01010

01010 information ﬁ“\D\Py
B

01010

Review

Machine Learning in Python: Main Developments
and Technology Trends in Data Science,
Machine Learning, and Artificial Intelligence

Sebastian Raschka 1**(, Joshua Patterson > and Corey Nolet >3

1 Department of Statistics, University of Wisconsin-Madison, Madison, WI 53575, USA

2 NVIDIA, Santa Clara, CA 95051, USA; joshuap@nvidia.com (J.P.); cnolet@nvidia.com (C.N.)

3 Department of Comp Sci & Electrical Engineering, University of Maryland, Baltimore County, Baltimore,
MD 21250, USA

Correspondence: sraschka@wisc.edu

t Current address: 1300 University Ave, Medical Sciences Building, Madison, WI 53706, USA.

check for
Received: 6 February 2020; Accepted: 31 March 2020; Published: 4 April 2020 updates

Abstract: Smarter applications are making better use of the insights gleaned from data, having an
impact on every industry and research discipline. At the core of this revolution lies the tools and the
methods that are driving it, from processing the massive piles of data generated each day to learning
from and taking useful action. Deep neural networks, along with advancements in classical machine
learning and scalable general-purpose graphics processing unit (GPU) computing, have become
critical components of artificial intelligence, enabling many of these astounding breakthroughs and
lowering the barrier to adoption. Python continues to be the most preferred language for scientific
computing, data science, and machine learning, boosting both performance and productivity by
enabling the use of low-level libraries and clean high-level APIs. This survey offers insight into the
field of machine learning with Python, taking a tour through important topics to identify some of
the core hardware and software paradigms that have enabled it. We cover widely-used libraries and
concepts, collected together for holistic comparison, with the goal of educating the reader and driving
the field of Python machine learning forward.

Keywords: Python; machine learning; deep learning; GPU computing; data science; neural networks

1. Introduction

Artificial intelligence (Al), as a subfield of computer science, focuses on designing computer
programs and machines capable of performing tasks that humans are naturally good at, including
natural language understanding, speech comprehension, and image recognition. In the mid-twentieth
century, machine learning emerged as a subset of Al, providing a new direction to design Al by drawing
inspiration from a conceptual understanding of how the human brain works [1,2]. Today, machine
learning remains deeply intertwined with Al research. However, ML is often more broadly regarded
as a scientific field that focuses on the design of computer models and algorithms that can perform
specific tasks, often involving pattern recognition, without the need to be explicitly programmed.

One of the core ideas and motivations behind the multifaceted and fascinating field of computer
programming is the automation and augmentation of tedious tasks. For example, programming allows
the developer to write software for recognizing zip codes that can enable automatic sorting of letters at
a post office. However, the development of a set of rules that, when embedded in a computer program,
can perform this action reliably is often tedious and extremely challenging. In this context, machine
learning can be understood as the study and development of approaches that automate complex
decision-making, as it enables computers to discover predictive rules from patterns in labeled data

Information 2020, 11, 193; d0i:10.3390/info11040193 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
https://orcid.org/0000-0001-6989-4493
http://dx.doi.org/10.3390/info11040193
http://www.mdpi.com/journal/information
https://www.mdpi.com/2078-2489/11/4/193?type=check_update&version=2

Information 2020, 11, 193 2 of 44

without explicit instructions. In the previous zip code recognition example, machine learning can be
used to learn models from labeled examples to discover highly accurate recognition of machine and
handwritten zip codes [3].

Historically, a wide range of different programming languages and environments have been used
to enable machine learning research and application development. However, as the general-purpose
Python language has seen a tremendous growth of popularity within the scientific computing
community within the last decade, most recent machine learning and deep learning libraries are
now Python-based.

With its core focus on readability, Python is a high-level interpreted programming language,
which is widely recognized for being easy to learn, yet still able to harness the power of systems-level
programming languages when necessary. Aside from the benefits of the language itself, the community
around the available tools and libraries make Python particularly attractive for workloads in data
science, machine learning, and scientific computing. According to a recent KDnuggets poll that
surveyed more than 1800 participants for preferences in analytics, data science, and machine learning,
Python maintained its position at the top of the most widely used language in 2019 [4].

Unfortunately, the most widely used implementation of the Python compiler and interpreter,
CPython, executes CPU-bound code in a single thread, and its multiprocessing packages come with
other significant performance trade-offs. An alternative to the CPython implementation of the Python
language is PyPy [5]. PyPy is a just-in-time (JIT) compiler, unlike CPython’s interpreter, capable of
making certain portions of Python code run faster. According to PyPy’s own benchmarks, it runs code
four times faster than CPython on average [6]. Unfortunately, PyPy does not support recent versions
of Python (supporting 3.6 as of this writing, compared to the latest 3.8 stable release). Since PyPy is
only compatible with a selected pool of Python libraries (listed on http:/ /packages.pypy.org), it is
generally viewed as unattractive for data science, machine learning, and deep learning.

The amount of data being collected and generated today is massive, and the numbers continue to
grow at record rates, causing the need for tools that are as performant as they are easy to use. The most
common approach for leveraging Python’s strengths, such as ease of use while ensuring computational
efficiency, is to develop efficient Python libraries that implement lower-level code written in statically
typed languages such as Fortran, C/C++, and CUDA. In recent years, substantial efforts are being
spent on the development of such performant yet user-friendly libraries for scientific computing and
machine learning.

The Python community has grown significantly over the last decade, and according to a GitHub
report [7], the main driving force “behind Python’s growth is a speedily-expanding community of data
science professionals and hobbyists.” This is owed in part to the ease of use that languages like Python
and its supporting ecosystem have created. It is also owed to the feasibility of deep learning, as well as
the growth of cloud infrastructure and scalable data processing solutions capable of handling massive
data volumes, which make once-intractable workflows possible in a reasonable amount of time. These
simple, scalable, and accelerated computing capabilities have enabled an insurgence of useful digital
resources that are helping to further mold data science into its own distinct field, drawing individuals
from many different backgrounds and disciplines. With its first launch in 2010 and purchase by Google
in 2017, Kaggle has become one of the most diverse of these communities, bringing together novice
hobbyists with some of the best data scientists and researchers in over 194 countries. Kaggle allows
companies to host competitions for challenging machine learning problems being faced in industry,
where members can team up and compete for prizes. The competitions often result in public datasets
that can aid further research and learning. In addition, Kaggle provides instructional materials and
a collaborative social environment where members can share knowledge and code. It is of specific
interest for the data science community to be aware of the tools that are being used by winning teams
in Kaggle competitions, as this provides empirical evidence of their utility.

The purpose of this paper is to enrich the reader with a brief introduction to the most relevant
topics and trends that are prevalent in the current landscape of machine learning in Python.

http://packages.pypy.org

Information 2020, 11, 193 3 of 44

Our contribution is a survey of the field, summarizing some of the significant challenges, taxonomies,
and approaches. Throughout this article, we aim to find a fair balance between both academic research
and industry topics, while also highlighting the most relevant tools and software libraries. However,
this is neither meant to be a comprehensive instruction nor an exhaustive list of the approaches,
research, or available libraries. Only rudimentary knowledge of Python is assumed, and some
familiarity with computing, statistics, and machine learning will also be beneficial. Ultimately, we hope
that this article provides a starting point for further research and helps drive the Python machine
learning community forward.

The paper is organized to provide an overview of the major topics that cover the breadth of the
field. Though each topic can be read in isolation, the interested reader is encouraged to follow them in
order, as it can provide the additional benefit of connecting the evolution of technical challenges to their
resulting solutions, along with the historic and projected contexts of trends implicit in the narrative.

1.1. Scientific Computing and Machine Learning in Python

Machine learning and scientific computing applications commonly utilize linear algebra
operations on multidimensional arrays, which are computational data structures for representing
vectors, matrices, and tensors of a higher order . Since these operations can often be parallelized over
many processing cores, libraries such as NumPy [8] and SciPy [9] utilize C/C++, Fortran, and third
party BLAS implementations where possible to bypass threading and other Python limitations. NumPy
is a multidimensional array library with basic linear algebra routines, and the SciPy library adorns
NumPy arrays with many important primitives, from numerical optimizers and signal processing
to statistics and sparse linear algebra. As of 2019, SciPy was found to be used in almost half of all
machine learning projects on GitHub [9].

While both NumPy and Pandas [10] (Figure 1) provide abstractions over a collection of data points
with operations that work on the dataset as a whole, Pandas extends NumPy by providing a data
frame-like object supporting heterogeneous column types and row and column metadata. In recent
years, Pandas library has become the de-facto format for representing tabular data in Python for extract,
transform, load” (ETL) contexts and data analysis. Twelve years after its first release in 2008, and 25
versions later, the first 1.0 version of Pandas was released in 2020. In the open source community,
where most projects follow semantic versioning standards [11], a 1.0 release conveys that a library has
reached a major level of maturity, along with a stable API.

SR - HOGE IS

Pandas Scikit-Learn Network-X PyTorch Chainer MxNet pyViz
Analytics Machine Learning Graph Analytics Deep Learning Visualization
GPU Memory

Figure 1. The standard Python ecosystem for machine learning, data science, and scientific computing.

Even though the first version of NumPy was released more than 25 years ago (under its previous
name, “Numeric”), it is, similar to Pandas, still actively developed and maintained. In 2017, the NumPy
development team received a $645,000 grant from the Moore Foundation to help with further
development and maintenance of the library [12]. As of this writing, Pandas, NumPy, and SciPy remain
the most user-friendly and recommended choices for many data science and computing projects.

Information 2020, 11, 193 4 of 44

Since the aforementioned SciPy Stack projects, SciPy, NumPy, and Pandas, have been part of
Python’s scientific computing ecosystem for more than a decade, this review will not cover these
libraries in detail. However, the remainder of the article will reference those core libraries to offer
points of comparison with recent developments in scientific computing, and a basic familiarity with
the SciPy Stack is recommended to get the full benefit out of this review. The interested reader
can find more information and resources about the SciPy Stack on SciPy’s official website (https:
/ /www.scipy.org/ getting-started.html).

1.2. Optimizing Python’s Performance for Numerical Computing and Data Processing

Aside from its threading limitations, the CPython interpreter does not take full advantage
of modern processor hardware as it needs to be compatible with a large number of computing
platforms [13]. Special optimized instruction sets for the CPU, like Intel’s Streaming SIMD Extensions
(SSE) and IBM'’s AltiVec, are being used underneath many low-level library specifications, such as
the Binary Linear Algebra Subroutines (BLAS) [14] and Linear Algebra Pack (LAPACK) [15] libraries,
for efficient matrix and vector operations.

Significant community efforts go into the development of OpenBLAS, an open source
implementation of the BLAS API that supports a wide variety of different processor types. While all
major scientific libraries can be compiled with OpenBLAS integration [16], the manufacturers of the
different CPU instruction sets will also often provide their own hardware-optimized implementations
of the BLAS and LAPACK subroutines. For instance, Intel’s Math Kernel Library (Intel MKL) [17]
and IBM'’s Power ESSL [18] provide pluggable efficiency for scientific computing applications.
This standardized API design offers portability, meaning that the same code can run on different
architectures with different instruction sets, via building against the different implementations.

When numerical libraries such as NumPy and SciPy receive a substantial performance boost,
for example, through hardware-optimized subroutines, the performance gains automatically extend to
higher-level machine learning libraries, like Scikit-learn, which primarily use NumPy and SciPy [19,20].
Intel also provides a Python distribution geared for high-performance scientific computing, including
the MKL acceleration [21] mentioned earlier. The appeal behind this Python distribution is that it
is free to use, works right out of the box, accelerates Python itself rather than a cherry-picked set of
libraries, and works as a drop-in replacement for the standard CPython distribution with no code
changes required. One major downside, however, is that it is restricted to Intel processors.

The development of machine learning algorithms that operate on a set of values (as opposed
to a single value) at a time is also commonly known as vectorization. The aforementioned CPU
instruction sets enable vectorization by making it possible for the processors to schedule a single
instruction over multiple data points in parallel, rather than having to schedule different instructions
for each data point. A vector operation that applies a single instruction to multiple data points is
also known as single instruction multiple data (SIMD), which has existed in the field of parallel and
high-performance computing since the 1960s. The SIMD paradigm is generalized further in libraries
for scaling data processing workloads, such as MapReduce [22], Spark [23], and Dask [24], where the
same data processing task is applied to collections of data points so they can be processed in parallel.
Once composed, the data processing task can be executed at the thread or process level, enabling the
parallelism to span multiple physical machines.

Pandas’ data frame format uses columns to separate the different fields in a dataset and allows
each column to have a different data type (in NumPy’s ndarray container, all items have the same type).
Rather than storing the fields for each record together contiguously, such as in a comma-separated
values (CSV) file, it stores columns contiguously. Laying out the data contiguously by column enables
SIMD by allowing the processor to group, or coalesce, memory accesses for row-level processing,
making efficient use of caching while lowering the number of accesses to main memory.

The Apache Arrow cross-language development platform for in-memory data [25] standardizes
the columnar format so that data can be shared across different libraries without the costs associated

https://www.scipy.org/getting-started.html
https://www.scipy.org/getting-started.html

Information 2020, 11, 193 5 of 44

with having to copy and reformat the data. Another library that takes advantage of the columnar format is
Apache Parquet [26]. Whereas libraries such as Pandas and Apache Arrow are designed with in-memory
use in mind, Parquet is primarily designed for data serialization and storage on disk. Both Arrow and
Parquet are compatible with each other, and modern and efficient workflows involve Parquet for loading
data files from disk into Arrow’s columnar data structures for in-memory computing.

Similarly, NumPy supports both row- and column-based layouts, and its #n-dimensional array
(ndarray) format also separates the data underneath from the operations which act upon it. This allows
most of the basic operations in NumPy to make use of SIMD processing.

Dask and Apache Spark [27] provide abstractions for both data frames and multidimensional
arrays that can scale to multiple nodes. Similar to Pandas and NumPy, these abstractions also separate
the data representation from the execution of processing operations. This separation is achieved
by treating a dataset as a directed acyclic graph (DAG) of data transformation tasks that can be
scheduled on available hardware. Dask is appealing to many data scientists because its API is
heavily inspired by Pandas and thus easy to incorporate into existing workflows. However, data
scientists who prefer to make minimal changes to existing code may also consider Modin (https:
//github.com/modin-project/modin), which provides a direct drop-in replacement for the Pandas
DataFrame object, namely, modin.pandas.DataFrame. Modin’s DataFrame features the same API as
the Pandas’ equivalent, but it can leverage external frameworks for distributed data processing in the
background, such as Ray [28] or Dask. Benchmarks by the developers show that data can be processed
up to four times faster on a laptop with four physical cores [29] when compared to Pandas.

The remainder of this article is organized as follows. The following section will introduce Python
as a tool for scientific computing and machine learning before discussing the optimizations that
make it both simple and performant. Section 2 covers how Python is being used for conventional
machine learning. Section 3 introduces the recent developments for automating machine learning
pipeline building and experimentation via automated machine learning (AutoML), where AutoML
is a research area that focuses on the automatic optimization of ML hyperparameters and pipelines.
In Section 4, we discuss the development of GPU-accelerated scientific computing and machine
learning for improving computational performance as well as the new challenges it creates. Focusing
on the subfield of machine learning that specializes in the GPU-accelerated training of deep neural
networks (DNNs), we discuss deep learning in Section 5. In recent years, machine learning and deep
learning technologies advanced the state-of-the-art in many fields, but one often quoted disadvantage
of these technologies over more traditional approaches is a lack of interpretability and explainability.
In Section 6, we highlight some of the novel methods and tools for making machine learning
models and their predictions more explainable. Lastly, Section 7 provides a brief overview of the
recent developments in the field of adversarial learning, which aims to make machine learning and
deep learning more robust, where robustness is an important property in many security-related
real-world applications.

2. Classical Machine Learning

Deep learning represents a subcategory of machine learning that is focused on the
parameterization of DNNSs. For enhanced clarity, we will refer to non-deep-learning-based machine
learning as classical machine learning (classical ML), whereas machine learning is a summary term that
includes both deep learning and classical ML.

While deep learning has seen a tremendous increase in popularity in the past few years, classical
ML (including decision trees, random forests, support vector machines, and many others) is still very
prevalent across different research fields and industries. In most applications, practitioners work
with datasets that are not very suitable for contemporary deep learning methods and architectures.
Deep learning is particularly attractive for working with large, unstructured datasets, such as text
and images. In contrast, most classical ML techniques were developed with structured data in mind;

https://github.com/modin-project/modin
https://github.com/modin-project/modin

Information 2020, 11, 193 6 of 44

that is, data in a tabular form, where training examples are stored as rows, and the accompanying
observations (features) are stored as columns.

In this section, we review the recent developments around Scikit-learn, which remains one of
the most popular open source libraries for classical ML. After a short introduction to the Scikit-learn
core library, we discuss several extension libraries developed by the open source community with
a focus on libraries for dealing with class imbalance, ensemble learning, and scalable distributed
machine learning.

2.1. Scikit-learn, the Industry Standard for Classical Machine Learning

Scikit-learn [19] (Figure 1) has become the industry standard Python library used for feature
engineering and classical ML modeling on small to medium-sized datasets in no small part because it
has a clean, consistent, and intuitive API In this context, as a rule of thumb, we consider datasets with
less than 1000 training examples as small, and datasets with between 1000 and 100,000 examples as
medium-sized. In addition, with the help of the open source community, the Scikit-learn developer
team maintains a strong focus on code quality and comprehensive documentation. Pioneering the
simple “fit () /predict ()” API model, their design has served as an inspiration and blueprint for
many libraries because it presents a familiar face and reduces code changes when users explore
different modeling options.

In addition to its numerous classes for data processing and modeling, referred to as estimators,
Scikit-learn also includes a first-class API for unifying the building and execution of machine learning
pipelines: the pipeline API (Figure 2). It enables a set of estimators to include data processing,
feature engineering, and modeling estimators, to be combined for execution in an end-to-end fashion.
Furthermore, Scikit-learn provides an API for evaluating trained models using common techniques
like cross validation.

To find the right balance between providing useful features and the ability to maintain high-quality
code, the Scikit-learn development team only considers well-established algorithms for inclusion into
the library. However, the explosion in machine learning and artificial intelligence research over
the past decade has created a great number of algorithms that are best left as extensions, rather
than being integrated into the core. Newer and often lesser-known algorithms are contributed as
Scikit-learn compatible libraries or so-called “Scikit-contrib” packages, where the latter are maintained
by the Scikit-learn community under a shared GitHub organization, “Scikit-learn-contrib” (https:
/ / github.com/scikit-learn-contrib). When these separate packages follow the Scikit-learn API, they can
benefit from the Scikit-learn ecosystem, providing for users the ability to inherit some of Scikit-learn’s
advanced features, such as pipelining and cross-validation, for free.

In the following sections, we highlight some of the most notable of these contributed, Scikit-learn
compatible libraries.

 https://github.com/scikit-learn-contrib
 https://github.com/scikit-learn-contrib

Information 2020, 11, 193 7 of 44

a from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.svm import SVC
from sklearn.pipeline import make_pipeline
from sklearn import datasets
from sklearn.model_selection import train_test_split

iris = datasets.load_iris()
X, y = iris.data, iris.target
X_train, X_test, y_train, y_test =\
train_test_split(X, y, test_size=0.3,
random_state=42, stratify=y)

pipe = make_pipeline(StandardScaler(),
PCA(n_components=2),
SVC(kernel='linear'))

pipe.fit(X_train, y_train)
y_pred = pipe.predict(X_test)
print('Test Accuracy: %.3f' 7, pipe.score(X_test, y_test))

b . —_ N
Scaling
fit & transform transform
Dimensionality <—
ipe.fit(reduction))
o X_train < fit & transform plpe}&p;?:;)ct(
y-train) Learning algorithm transform

fit
Predictive model R
=————| Class labels

predict Y

Figure 2. Illustration of a Scikit-learn pipeline. (a) code example showing how to fit a linear support
vector machine features from the Iris dataset, which have been normalized via z-score normalization
and then compressed onto two new feature axes via principal component analysis, using a pipeline
object; (b) illustrates the individual steps inside the pipeline when executing its fit method on the
training data and the predict method on the test data.

2.2. Addressing Class Imbalance

Skewed class label distributions present one of the most significant challenges that arise when
working with real-world datasets [30]. Such label distribution skews or class imbalances can lead
to strong predictive biases, as models can optimize the training objective by learning to predict the
majority label most of the time. Methods such as Scikit-learn’s train_test_split () perform a uniform
sampling by default, which can result in training and tests sets whose class label distributions do
not represent the label distribution in the original dataset. To reduce the possibility of over-fitting
in the presence of class imbalance, Scikit-learn provides an option to perform stratified sampling,
so that the class labels in each resulting sample match the distribution found in the input dataset
(i.e., train_test_split (..., stratify=y), where y is the class label array). While this method often
exhibits less sampling bias than the default uniform random sampling behavior, datasets with severely
skewed distributions of class labels can still result in trained models that are likewise strongly skewed
towards class labels more strongly represented in the population. To avoid this problem, resampling
techniques are often implemented manually to balance out the distribution of class labels. Modifying
the data also creates a need to validate which resampling strategy is having the most positive impact
on the resulting model while making sure not to introduce additional bias due to resampling.

Information 2020, 11, 193 8 of 44

Imbalanced-learn [30] is a Scikit-contrib library written to address the above problem with
four different techniques for balancing the classes in a skewed dataset. The first two techniques
resample the data by either reducing the number of instances of the data samples that contribute to the
over-represented class (under-sampling) or generating new data samples of the under-represented
classes (over-sampling). Since over-sampling tends to train models that overfit the data, the third
technique combines over-sampling with a “cleaning” under-sampling technique that removes extreme
outliers in the majority class. The final technique that Imbalanced-learn provides for balancing classes
combines bagging with AdaBoost [31] whereby a model ensemble is built from different under-sampled
sets of the majority class, and the entire set of data from the minority class is used to train each learner.
This technique allows more data from the over-represented class to be used as an alternative to
resampling alone. While the researchers use AdaBoost in this approach, potential augmentations
of this method may involve other ensembling techniques. We discuss implementations of recently
developed ensemble methods in the following section.

2.3. Ensemble Learning: Gradient Boosting Machines and Model Combination

Combinations of multiple machine learning algorithms or models, which are known as ensemble
techniques, are widely used for providing stability, increasing model performance, and controlling
the bias-variance trade-off [32]. Well-known ensembling techniques, like the highly parallelizable
bootstrap aggregation meta-algorithm (also known as bagging) [33], have traditionally been used
in algorithms like random forests [34] to average the predictions of individual decision trees, while
successfully reducing overfitting. In contrast to bagging, the boosting meta-algorithm is iterative
in nature, incrementally fitting weak learners such as pre-pruned decision trees, where the models
successively improve upon poor predictions (the leaf nodes) from previous iterations. Gradient
boosting improves upon the earlier adaptive boosting algorithms, such as AdaBoost [35], by adding
elements of gradient descent to successively build new models that optimize a differentiable cost
function from the errors in previous iterations [36].

More recently, gradient boosting machines (GBMs) have become a Swiss army knife in many
a Kaggler’s toolbelt [37,38]. One major performance challenge of gradient boosting is that it is an
iterative rather than a parallel algorithm, such as bagging. Another time-consuming computation in
gradient boosting algorithms is to evaluate different feature thresholds for splitting the nodes when
constructing the decision trees [39]. Scikit-learn’s original gradient boosting algorithm is particularly
inefficient because it enumerates all the possible split points for each feature. This method is known
as the exact greedy algorithm and is expensive, wastes memory, and does not scale well to larger
datasets. Because of the significant performance drawbacks in Scikit-learn’s implementation, libraries
like XGBoost and LightGBM have emerged, providing more efficient alternatives. Currently, these
are the two most widely used libraries for gradient boosting machines, and both of them are largely
compatible with Scikit-learn.

XGBoost was introduced into the open source community in 2014 [38] and offers an efficient
approximation to the exact greedy split-finding algorithm, which bins features into histograms using
only a subset of the available training examples at each node. LightGBM was introduced to the open
source community in 2017, and builds trees in a depth-first fashion, rather than using a breadth-first
approach as it is done in many other GBM libraries [39]. LightGBM also implements an upgraded split
strategy to make it competitive with XGBoost, which was the most widely used GBM library at the
time. The main idea behind LightGBM'’s split strategy is only to retain instances with relatively large
gradients, since they contribute the most to the information gain while under-sampling the instances
with lower gradients. This more efficient sampling approach has the potential to speed up the training
process significantly.

Both XGBoost and LightGBM support categorical features. While LightGBM can parse them
directly, XGBoost requires categories to be one-hot encoded because its columns must be numeric.
Both libraries include algorithms to efficiently exploit sparse features, such as those which have been

Information 2020, 11, 193 9 of 44

one-hot encoded, allowing the underlying feature space to be used more efficiently. Scikit-learn
(v0.21.0) also recently added a new gradient boosting algorithm (HistGradientBoosing) inspired by
LightGBM that has similar performance to LightGBM with the only downside that it cannot handle
categorical data types directly and requires one-hot encoding similar to XGBoost.

Combining multiple models into ensembles has been demonstrated to improve the generalization
accuracy and, as seen above, improve class imbalance by combining resampling methods [40]. Model
combination is a subfield of ensemble learning, which allows different models to contribute to a
shared objective irrespective of the algorithms from which they are composed. In model combination
algorithms, for example, a logistic regression model could be combined with a k-nearest neighbors
classifier and a random forest.

Stacking algorithms, one of the more common methods for combining models, train an aggregator
model on the predictions of a set of individual models so that it learns how to combine the individual
predictions into one final prediction [41]. Common stacking variants also include meta features [42] or
implement multiple layers of stacking [43], which is also known as multi-level stacking. Scikit-learn
compatible stacking classifiers and regressors have been available in MIxtend since 2016 [44] and
were also recently added to Scikit-learn in v0.22. An alternative to Stacking is the Dynamic Selection
algorithm, which uses only the most competent classifier or ensemble to predict the class of a sample,
rather than combining the predictions [45].

A relatively new library that specializes in ensemble learning is Combo, which provides several
common algorithms under a unified Scikit-learn-compatible API so that it retains compatibility with
many estimators from the Scikit-learn ecosystem [37]. The Combo library provides algorithms capable
of combining models for classification, clustering, and anomaly detection tasks, and it has seen wide
adoption in the Kaggle predictive modeling community. A benefit of using a single library such as
Combo that offers a unified approach for different ensemble methods, while remaining compatible
with Scikit-learn, is that it enables convenient experimentation and model comparisons.

2.4. Scalable Distributed Machine Learning

While Scikit-learn is targeted for small to medium-sized datasets, modern problems often require
libraries that can scale to larger data sizes. Using the Joblib (https://github.com/joblib/joblib) API,
a handful of algorithms in Scikit-learn are able to be parallelized through Python’s multiprocessing.
Unfortunately, the potential scale of these algorithms is bounded by the amount of memory and
physical processing cores on a single machine.

Dask-ML provides distributed versions of a subset of Scikit-learn’s classical ML algorithms
with a Scikit-learn compatible API. These include supervised learning algorithms like linear models,
unsupervised learning algorithms like k-means, and dimensionality reduction algorithms like principal
component analysis and truncated singular vector decomposition. Dask-ML uses multiprocessing
with the additional benefit that computations for the algorithms can be distributed over multiple nodes
in a compute cluster.

Many classical ML algorithms are concerned with fitting a set of parameters that is generally
assumed to be smaller than the number of data samples in the training dataset. In distributed
environments, this is an important consideration since model training often requires communication
between the various workers as they share their local state in order to converge at a global set of learned
parameters. Once trained, model inference is most often able to be executed in an embarrassingly
parallel fashion.

Hyperparameter tuning is a very important use-case in machine learning, requiring the training
and testing of a model over many different configurations to find the model with the best predictive
performance. The ability to train multiple smaller models in parallel, especially in a distributed
environment, becomes important when multiple models are being combined, as mentioned in Section 2.3.

Dask-ML also provides a hyperparameter optimization (HPO) library that supports any
Scikit-learn compatible API. Dask-ML's HPO distributes the model training for different parameter

https://github.com/joblib/joblib

Information 2020, 11, 193 10 of 44

configurations over a cluster of Dask workers to speed up the model selection process. The exact
algorithm it uses, along with other methods for HPO, are discussed in Section 3 on automatic
machine learning.

PySpark combines the power of Apache Spark’s MLLib with the simplicity of Python; although
some portions of the API bear a slight resemblance to Scikit-learn function naming conventions, the API
is not Scikit-learn compatible [46]. Nonetheless, Spark MLLib’s AP1 is still very intuitive due to this
resemblance, enabling users to easily train advanced machine learning models, such as recommenders
and text classifiers, in a distributed environment. The Spark engine, which is written in Scala, makes
use of a C++ BLAS implementation on each worker to accelerate linear algebra operations.

In contrast to the systems like Dask and Spark is the message-passing interface (MPI). MPI provides a
standard, time-tested API that can be used to write distributed algorithms, where memory locations can
be passed around between the workers (known as ranks) in real-time as if they were all local processes
sharing the same memory space [47]. LightGBM makes use of MPI for distributed training while
XGBoost is able to be trained in both Dask and Spark environments. The H;O machine learning library
is able to use MPI for executing machine learning algorithms in distributed environments. Through an
adapter named Sparkling Water (https://github.com/h20ai/sparkling-water), HyO algorithms can
also be used with Spark.

While deep learning is dominating much of the current research in machine learning, it has
far from rendered classical ML algorithms useless. Though deep learning approaches do exist for
tabular data, convolutional neural networks (CNNs) and long-short term memory (LSTM) network
architectures consistently demonstrate state-of-the-art performance on tasks from image classification
to language translation. However, classical ML models tend to be easier to analyze and introspect,
often being used in the analysis of deep learning models. The symbiotic relationship between classical
ML and deep learning will become especially clear in Section 6.

3. Automatic Machine Learning (AutoML)

Libraries like Pandas, NumPy, Scikit-learn, PyTorch, and TensorFlow, as well as the diverse
collection of libraries with Scikit-learn-compatible APIs, provide tools for users to execute machine
learning pipelines end-to-end manually. Tools for automatic machine learning (AutoML) aim to
automate one or more stages of these machine learning pipelines (Figure 3), making it easier for
non-experts to build machine learning models while removing repetitive tasks and enabling seasoned
machine learning engineers to build better models faster.

a

Feature Hyperparameter
Engineering

Data Preparation Model Selection Model Evaluation

Optimization

Feature

Data Preparation Engineering

Model Selection, Hyperparameter Optimization, Model Evaluation

Figure 3. (a) the different stages of the AutoML process for selecting and tuning classical ML models;
(b) AutoML stages for generating and tuning models using neural architecture search.

Several major AutoML libraries have become quite popular since the initial introduction of
Auto-Weka [48] in 2013. Currently, Auto-sklearn [49], TPOT [50], H20-AutoML [51], Microsoft’s
NNI (https://github.com/microsoft/nni), and AutoKeras [52] are the most popular ones among
practitioners and further discussed in this section.

https://github.com/h2oai/sparkling-water
https://github.com/microsoft/nni

Information 2020, 11, 193 11 of 44

While AutoKeras provides a Scikit-learn-like API similar to Auto-sklearn, its focus is on AutoML
for DNNs trained with Keras as well as neural architecture search, which is discussed separately
in Section 3.3. Microsoft’s Neural Network Intelligence (NNI) AutoML library provides neural
architecture search in addition to classical ML, supporting Scikit-learn compatible models and
automating feature engineering.

Auto-sklearn’s API is directly compatible with Scikit-learn while H20-AutoML, TPOT,
and auto-keras provide Scikit-learn-like APIs. Each of these three tools differs in the collection
of provided machine learning models that can be explored by the AutoML search strategy. While all
of these tools provide supervised methods, and some tools like H20-AutoML will stack or ensemble
the best performing models, the open source community currently lacks a library that automates
unsupervised model tuning and selection.

As the amount of research and innovative approaches to AutoML continues to increase, it spreads
through different learning objectives, and it is important that the community develops a standardized
method for comparing these. This was accomplished in 2019 with the contribution of an open source
benchmark to compare AutoML algorithms on a dataset of 39 classification tasks [53].

The following sections cover the three major components of a machine learning pipeline which can
be automated: (1) initial data preparation and feature engineering, (2) hyperparameter optimization
and model evaluation, and (3) neural architecture search.

3.1. Data Preparation and Feature Engineering

Machine learning pipelines often begin with a data preparation step, which typically includes data
cleaning, mapping individual fields to data types in preparation for feature engineering, and imputing
missing values [54,55]. Some libraries, such as H20-AutoML, attempt to automate the data-type
mapping stage of the data preparation process by inferring different data types automatically.
Other tools, such as Auto-Weka and Auto-sklearn, require the user to specify data types manually.

Once the data types are known, the feature engineering process begins. In the feature extraction
stage, the fields are often transformed to create new features with improved signal-to-noise ratios or to
scale features to aid optimization algorithms. Common feature extraction methods include feature
normalization and scaling, encoding features into a one-hot or other format, and generating polynomial
feature combinations. Feature extraction may also be used for dimensionality reduction, for instance,
using algorithms like principal component analysis, random projections, linear discriminant analysis,
and decision trees to decorrelate and reduce the number of features. These techniques potentially
increase the discriminative capabilities of the features while reducing effects from the curse
of dimensionality.

Many of the tools mentioned above attempt to automate at least a portion of the feature
engineering process. Libraries like the TPOT model the end-to-end machine learning pipeline directly
so they can evaluate variations of feature engineering techniques in addition to selecting a model by
predictive performance. However, while the inclusion of feature engineering in the modeling pipeline
is very compelling, this design choice also substantially increases the space of hyperparameters to be
searched, which can be computationally prohibitive.

For data-hungry models, such as DNNs, the scope of AutoML can sometimes include the
automation of data synthesis and augmentation [55]. Data augmentation and synthesis is especially
common in computer vision, where perturbations are introduced via flipping, cropping, or oversampling
various pieces of an image dataset. As of recently, this also includes the use of generative adversarial
networks for generating entirely novel images from the training data distribution [56].

3.2. Hyperparameter Optimization and Model Evaluation

Hyperparameter optimization (HPO) algorithms form the core of AutoML. The most naive
approach to finding the best performing model would exhaustively select and evaluate all possible
configurations to ultimately select the best performing model. The goal of HPO is to improve upon this

Information 2020, 11, 193 12 of 44

exhaustive approach by optimizing the search for hyperparameter configurations or the evaluation of
the resulting models, where the evaluation involves cross-validation with the trained model to estimate
the model’s generalization performance. [57]. Grid search is a brute-force-based search method that
explores all configurations within a user-specified parameter range. Often, the search space is divided
uniformly with fixed endpoints. Though this grid can be quantized and searched in a coarse-to-fine
manner, grid search has been shown to spend too many trials on unimportant hyperparameters [58].

Related to grid search, random search is a brute-force approach. However, instead of evaluating all
configurations in a user-specified parameter range exhaustively, it chooses configurations at random,
usually from a bounded area of the total search space. The results from evaluating the models on these
selected configurations are used to iteratively improve future configuration selections and to bound
the search space further. Theoretical and empirical analyses have shown that randomized search is
more efficient than grid search [58]; that is, models with a similar or better predictive performance can
be found in a fraction of the computation time.

Some algorithms, such as the Hyperband algorithm used in Dask-ML [59], Auto-sklearn,
and H20-AutoML, resort to random search and focus on optimizing the model evaluation stage
to achieve good results. Hyperband uses an evaluation strategy known as early stopping, where
multiple rounds of cross-validation for several configurations are started in parallel [60]. Models
with poor initial cross-validation accuracy are stopped before the cross-validation analysis completes,
freeing up resources for the exploration of additional configurations. In its essence, Hyperband
can be summarized as a method that first runs hyperparameter configurations at random and then
selects candidate configurations for longer runs. Hyberband is a great choice for optimizing resource
utilization to achieve better results faster compared to a pure random search [55]. In contrast to
random search, methods like Bayesian optimization (BO) focus on selecting better configurations using
probabilistic models. As the developers of Hyperband describe, Bayesian optimization techniques
outperform random search strategies consistently; however, they do so only by a small amount [60].
Empirical results indicate that running random search for as twice as long yields superior results
compared to Bayesian optimization [61].

Several libraries use a formalism of BO, known as sequential model-based optimization (SMBO),
to build a probabilistic model through trial and error. The Hyperopt library brings SMBO to
Spark ML, using an algorithm known as tree of Parzen estimators [62]. The Bayesian optimized
hyperband (BOHB) [63] library combines BO and Hyperband, while providing its own built-in
distributed optimization capability. Auto-sklearn uses an SMBO approach called sequential model
algorithm configuration (SMAC) [54]. Similar to early stopping, SMAC uses a technique called adaptive
racing to evaluate a model only as long as necessary to compare against other competitive models
(https:/ /github.com /automl/SMACS3).

BO and random search with Hyperband are the most widely used optimization techniques for
configuration selection in generalized HPO. As an alternative, TPOT has been shown to be a very
effective approach, utilizing evolutionary computation to stochastically search the space of reasonable
parameters. Because of its inherent parallelism, the TPOT algorithm can also be executed in Dask
(https://examples.dask.org/machine-learning/tpot.html) to improve the total running time when
additional resources in a distributed computing cluster are available.

Since all of the above-mentioned search strategies can still be quite extensive and time consuming,
an important step in AutoML and HPO involves reducing the search space, whenever possible, based
on any useful prior knowledge. All of the libraries referenced accept an option for the user to bound
the amount of time to spend searching for the best model. Auto-sklearn makes use of meta-learning,
allowing it to learn from previously trained datasets while both Auto-sklearn and H20-AutoML
provide options to avoid parameters that are known to cause slow optimization.

https://github.com/automl/SMAC3
https://examples.dask.org/machine-learning/tpot.html

Information 2020, 11, 193 13 of 44

3.3. Neural Architecture Search

The previously discussed HPO approaches consist of general purpose HPO algorithms, which are
completely indifferent to the underlying machine learning model. The underlying assumption of these
algorithms is that there is a model that can be validated objectively given a subset of hyperparameter
configurations to be considered.

Rather than selecting from a set of classical ML algorithms, or well-known DNN architectures,
recent AutoML deep learning research focuses on methods for composing motifs or entire DNN
architectures from a predefined set of low-level building blocks. This type of model generation is
referred to as neural architecture search (NAS) [64], which is a subfield of architecture search [65,66].

The overarching theme in the development of architecture search algorithms is to define a search
space, which refers to all the possible network structures, or hyperparameters that can be composed.
A search strategy is an HPO over the search space, defining how NAS algorithms generate model
structures. Like HPO for classical ML models, neural architecture search strategies also require a model
evaluation strategy that can produce an objective score for a model when given a dataset to evaluate.

Neural search spaces can be placed into one of four categories, based on how much of the neural
network structure is provided beforehand [55]:

1. Entire structure: Generates the entire network from the ground-up by choosing and chaining
together a set of primitives, such as convolutions, concatenations, or pooling. This is known as
macro search.

2. Cell-based: Searches for combinations of a fixed number of hand-crafted building blocks, called
cells. This is known as micro search.

3. Hierarchical: Extends the cell-based approach by introducing multiple levels and chaining
together a fixed number of cells, iteratively using the primitives defined in lower layers to
construct the higher layers. This combines macro and micro search.

4. Morphism-based structure: Transfers knowledge from an existing well-performing network to a
new architecture.

Similar to traditional HPO described above in Section 3.2, NAS algorithms can make use of the
various general-purpose optimization and model evaluation strategies to select the best performing
architectures from a neural search space.

Google has been involved in most of the seminal works in NAS. In 2016, researchers from the
Google Brain project released a paper describing how reinforcement learning can be used as an
optimizer for the entire structure search space, capable of building both recurrent and convolutional
neural networks [67]. A year later, the same authors released a paper introducing the cell-based
NASNet search space, using the convolutional layer as a motif and reinforcement learning to search
for the best ways in which it can be configured and stacked [64].

Evolutionary computation was studied with the NASNet search space in AmoebaNet-A, where
researchers at Google Brain proposed a novel approach to tournament selection [68]. Hierarchical
search spaces were proposed by Google’s DeepMind team [69]. This approach used evolutionary
computation to navigate the search space, while Melody Guan from Stanford, along with members
of the GoogleBrain team, used reinforcement learning to navigate hierarchical search spaces in an
approach known as ENAS [70]. Since all of the generated networks are being used for the same
task, ENAS studied the effect of weight sharing across the different generated models, using transfer
learning to lower the time spent training.

The progressive neural architecture search (PNAS) investigated the use of the Bayesian
optimization strategy SMBO to make the search for CNN architectures more efficient by exploring
simpler cells before determining whether to search more complex cells [71]. Similarly, NASBOT
defines a distance function for generated architectures, which is used for constructing a kernel to use
Gaussian processes for BO [72]. AutoKeras introduced the morphism-based search space, allowing

Information 2020, 11, 193 14 of 44

high performing models to be modified, rather than regenerated. Like NASBOT, AutoKeras defines a
kernel for NAS architectures in order to use Gaussian processes for BO [52].

Another 2018 paper from Google’s DeepMind team proposed DARTS, which allows the use
of gradient-based optimization methods, such as gradient descent, to directly optimize the neural
architecture space [73]. In 2019, Xie et al. proposed SNAS, which improves upon DARTS, using
sampling to achieve a smoother approximation of the gradients [74].

4. GPU-Accelerated Data Science and Machine Learning

There is a feedback loop connecting hardware, software, and the states of their markets. Software
architectures are built to take advantage of available hardware while the hardware is built to enable
new software capabilities. When performance is critical, software is optimized to use the most effective
hardware options at the lowest cost. In 2003, when hard disk storage became commoditized, software
systems like Google’s GFS [75] and MapReduce [76] took advantage of fast sequential reads and
writes, using clusters of servers, each with multiple hard disks, to achieve scale. In 2011, when disk
performance became the bottleneck and memory was commoditized, libraries like Apache Spark [23]
prioritized the caching of data in memory to minimize the use of the disks as much as possible.

From the time GPUs were first introduced in 1999, computer scientists were taking advantage
of their potential for accelerating highly parallelizable computations. However, it was not until
CUDA was released in 2007 that the general-purpose GPU computing (GPGPU) became widespread.
The examples described above resulted from the push to support more data faster, while providing
the ability to scale up and out so that hardware investments could grow with the individual needs of
the users. The following sections introduce the use of GPU computing in the Python environment.
After a brief overview of GPGPU, we discuss the use of GPUs for accelerating data science workflows
end-to-end. We also discuss how GPUs are accelerating array processing in Python and how the
various available tools are able to work together. After an introduction to classical ML on GPUs, we
revisit the GPU response to the scale problem outlined above.

4.1. General Purpose GPU Computing for Machine Learning

Even when efficient libraries and optimizations are used, the amount of parallelism that can
be achieved with CPU-bound computation is limited by the number of physical cores and memory
bandwidth. Additionally, applications that are largely CPU-bound can also run into contention with
the operating system.

Research into the use of machine learning on GPUs predates the recent resurgence of deep
learning. Ian Buck, the creator of CUDA, was experimenting with 2-layer fully-connected neural
networks in 2005, before joining NVIDIA in 2006 [77]. Shortly thereafter, convolutional neural networks
were implemented on top of GPUs, with a dramatic end-to-end speedup observed over highly-optimized
CPU implementations [78]. At this time, the performance benefits were achieved before the existence of a
dedicated GPU-accelerated BLAS library. The release of the first CUDA Toolkit gave life to general-purpose
parallel computing with GPUs. Initially, CUDA was only accessible via C, C++, and Fortran interfaces,
but in 2010 the PyCUDA library began to make CUDA accessible via Python as well [79].

GPUs changed the landscape of classical ML and deep learning. From the late 1990s to the late
2000s, support vector machines maintained a high amount of research interest [80] and were considered
state of the art. In 2010, GPUs breathed new life into the field of deep learning [78], jumpstarting a
high amount of research and development.

GPUs enable the single instruction multiple thread (SIMT) programming paradigm, a higher
throughput and more pa