analysis tools.

Information 2020, 11, x FOR PEER REVIEW 11 of 23

in the BEvent or the partial FT within the hierarchical instruction. First, in step 1 of Figure 14, Φ is
substituted for wFT and initialized. Next, in step 2, the instructions included in the wFT BEvent are
acquired, and a partial FT related to the instruction is developed. The development of the FT can be
classified into cases where the instruction is a hierarchical instruction (RCD(I) not = φ + φ), as shown
in step 2.1, or is a non-hierarchical instruction (RDD(I) = φ + φ), as shown in step 2.2. Here, φ + φ
means the instruction line number and the target variable does not exist. In the case of a hierarchical
instruction, the FTT of instruction for each layer is combined from the most outer layer (hierarchy
Lmax) to the most inner layer. Step 2.1.1 obtains the hierarchical instruction in which Ig is included and
calculates the Lmax, which is the maximum layer of the hierarchical instruction and layer L where Ig
exists. In step 2.1.3, the FTT corresponding to Ig is regarded as wFT. In step 2.1.4, BEvent in dFT is
regarded as TEvent in wFT. Step 2.1.5 calculates all the BEvents in wFT. Step 2.1.6 combines the FTT
for the global variable with wFT when the BEvent includes the global variables, and the FTT for local
variables with wFT when the BEvent includes the local variables, and then wFT is combined with
dFT. Finally, in step 2.1.7, this operation is repeated until it reaches a hierarchy in which the
instruction being tracked exists. Next, the wFT is joined to the dFT to develop a new dFT. In the case
it is not a hierarchical instruction, the FTT for this instruction is joined to the wFT, and, in a way,
similar to the hierarchical instruction case, the FTT for global variables or local variables is combined
with the wFT and, if necessary, the contents of the TEvent and the BEvents are modified. Then, the
wFT is combined with the dFT to make a new dFT. Finally, in step 3, the developed dFT is returned.

Figure 13. FT development rules -overview.

(a) FT development rules -details of FT developed in Figure 13 (1/5)—Outline of development of FT

Figure 14. Cont.

Information 2020, 11, 402 12 of 22

Information 2020, 11, x FOR PEER REVIEW 12 of 23

(b) FT development rules -details of FT developed in Figure 13 (2/5)—wFT development procedure
when Ig is hierarchical Instruction (detail of step 2.1).

(c) FT development rules -details of FT developed in Figure 13 (3/5)—wFT development procedure when
Ig is hierarchical Instruction (detail of step 2.1 cont’)

Figure 14. Cont.

Information 2020, 11, 402 13 of 22
Information 2020, 11, x FOR PEER REVIEW 13 of 23

(d) FT development rules -details of FT developed in Figure 13 (4/5)—wFT development procedure
when Ig is hierarchical Instruction (detail of step 2.1 cont’).

(e) FT development rules -details of FT developed in Figure 13 (5/5)—wFT development procedure
when Ig is not hierarchical Instruction (detail of step 2.2).

Figure 14. The development procedure for the FT.

3.4. FTA Support Tool

We prototyped an FTA support tool. For the development language, Java language and Apache
POI were used. Apache POI is an API that is used to read and write Microsoft Excel format data in
the Java application. As shown in Figure 2, the FTA support tool comprises the ECSW pre-processing

Figure 14. The development procedure for the FT.

4. Application and Evaluation

This section discusses an evaluation of the results of applying the proposed method to the existing
ECSW and future issues.

Information 2020, 11, 402 14 of 22

4.1. Application and Evaluation of the Proposed Method

FTAs for “spin-stabilized satellite rotates too fast” written in [12] are conducted. The reason we
conducted this application is that we felt there were no descriptions related to the middle analytic
process that led to the top event when we read this result for the first time. We considered that
the analyst omitted the middle analytic process based on his skills and experiences. We would like
to confirm that the omitted parts can be complemented by applying the proposed method and the
complete FT improves the understandability. Additionally, we apply and evaluate the proposed
method for the existing five ECSWs.

4.1.1. Application and Evaluation of the Top Event for “Rotation Rate of the Satellite Became Too Fast”

Leveson et al. executed a system-level FTA related to an accident where the rotation rate of the
spin-stabilized satellite became too fast, and the boom was torn off by centrifugal force. The result
of this became an accident in cases where, in the top events, “value of variable period became too
high” or “value of variable length became too low” in ECSW were caused. Figure 15 shows the ECSW
structure chart. Vbrh and monitor spin are started with a timer interrupt, RESTART3 has an interrupt
from the sun’s pulses, and RESTART4 is started up with a clock interrupt. Figure 16 shows the source
code rewritten in C (in [12], this is described in Pseudo Pascal).

Information 2020, 11, x FOR PEER REVIEW 15 of 23

Figure 15. Outline of ECSW structure for spin stabilized satellite.

Figure 16. Source codes of spin-stabilized satellite -extracted-.

The number of events in the P_FT and L_FT is evaluated. The number of the event in L_FT is 20,
while the number of the event in P_FTs is 56 (excluding events surrounded in the dotted line and
supplementary comments). The reasons the P_FTs include many events are as follows.

• As for the P_FT, FDRs are strictly applied, and there is no omission of interim progress (in L_FT,
the analyst omits the interim progress).

FireWheel
control program main

vbrh monitor
spin restart3 restart4

timer interrupt

sun pulse
interrupt

clock
interrupt

wdcss

period length gason gasoff motor on motor off

period
length

spinok

spinok

period,
length

: module/function
: branch (decision)
: repeat (loop)

: module call
: data set/use

: global data

: return value

000: int SUNP , MAGP ;
002: int DNCTR , DNMAX , THETA ;
003: int WDCSS , WDCTR , LASTP, WDLOST, L1 , L2 ;
009:
010: int SAMPLE (int SAMPLE_ARG) {
011: return SAMPLE_ARG ;
012: }
013:
014: int PERIOD () {
015: int MS ;
016: int SUN , MAG ;
017: bool ifc1 , ifc2 ;
018: ifc1 = SPINOK (SUNP) ;
019: ifc2 = SPINOK (MAGP) ;
020: if (ifc1 == true) {
021: MS = SUN ;
022: }
023: else {
024: if (ifc2 == true) {
025: MS = MAG ;
026: }
027: else {
028: MS = SUN ;
029: }
030: }
031: if (MS == SUN) {
032: return SUNP ;
033: }
034: else {
035: return MAGP ;
036: }
037:}

072: void RESTART3 () {
073: SUNP = min (LASTP , WDCSS) ;
074: int restkari ;
075: restkari = (SUNP + 64) / 128 ;
076: DNMAX = min (restkari , 255) ;
077: DNCTR = DNMAX ;
078: THETA = 0 ;
079: LASTP = WDCSS ;
080: WDCSS = 0 ;
081: }
103: void MONITORSPIN () {
104: int PERI ;
105: int LENG ;
106: PERI = PERIOD () ;
107: LENG = LENGTH () ;
108: P = min (AAA / 64 , 255) ;
109: L = min (BBB / 16 , 15) ;
110: if (P < L) {
111: GASOFF () ;
112: }
113: if (P > L) {
114: GASON () ;
115: }
116: }
117:
118: int min (int min_1 , int min_2) {
119: return 0 ;
120: }
121:

Figure 15. Outline of ECSW structure for spin stabilized satellite.

The number of events in the P_FT and L_FT is evaluated. The number of the event in L_FT is
20, while the number of the event in P_FTs is 56 (excluding events surrounded in the dotted line and
supplementary comments). The reasons the P_FTs include many events are as follows.

• As for the P_FT, FDRs are strictly applied, and there is no omission of interim progress (in L_FT,
the analyst omits the interim progress).

• As the module startup with interrupt is used many times, the FTT for interrupt is also used
multiple times.

• As the global variables are used multiple times, the FTT for global variables are also used.
• In comparison to the FTT developed by Leveson, the FTT in the proposed method has many events.

We analyzed the correspondence between the two FTs. (I) to (VII) in Figures 17 and 18 express the
section where the FTs correspond. The event group in P_ FT corresponding to each event in the L_FT
is indicated by the section surrounded by a dotted line. The other group in Figure 18 is the section
not described in Figure 17. From the above, we can see that, excluding Other, both FTs have the same

Information 2020, 11, 402 15 of 22

structure. In addition, we can see that the P_FT analyzes the cause of the fundamental events occurring
in detail.

Information 2020, 11, x FOR PEER REVIEW 15 of 23

Figure 15. Outline of ECSW structure for spin stabilized satellite.

Figure 16. Source codes of spin-stabilized satellite -extracted-.

The number of events in the P_FT and L_FT is evaluated. The number of the event in L_FT is 20,
while the number of the event in P_FTs is 56 (excluding events surrounded in the dotted line and
supplementary comments). The reasons the P_FTs include many events are as follows.

• As for the P_FT, FDRs are strictly applied, and there is no omission of interim progress (in L_FT,
the analyst omits the interim progress).

FireWheel
control program main

vbrh monitor
spin restart3 restart4

timer interrupt

sun pulse
interrupt

clock
interrupt

wdcss

period length gason gasoff motor on motor off

period
length

spinok

spinok

period,
length

: module/function
: branch (decision)
: repeat (loop)

: module call
: data set/use

: global data

: return value

000: int SUNP , MAGP ;
002: int DNCTR , DNMAX , THETA ;
003: int WDCSS , WDCTR , LASTP, WDLOST, L1 , L2 ;
009:
010: int SAMPLE (int SAMPLE_ARG) {
011: return SAMPLE_ARG ;
012: }
013:
014: int PERIOD () {
015: int MS ;
016: int SUN , MAG ;
017: bool ifc1 , ifc2 ;
018: ifc1 = SPINOK (SUNP) ;
019: ifc2 = SPINOK (MAGP) ;
020: if (ifc1 == true) {
021: MS = SUN ;
022: }
023: else {
024: if (ifc2 == true) {
025: MS = MAG ;
026: }
027: else {
028: MS = SUN ;
029: }
030: }
031: if (MS == SUN) {
032: return SUNP ;
033: }
034: else {
035: return MAGP ;
036: }
037:}

072: void RESTART3 () {
073: SUNP = min (LASTP , WDCSS) ;
074: int restkari ;
075: restkari = (SUNP + 64) / 128 ;
076: DNMAX = min (restkari , 255) ;
077: DNCTR = DNMAX ;
078: THETA = 0 ;
079: LASTP = WDCSS ;
080: WDCSS = 0 ;
081: }
103: void MONITORSPIN () {
104: int PERI ;
105: int LENG ;
106: PERI = PERIOD () ;
107: LENG = LENGTH () ;
108: P = min (AAA / 64 , 255) ;
109: L = min (BBB / 16 , 15) ;
110: if (P < L) {
111: GASOFF () ;
112: }
113: if (P > L) {
114: GASON () ;
115: }
116: }
117:
118: int min (int min_1 , int min_2) {
119: return 0 ;
120: }
121:

Figure 16. Source codes of spin-stabilized satellite -extracted-.

Information 2020, 11, x FOR PEER REVIEW 16 of 23

• As the module startup with interrupt is used many times, the FTT for interrupt is also used
multiple times.

• As the global variables are used multiple times, the FTT for global variables are also used.

• In comparison to the FTT developed by Leveson, the FTT in the proposed method has many
events.

We analyzed the correspondence between the two FTs. (I) to (VII) in Figures 17 and 18 express
the section where the FTs correspond. The event group in P_ FT corresponding to each event in the
L_FT is indicated by the section surrounded by a dotted line. The other group in Figure 18 is the
section not described in Figure 17. From the above, we can see that, excluding Other, both FTs have
the same structure. In addition, we can see that the P_FT analyzes the cause of the fundamental events
occurring in detail.

Figure 17. FT developed by Leveson.

(a) FT developed using the proposed method.

period high in
then clause

ms = sun

ms := mag in if
spinok(magp)

ms: = sun
in if spinok(sunp)

ms := sun in else
spinok(magp)

spinok(sunp)
true

ms: =sun operator NGspinok(sunp)
true

per cause
event

func. inexe
cause event

per > 100 per < 6500

spinok(magp)
true

ms := magp operator NGspinok(magp)
true

per cause
event

func. inexe
cause event

operator NGsunp high

spinok(magp)
false

operator NG operator NGspinok(magp)
false

per cause
event

func. inexe
cause event

(1)

ms = sun is established.
=> this partial FT is a cause.

per >
100 per < 6500operator

NG
operator

NG

per <= 100 per >= 6500

per <= 100 per >=
6500

operator
NG

operator
NG

per > 100

per > 100 per < 6500operator
NG

operator
NG

ms = sun is established.
=> this partial FT is a cause.

ms = mag is established.
=> this partial FT is not cause.

（Ⅰ）

（Ⅱ） （Ⅲ）

（Ⅳ）（Ⅴ）

per > 100 per < 6500

Figure 17. FT developed by Leveson.

Information 2020, 11, 402 16 of 22

Information 2020, 11, x FOR PEER REVIEW 16 of 23

• As the module startup with interrupt is used many times, the FTT for interrupt is also used
multiple times.

• As the global variables are used multiple times, the FTT for global variables are also used.

• In comparison to the FTT developed by Leveson, the FTT in the proposed method has many
events.

We analyzed the correspondence between the two FTs. (I) to (VII) in Figures 17 and 18 express
the section where the FTs correspond. The event group in P_ FT corresponding to each event in the
L_FT is indicated by the section surrounded by a dotted line. The other group in Figure 18 is the
section not described in Figure 17. From the above, we can see that, excluding Other, both FTs have
the same structure. In addition, we can see that the P_FT analyzes the cause of the fundamental events
occurring in detail.

Figure 17. FT developed by Leveson.

(a) FT developed using the proposed method.

period high in
then clause

ms = sun

ms := mag in if
spinok(magp)

ms: = sun
in if spinok(sunp)

ms := sun in else
spinok(magp)

spinok(sunp)
true

ms: =sun operator NGspinok(sunp)
true

per cause
event

func. inexe
cause event

per > 100 per < 6500

spinok(magp)
true

ms := magp operator NGspinok(magp)
true

per cause
event

func. inexe
cause event

operator NGsunp high

spinok(magp)
false

operator NG operator NGspinok(magp)
false

per cause
event

func. inexe
cause event

(1)

ms = sun is established.
=> this partial FT is a cause.

per >
100 per < 6500operator

NG
operator

NG

per <= 100 per >= 6500

per <= 100 per >=
6500

operator
NG

operator
NG

per > 100

per > 100 per < 6500operator
NG

operator
NG

ms = sun is established.
=> this partial FT is a cause.

ms = mag is established.
=> this partial FT is not cause.

（Ⅰ）

（Ⅱ） （Ⅲ）

（Ⅳ）（Ⅴ）

per > 100 per < 6500

Information 2020, 11, x FOR PEER REVIEW 17 of 23

(b) FT developed using the proposed method.

sun pulse int
occur

sunp := min(lastp, wdcss)
high in RESTART3

lastp high wdcss high operator
causes event

lastp := wdcss
high

wdcss high operator
causes event

(1)

(2)

sun pulse int
does not occur sunp high sun pulse int

diabled
(1)

if sun pulse int does not occur, sunp := min(lastp, wdcss) is
not executed. if previous sump is high, sump becomes high.
=> this partial FT is an ancillary cause.

clock int does
not occur

wdcss:=wdcss+1
is not executed

clock int
diabled

if sun pulse int does not occur, wdcss:=0 is not executed.
there is possibility that wdcss becomes high.
=> this partial FT is an ancillary condition.

wdcss: =wdcss + 1
high in RESTART4

clock int occur
wdcss high operator

causes event

(2)

sum pulse int
does not occur

wdcss:=0 is not
executed

sun pulse int
diabled

sun pulse int
occur

wdcss :=0 high operator
causes event

wdcss:=0 high
in RESTART3

wdcss:=wdcss+wdlost
high in VBRH

wdcss does not become high, because wdcss:=0 is
executed.
=> this partial FT is not cause.

(3)

wdcss does not become high, because wdcss+1 is not
executed.
=> this partial FT is not cause.

wdcss become high, if clock int occur frequently.
=> this partial FT is a cause.

(2)

（Ⅵ）

（Ⅵ-1）
&（Ⅶ-1）

（Ⅷ-2）

（Other）（Ⅵ-2）

Figure 18. Cont.

Information 2020, 11, 402 17 of 22

Information 2020, 11, x FOR PEER REVIEW 18 of 23

(c) FT developed using the proposed method.

(d) FT developed using the proposed method.

Figure 18. FT developed using the proposed method.

(3)

high rate sampling
int does not occur

wdcss:=wdcss+wdlost
is not executed

high rate sampling
int diabled

high rate
sampling int occur wdcss, wdlost

high
operator

causes event

wdlost:=64
high in VBRH

wdlost:=wdlost-dnctr
high in VBRH

if previous wdcss is high, wdcss is high.
=> this partial FT is same as FT of “wdcss is high.”

wdlost high in
VBRH

dnctr low in
VBRH

operator
causes event

wdlost := 64
high

dnctr:=dnctr-1
low in RESTART4

clock int occur

dnctr low 1 high operator
causes event

(4) clock int does
not occur

dnctr:=dnctr-1 low
is not executed

operator
causes event

dnctr:=dnmax
low in RESTART4

dnctr:=dnmax
low in RESTART3

dnctr:=dnmax
low in VBRH

dnctr:=dnctr-wdlost
low in VBRH

clock int occur

dnmax low
operator

causes event

(5)

clock int does
not occur

dnctr:=dnmax low
is not executed

clock int
disabled

(6)
same as left FT branch same as left FT branch

(4)

(2)
(9)

dnctr=1

high rate sampling
int occur

wdlost:=64
high

operator
causes event

high rate sampling
int does not occur

wdlost:=64
high

high rate sampling
int disabled

if previous dnctr is low, dnctr is low.
but wdlost does not become high.
=> this partial FT is not cause.

dnctr does not become low. but wdlost does
not become low. => this partial FT is not cause.

wdlost does not become over 64 => this partial FT is not cause.
wdlost does not become over 64. => this partial FT is not cause.

dnctr become low, but ecause does not become high.
=> this partial FT is not cause.

（Other-part1）

operator
causes event

(7)

(5)

dnmax:=min((sunp+64)/128, 256)
low in RESTART3

sunp low

sump:=min(lastp, wdcss)
low in RESTART3

lastp low wdcss low

lastp:=wdcss (previous)
low in RESTART3

operator
causes event

previous wdcss
low in RESTART3

operator
causes event

wdcss:=wdcss+1 low
in RESTART4

clock int occur

wdcss low 1 low operator
causes event

(7)

clock int does
not occur

wdcss:=wdcss+1 low
is not executed

clock int
disabled

wdcss:=0 low in
RESTART3

sun pulse int
occur

wdcss:=0 low operator
causes event

sun pulse int
does not occur

wdcss:=0 is not
executed

sun pulse int
disabled

wdcss:=wdcss+wdlost
low in vbrh

(7)

sun pulse int
occur sun pulse int

does not occur
dnmax:=min((sunp+6

4)/128,256) is not
executed

sun pulse int
diabled

if previous dnmax is low, dnmax is low.
=> this partial FT is included in FT of “sunp low.”

wdcss does not become 0. => this partial FT is not cause.

if previous wdcss is lowmax, wdcss becomes low. => this partial FT is an ancillary cause.

wdcss become 0. => this partial FT is a cause.
wdcss becomes high.
=> this partial FT is not cause.

because wdcss is over 0 and wdlost is less than 64, wdcss
does not become low => this FT is not cause.

Because “wdcss low ” has conflict to “wdcss high” in the
upstream branch (2), this partial FT is not cause.

（Other-part2）

Figure 18. FT developed using the proposed method.

Information 2020, 11, 402 18 of 22

In the case of this top event, the total time for conducting FTA takes about 3.0 h. The details
of the FTA time are 0.5 h for understanding the source code (this task is conducted manually) and
2.5 h for developing FTAs (this task is conducted automatically using the developed tools). Here,
the developing time of L_FT is unknown. The time is appropriate and acceptable for developing P_FTs.
The reason the proposed method takes a short time for developing FTs is that the proposed method
takes a shorter time to search the previously executed instructions.

Finally, we review the detected fundamental events. With L_FT, “magp < 100 and magp >” or
“sunp > 100 and sunp <” are established, and “missing the sun pulse” or “the clock becoming too fast”
were fundamental events. On the other hand, with P_FT, based on (V) and (IV) in Figure 18a, if “magp
< 100 and magp >” or “sunp > 100 and sunp <” are established, then, from (VI) in Figure 18b, “the
clock interrupt occurs frequently,” or from (VII) in Figure 18b, “sun pulse interrupts do not occur” are
the fundamental events. Although the description is different, “missing the sun pulse” and “sun pulse
interrupt does not occur” are similar content.

Here, we describe the FTA result for the top event “value of variable length is too low.”
The evaluation method is the same as the former example. There were 15 L_FT events and 54
P_FT events. The two FTs had a similar structure. With L_FT, the fundamental events were “clock
does not occur,” “interrupt prohibition was not released,” and “return value of function sample is
too small.” With P_ FT, on the other hand, “clock is not generated,” “interrupt prohibition is not
released”, and “return value of function sample was inappropriate.” These have the same content, and
the reason there is a large number of P_FT events is the same as for the previous results. The time
for conducting FTA takes about 2.0 h. The details of the FTA time are 0.5 h for understanding the
source code (this task is conducted manually) and 1.5 h for developing FTAs (this task is conducted
automatically using the developed tools). Here, the developing time of L_FT is unknown. The time is
appropriate and acceptable for developing P_FTs. The reason the proposed method develops P_FTs
within the appropriate and acceptable time is the same as in the former example.

From the above results, we can see that appropriate FTs can be developed corresponding to the
top events in the proposed method within the appropriate time. As the number of the middle event
in P_FTs becomes three times the number of the middle event in L_FT, there exists a concern about
understanding the outline of the P_FTs. Therefore, P_FTs are shown as the hierarchical FTs in Figure 19.
This FT is easily developed from P_FT by summarizing the middle events as a group. Figure 19 is the
top-level FT, and lower-level FTs are the same as the FTs shown in Figure 18b–d. As a result, the analyst
insists that displaying FT as the hierarchical FT can improve the readability. Additionally, an analyst
insists that the analyzing process in the P_FTs is understandable because the P_FTs do not omit the
middle process of conducting FTA.

Information 2020, 11, x FOR PEER REVIEW 19 of 23

In the case of this top event, the total time for conducting FTA takes about 3.0 h. The details of
the FTA time are 0.5 h for understanding the source code (this task is conducted manually) and 2.5 h
for developing FTAs (this task is conducted automatically using the developed tools). Here, the
developing time of L_FT is unknown. The time is appropriate and acceptable for developing P_FTs.
The reason the proposed method takes a short time for developing FTs is that the proposed method
takes a shorter time to search the previously executed instructions.

Finally, we review the detected fundamental events. With L_FT, “magp < 100 and magp >” or
“sunp > 100 and sunp <” are established, and “missing the sun pulse” or “the clock becoming too
fast” were fundamental events. On the other hand, with P_FT, based on (V) and (IV) in Figure 18a, if
“magp < 100 and magp >” or “sunp > 100 and sunp <” are established, then, from (VI) in Figure 18b,
“the clock interrupt occurs frequently,” or from (VII) in Figure 18b, “sun pulse interrupts do not
occur” are the fundamental events. Although the description is different, “missing the sun pulse”
and “sun pulse interrupt does not occur” are similar content.

Here, we describe the FTA result for the top event “value of variable length is too low.” The
evaluation method is the same as the former example. There were 15 L_FT events and 54 P_FT events.
The two FTs had a similar structure. With L_FT, the fundamental events were “clock does not occur,”
“interrupt prohibition was not released,” and “return value of function sample is too small.” With P_
FT, on the other hand, “clock is not generated,” “interrupt prohibition is not released”, and “return
value of function sample was inappropriate.” These have the same content, and the reason there is a
large number of P_FT events is the same as for the previous results. The time for conducting FTA
takes about 2.0 h. The details of the FTA time are 0.5 h for understanding the source code (this task is
conducted manually) and 1.5 h for developing FTAs (this task is conducted automatically using the
developed tools). Here, the developing time of L_FT is unknown. The time is appropriate and
acceptable for developing P_FTs. The reason the proposed method develops P_FTs within the
appropriate and acceptable time is the same as in the former example.

From the above results, we can see that appropriate FTs can be developed corresponding to the
top events in the proposed method within the appropriate time. As the number of the middle event
in P_FTs becomes three times the number of the middle event in L_FT, there exists a concern about
understanding the outline of the P_FTs. Therefore, P_FTs are shown as the hierarchical FTs in Figure
19. This FT is easily developed from P_FT by summarizing the middle events as a group. Figure 19
is the top-level FT, and lower-level FTs are the same as the FTs shown in Figure 18b–d. As a result,
the analyst insists that displaying FT as the hierarchical FT can improve the readability. Additionally,
an analyst insists that the analyzing process in the P_FTs is understandable because the P_FTs do not
omit the middle process of conducting FTA.

Figure 19. Top-level FT shown in hierarchical format.

4.1.2. Application and Evaluation Applying to Existing ECSW

In order to be evaluated, the proposed method is applied for the five existing ECSWs. Those are
the ECSWs that control the electrical device, and the size of the ECSW is 30–200 LOC written in the

period high in
then clause

ms = sun

ms: = sun
in if spinok(sunp)

ms := sun in else
spinok(magp)

operator NGsunp high

（Ⅰ）

（Ⅱ）

（Ⅲ）

（Ⅳ）（Ⅴ）

sun pulse int
occur

operator
causes eventwdcss:=wdcss+1

high in RESTART4

（Ⅵ）

wdcss:=0 high in
RESTART3

wdcss:=wdcss
+wdlost high

in VBRH

sun pulse int
does not occur sunp high sun pulse int

diabled
(1)

(1)

（Ⅶ ） （Other）

： Hierarchical Event
This includes lower level FT.

Figure 19. Top-level FT shown in hierarchical format.

Information 2020, 11, 402 19 of 22

4.1.2. Application and Evaluation Applying to Existing ECSW

In order to be evaluated, the proposed method is applied for the five existing ECSWs. Those are
the ECSWs that control the electrical device, and the size of the ECSW is 30–200 LOC written in the
C language. Two analysts who have over three year’s experience and the same skills conduct FTA
individually. One analyst develops the FT based on his experiences (hereafter, E_FT), and the other
analyst develops the FT using the proposed method (hereafter, P_FT). After developing the FT, analysts
evaluate the FTs with each other. Table 2 shows the outline of the ECSWs, top event, and the size of the
ECSW. Table 3 shows the evaluation results of P_FT and E_FT, such as the fundamental events, number
of events, developing time using the developed tools (except for the time for understanding the code),
and the validity of the FT. As a result, in Table 3, in example No.5, P_FTs are appropriate, while E_FTs
miss the fundamental event where the value in the buffer is too low. This result shows a possibility
that applying the proposed method reduces the oversight of the fundamental events. The number of
events in P_FTs is two times larger than the number of events in E_FTs. The considered reason is that
the number of used interrupts and the number of the used global variables are small in comparison to
the case described in Section 4.1.1. The FT developing time of P_FTs and E_FTs is the same. However,
in the case of analyzing the ECSW with complex structure, it is considered that the analyzing time for
P_FT becomes longer because the proposed method has to analyze the FT branches, which could not
be the fundamental events. This issue can be resolved by excluding such branches. This is the trade-off

between the FT developing time and oversight of fundamental events.

Table 2. Results of application of the proposed method.

No Outline of ECSW Top Event LOC

1 Data differing from the cycle are displayed
on the screen. Display value is too large. 33

2 Hours, minutes, and seconds of passing
time are displayed alternately.

Passing time is calculated
incorrectly. 55

3 Input the motor operation time, and rotate
the motor for that time. Motor does not stop. 81

4 The current time of flashing on the LED. The time is slow. 207

5 Execute an instruction corresponding to a
three-digit number.

A specific instruction cannot be
executed. 115

Table 3. Summary of the FT evaluation.

No Fundamental Events
P_FT E_FT

Num. of Events Hours Validity Num. of Events Hours Validity

1 Inappropriate value of the counter, and 2 others 18 0.5 App 1 10 0.5 App 1

2 Not to occur timer interrupt, and 2 others 15 0.5 App 7 0.5 App
3 Stop switch OFF, and 2 others 15 0.5 App 12 0.5 App
4 Not to occur interrupt, and the false value of judgment flag 26 2 App 15 1 App
5 The large value of the buffer, or small value of the buffer 45 2 App 15 1.5 Ovs 2

1 App means that the result of FT is appropriate. 2 Ovs means that the result of FT has some oversights.

4.2. Issues in the Proposed Method

This subsection describes the issues in the proposed method.

4.2.1. Issues Related to the Scale of ECSW

The size of the ECSW used for the evaluation was 50–200 LOC. In recent years, the scale of the
ESCW has grown to realize high performance. In addition, with the ECSW, data sending and receiving
using global variables are often used, and module startup using multiple interrupts is used. Therefore,
the structure of the developed FT using the proposed method is considered to be complex, and it is
feared that the level of understanding will be low and the analysis time will be long. It is necessary to
introduce the design standard, such as ISO26262 [6], etc., that requires the usage restrictions on global
variables and the multiple interrupts.

Information 2020, 11, 402 20 of 22

4.2.2. Issues Related to the ECSW’s Dirty Structure

There are many ECSWs that are not applying the appropriate design process and standard.
In many cases, those ECSWs have dirty structure (structure without appropriate functional dividing
and design). When applying the proposed method to those ECSWs, it becomes highly possible that the
developed FTs become more complex and larger. We investigate the refactoring method for the ECSWs
with dirty structure before conducting FTA.

4.2.3. Issues Related to the Large Number of FT Events

When developing the FT using the proposed method, the number of the event in the FT becomes
larger. While this can realize the development without the oversights of information related to the
FT, the readability of the FT is decreased. To resolve this problem, we are going to develop the
tools that show the FT with hierarchical expression (like Figure 19) and prunes the FT branch using
Boolean algebra.

4.2.4. Issues Related to the Judgment of the Analyst

When developing the FT, the same section of the FT within the FT may be repeated multiple times.
This type of FT structure occurs where the tracked instruction exists within the repetition instruction
or interrupt processing occurs frequently. In this kind of FT structure, there are two types, such as
(1) the top event occurs when the process is repeated until the certain times, and (2) the event goes into
an infinite loop. In the proposed method, there is no judgment made as to which stage to stop the
analysis. Therefore, we add a function that notifies the information that the repetitions reach a certain
number. By using this information, the analyst can decide whether to continue or stop the analysis.

4.2.5. Issues Related to Object-Oriented Languages

If we define FTT for instructions in other procedural programming languages, the proposed
method can be applied. On the other hand, the proposed method cannot be applied to ECSW written
in object-oriented languages. This is because the FTTs and FDR in the proposed method give no
consideration to inheritance and polymorphism that are features of object-oriented programming.
We would like to investigate the proposed method for object-oriented programming in the future.

5. Summary

In this paper, we define FTT and FDR, and propose an FTA method. As a result of applying the
proposed method to the top event of the existing ECSWs, we could confirm that appropriate FTs were
developed, and appropriate fundamental events were detected. These show the effectiveness of the
proposed method and support tool. In the proposed method, as we developed the FT complying
with the application of the FTTs and FDR, the quality of FT information improved. Additionally, we
improved the level of understanding within the appropriate time. In the future, we shall apply the
proposed method to large-scale ECSW, and feed-back the results into the proposed method.

Author Contributions: Conceptualization, M.T.; Discussion, M.T., Y.A. and Y.W.; writing—original draft
preparation, M.T.; writing—review and editing, M.T., Y.A. and Y.W.; supervision, M.T.; funding acquisition, M.T.;
All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by a Grant-in-Aid for Scientific Research (C) of the Japan Society for the
Promotion of Science, grant number 19K04920, title “Integrated analysis method for hazard caused by software
interaction cooperating with multiple safety analysis methods”.

Conflicts of Interest: The authors declare no conflict of interest.

Information 2020, 11, 402 21 of 22

References

1. Information-Technology Promotion Agency, Japan. Software Reliability Enhancement Center, White Paper of
Embedded Software Development 2017; Information-Technology Promotion Agency, Japan: Tokyo, Japan, 2017.
(In Japanese)

2. Japanese Standards Association. JIS T2304 Medical Device Software—Software Lifecycle Process; Japanese
Standards Association: Tokyo, Japan, 2017. (In Japanese)

3. International Electro Technical Commission. International IEC Standard ICE 62304 Medical Device Software;
International Electro Technical Commission: Geneva, Switzerland, 2006.

4. International Electro Technical Commission. International IEC Standard ICE 82304-1 Health Software—Part 1:
General Requirements for Product Safety; International Electrotechnical Commission: Geneva, Switzerland,
2016.

5. International Society for Pharmaceutical Engineering. GAMP5 A Risk-Based Approach to Compliant GxP
Computerized Systems; International Society for Pharmaceutical Engineering: North Bethesda, MD, USA,
2008.

6. International Organization for Standardization. ISO26262 Road Vehicles—Functional Safety; International
Organization for Standardization: Geneva, Switzerland, 2011.

7. Radio Technical Commission for Aeronautics. DO-178C Software Considerations in Airborne Systems and
Equipment Certification; Radio Technical Commission for Aeronautics: Washington, DC, USA, 2011.

8. Japan Aerospace Exploration Agency. JAXA JMR001, System Safety Standard; Japan Aerospace Exploration
Agency: Tokyo, Japan, 2008. (In Japanese)

9. Takahashi, M.; Nanba, R.; Fukue, Y. A proposal of operational risk management method using FMEA for
drug manufacturing computerized system. Trans. Soc. Instrum. Control Eng. 2012, 48, 285–294. (In Japanese)
[CrossRef]

10. Weber, W.; Tondok, H.; Bachmayer, M. Enhancing Software Safety by Fault Trees: Experiences from an
Application to Flight Critical SW. In Proceedings of the SAFECOMP2003, Scotland, UK, 23–26 September
2003; Elsevier: Amsterdam, The Netherlands, 2003; pp. 289–302.

11. Thapliya, A.; Kwon, G. A Unified Approach for UML Based Safety Oriented Level Crossing Using FTA
and Model Checking. In Proceedings of the 19th Korea Conference on Software Engineering, Busan, Korea,
27–29 June 2017; pp. 89–90.

12. Leveson, N.; Harvey, P.R. Analyzing Software Safety. IEEE Trans. Softw. Eng. 1983, 9, 569–579. [CrossRef]
13. Leveson, N.; Cha, S.; Shimeall, T. Safety verification of Ada programs using software fault tree analysis. IEEE

Softw. 1991, 8, 48–54. [CrossRef]
14. Takahashi, M.; Nanba, R. A Proposal of Fault Tree Analysis for Control Programs. In Proceedings of the

SICE 2014, Hokkaido, Japan, 9–12 September 2014; The Society of Instrument and Control Engineers: Tokyo,
Japan, 2014; pp. 1719–1724.

15. Park, G.; Koh, K.; Jee, E.; Seong, P.; Kwon, K.; Lee, D. Fault tree analysis of KNICS RPS software. Nucl. Eng.
Technol. 2008, 40, 397–408. [CrossRef]

16. Hansen, K.; Wells, L. Hazop analysis of UML-based software architecture descriptions of safety-critical
systems. In Proceedings of the NWUML2004, Turku, Finland, 19–20 August 2004; TUCS General Publication:
Turku, Finland, 2004; pp. 59–78.

17. Hulun, B.; Tschachtli, R. Identifying software hazards with a modified CHAZOP. In Proceedings of the
PESARO2011, Budapest, Hungary, 17–22 April 2011; International Academy, Research, and Industry
Association: New York, NY, USA, 2011; pp. 6–12.

18. Weiss, K.; Dulac, N.; Chisei, S.; Daouk, M.; Zipkin, D.; Leveson, N. Engineering spacecraft mission software
using a model-based and safety-driven design methodology. J. Aerosp. Comput. Inf. Commun. 2006, 3,
562–582. [CrossRef]

19. Takahashi, M.; Anang, Y.; Watanabe, Y. A proposal for a hazard analysis method for embedded control
software using STPA. In Proceedings of the SICE 2019, Hiroshima, Japan, 10–12 September 2019; The Society
of Instrument and Control Engineers: Tokyo, Japan, 2019; pp. 595–600.

20. Kloos, J.; Hussain, T.; Eschbach, R. Risk-based Testing of Safety-Critical Embedded Systems Driven by Fault
Tree Analysis. In Proceedings of the Fourth International Conference on Software Testing, Verification and
Validation Workshops, Berlin, Germany, 21–25 March 2011; pp. 26–33.

http://dx.doi.org/10.9746/sicetr.48.285
http://dx.doi.org/10.1109/TSE.1983.235116
http://dx.doi.org/10.1109/52.300036
http://dx.doi.org/10.5516/NET.2008.40.5.397
http://dx.doi.org/10.2514/1.24677

Information 2020, 11, 402 22 of 22

21. Chen, D.; Mahmud, N.; Walker, M.; Feng, L.; Lonn, H.; Papadopoulos, Y. System Modeling with EAST-ADL
for Fault Tree Analysis through Hip-HOPS. In Proceedings of the IFAC Workshop on Dependable Control of
Discrete Systems, York, UK, 4–6 September 2013; pp. 91–96.

22. Trawczynski, D.; Sosnowski, J.; Gawkowski, P. Testing Distributed ABS System with Fault Injection.
In Innovations in Computing Sciences and Software Engineering; Springer: Berlin/Heidelberg, Germany, 2010;
pp. 201–206.

23. Dabboussi, R.; Kouta, R.; Gaber, J.; Wack, M.; Hassan, B.; Nachabeh, L. Fault Tree Analysis for the Intelligent
Vehicular Networks. In Proceedings of the 2018 IEEE Middle East and North Africa Communications
Conference, Jounieh, Lebanon, 18–20 April 2018; IEEE: New York, NY, USA, 2018; pp. 1–6.

24. Weiser, M. Program Slicing. IEEE Trans. Softw. Eng. 1984, 10, 352–357. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TSE.1984.5010248
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Proposed FTA Method
	Overview of the Proposed Method
	Execution Process of the Top Event
	FT Templates and FT Development Rules
	Outline of the Proposed Method

	FT Templates
	FTT for Assignment Statement
	FTT for Block If Statement
	FTT for While Statement
	FTT for Function Call
	FTT for Interrupt
	FTT for Global Variables
	FTT for Local Variables
	FTT for Array
	FTT for Pointer
	FTT for Hierarchical Instruction

	FT Development Rules
	Slicing
	ECSW Information Required for FTA
	FT Development Rules

	FTA Support Tool

	Application and Evaluation
	Application and Evaluation of the Proposed Method
	Application and Evaluation of the Top Event for “Rotation Rate of the Satellite Became Too Fast”
	Application and Evaluation Applying to Existing ECSW

	Issues in the Proposed Method
	Issues Related to the Scale of ECSW
	Issues Related to the ECSW’s Dirty Structure
	Issues Related to the Large Number of FT Events
	Issues Related to the Judgment of the Analyst
	Issues Related to Object-Oriented Languages

	Summary
	References

