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Abstract: Privacy preserving data publishing has received considerable attention for publishing useful
information while preserving data privacy. The existing privacy preserving data publishing methods
for multiple sensitive attributes do not consider the situation that different values of a sensitive
attribute may have different sensitivity requirements. To solve this problem, we defined three security
levels for different sensitive attribute values that have different sensitivity requirements, and given
an Lsl-diversity model for multiple sensitive attributes. Following this, we proposed three specific
greed algorithms based on the maximal-bucket first (MBF), maximal single-dimension-capacity
first (MSDCF) and maximal multi-dimension-capacity first (MMDCF) algorithms and the maximal
security-level first (MSLF) greed policy, named as MBF based on MSLF (MBF-MSLF), MSDCF based on
MSLF (MSDCF-MSLF) and MMDCF based on MSLF (MMDCF-MSLF), to implement the Lsl-diversity
model for multiple sensitive attributes. The experimental results show that the three algorithms can
greatly reduce the information loss of the published microdata, but their runtime is only a small
increase, and their information loss tends to be stable with the increasing of data volume. And they
can solve the problem that the information loss of MBF, MSDCF and MMDCF increases greatly with
the increasing of sensitive attribute number.

Keywords: privacy preserving data publishing; multiple sensitive attributes; sensitivity requirements;
security level; maximal security-level first (MSLF)

1. Introduction

In recent years, different organizations such as governments, hospitals and other institutions have
published more and more microdata. Microdata plays a key role in data analysis, data mining and
scientific research. However, publishing microdata unavoidably exposes the privacy of the individual.
To protect the privacy of the individual, Sweeney et al. proposed a k-anonymity model [1,2]. The
model requires that the microdata is partitioned into a set of equivalence classes, each equivalence
class contains at least k records, and all records within an equivalence class are assigned the same
generalized value over each of their quasi-identifier attributes. Thus, each record in the k-anonymity
model cannot be identified successfully with a probability greater than 1/k. The l-diversity model
in [3] extends the k-anonymity model. It requires that each equivalence class has at least l different
“well-represented” values for a sensitive attribute, so it also implies l-anonymity. To address the
limitations of the k-anonymity and l-diversity models, Li et al. [4] introduced the concept of t-closeness,
which requires that the distribution of the sensitive attribute values within each equivalence class of
indistinguishable records is similar to that of the sensitive attribute values in the entire microdata.
Then, various enhanced anonymity methods were proposed, such as (α, k)-anonymity [5], p-sensitive
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k-anonymity [6], anatomy [7], slicing [8], anatomy and generalization (ANGEL) [9], and permutation
anonymization [10].

The above-mentioned works focus on anonymizing the microdata with only one sensitive
attribute. They cannot be directly applied to the microdata with multiple sensitive attributes. Therefore,
some extended k-anonymity, l-diversity, p-sensitive and t-closeness methods for multiple sensitive
attributes [11–32] were proposed. And some extended anatomy methods combining multi-sensitive
bucketization (MSB), clustering, generalization or permutation for multiple sensitive attributes [33–36]
were proposed. To apply the slicing technique to the microdata with multiple sensitive attributes, some
enhanced slicing techniques for multiple sensitive attributes were proposed [37–43]. Additionally,
decomposition and decomposition plus were introduced to achieve l-diversity for multiple sensitive
attributes [44,45]. The above methods for multiple sensitive attributes do not consider the sensitive
requirements of various sensitive attributes. Different sensitive attributes may have different sensitivity
requirements, so the rating techniques for multiple sensitive attributes were introduced [46,47]. These
rating techniques not only protect privacy for multiple sensitive attributes, but also keep a large
amount of correlations of the microdata. In real world, different values of a sensitive attribute may
have different sensitivity requirements. It is not appropriate to apply the same sensitive requirement
to all values of the sensitivity attribute. Hence, the above rating techniques for multiple sensitive
attributes are not suitable for this situation.

To solve this problem, we defined three security levels for different sensitive attribute values
that have different sensitivity requirements, and given an Lsl-diversity model for multiple sensitive
attributes. Then, we proposed three specific greed algorithms based on the maximal-bucket first
(MBF), maximal single-dimension-capacity first (MSDCF) and maximal multi-dimension-capacity
first (MMDCF) algorithms [33] and the maximal security-level first (MSLF) greedy policy, named
as MBF based on MSLF (MBF-MSLF), MSDCF based on MSLF (MSDCF-MSLF) and MMDCF based
on MSLF (MMDCF-MSLF), to implement the Lsl-diversity model for multiple sensitive attributes.
The experimental results show that the three algorithms can greatly reduce the information loss of
published microdata, but their runtime is only a small increase, and their information loss tends to be
stable with the increasing of data volume. Moreover, they can solve the problem that the information
loss of the MBF, MSDCF and MMDCF algorithms increases greatly with the increasing of sensitive
attribute number.

The remainder of this article is organized as follows. Section 2 provides an overview of the
existing privacy preserving data publishing methods for multiple sensitive attributes. In Section 3, we
provide some notations and definitions. Section 4 describes the three specific greed algorithms in detail.
In Section 5, we present the experimental results and analysis, and concludes the paper in Section 6.

2. Related Works

A large variety of privacy preserving data publishing methods have been proposed for multiple
sensitive attributes. In terms of the extended k-anonymity, l-diversity, p-sensitive and t-closeness
methods for multiple sensitive attributes. Nidhi et al. [11] proposed a new k-anonymity model
for multiple sensitive attributes, which realizes record suppression with minimum data distortion.
Usha et al. [12] extended the k-anonymity model for multiple sensitive attributes, and provided several
algorithms for implementation of the extended k-anonymity model. Liu et al. [13] proposed a new
k-anonymity algorithm for multiple sensitive attributes, which uses the distribution of sensitive attribute
values as a parameter to prevent association disclosure. Wang et al. [14] proposed a novel privacy
preserving model for multiple sensitive attributes based on k-anonymity, called (α, β, k)-anonymity. They
set a hierarchy sensitive attribute rule to achieve (α, β, k)-anonymity and developed a corresponding
algorithm to anonymize the microdata by using generalization and hierarchy. Wang et al. [15] clustered
multiple sensitive attributes based on a utility matrix, and then used a greedy strategy to partition
records into equivalence classes. This method can guarantee that the size of each equivalence class is k
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except the last one, and can also guarantee the diversity of each sensitive attribute value within an
equivalence class.

Ahmed et al. [16] proposed a probabilistic model of multiple sensitive attribute diversity to
prevent identification or non-membership attack that arises when the microdata with multiple sensitive
attributes is published. In [17–19], a (α, l) model was applied to satisfy the diversity requirements for
multiple sensitive attributes. Zhang et al. [17] used anatomization with generalization and suppression
based on the (α, l) model. Guo et al. [18] proposed a personalized privacy preserving model for multiple
sensitive attributes based on MSB, called personalized (α, l)-anonymity model. Li et al. [19] considered
the associations between multiple sensitive attributes to prevent all chances of the positive and negative
disclosure, and used a two-step greedy generalization algorithm to manage multiple sensitive attributes.
Zhu et al. [20] proposed an addictive noise approach that publishes some anonymized tables after
fulfilling the requirement of l-diversity. This approach replaces the multiple sensitive attribute values
of each record by a value set and at least l-1 random selected noise values. Huang et al. [21] proposed
a (v, l)-anonymity model which checks the differences of sensitive attribute values by incorporating
the classification of sensitive attribute values. And (l1, l2)-diversity is used to validate the model.
Jin et al. [22] proposed a l-coverage cluster grouping model which can handle multiple sensitive
attributes. And this model is based on cluster algorithm.

Gal et al. [23] proposed a new model that extends k-anonymity and l-diversity to handle multiple
sensitive attributes, and proposed a practical algorithm to implement this model. The algorithm used
for this model contains two steps. In the first step, the microdata is divided into partitions, so that
every partition contains at least k records and satisfies l-diversity. In the subsequent step, the microdata
is anatomized. Wahyu et al. [24] proposed a distribution model to set sensitive attribute values
when p-sensitive is applied to multiple sensitive attributes, minimizing their probability of disclosure.
Wu et al. [25] proposed a p-cover k-anonymity model for protecting multiple sensitive attributes, and
extended the incognito algorithm [26] to implement this model. Lin et al. [27] proposed a novel (k,
p)-anonymity framework to solve the disclosure problem of sensitive attributes in the k-anonymity and
l-diversity models. Anjum et al. [28] proposed an efficient approach for the anonymization of multiple
sensitive attributes, called (p, k)-Angelization. The (p, k)-Angelization approach not only protects the
privacy of the individual, but also improves the utility of the released information. Kanwala et al. [29]
proposed a privacy-preserving model for 1:M records (i.e., an individual can have multiple records)
dataset with multiple sensitive attributes, called (p, l)- Angelization.

Wang et al. [30] proposed two privacy-preserving algorithms for multiple sensitive attributes to
satisfy the t-closeness model. The two algorithms use different methods to partition records into groups
in terms of sensitive attributes. One uses a clustering method, while the other leverages a principal
component analysis. Sowmyarani et al. [31] proposes a (p+)-sensitive, t-closeness model for multiple
sensitive attributes. It combines the advantages of the t-closeness and the p-sensitive k-anonymity
approaches to reduce the possibility of the similarity and skewness attacks of the anonymization
techniques. Saraswathi et al. [32] proposed an enhanced t-closeness algorithm for multiple sensitive
attributes. In the algorithm, t-closeness is applied over MSB k-anonymity clustering attribute hierarchy
(MSB-KACA) algorithm. And they used earth mover distance (EMD) to avoid probabilistic inference
attack due to bucketization.

In terms of the extended anatomy methods combining MSB, clustering, generalization or
permutation for multiple sensitive attributes, Yang et al. [33] proposed an MSB approach. The
main idea of the MSB approach is to partition the given table into a quasi-identifier attribute table
and a sensitive attribute table, and to make that each sensitive attribute satisfies the l-diversity
constraints. Lin et al. [34] proposed a technique to handle multiple numerical sensitive attributes
and to eliminate the threat of proximity breach for multiple sensitive attributes. They applied
clustering and MSB techniques to release the microdata with multiple numerical sensitive attributes.
Luo et al. [35] proposed an improved framework for multiple sensitive attributes, named anatomy
and generalization on multiple sensitive attributes (ANGELMS). This approach vertically partitions
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the attributes into one quasi-identifier attribute table and several sensitive attribute tables. Each
sensitive attribute table divides the records of the microdata into groups (i.e., buckets). Each bucket
obeys the l-diversity requirement. In the quasi-identifier attribute table, each group generalizes the
quasi-identifier attribute values by following the k-anonymity principle. Ye et al. [36] proposed an
anonymization method combining anatomy and permutation for protecting privacy of the microdata
with multiple sensitive attributes. This method includes two major steps: anatomizing microdata and
permutating quasi-identifier attributes. To realize the anonymization method, they further proposed
two algorithms, namely naive multi-sensitive bucketization permutation algorithm (NMBPA) and
closest distance multi-sensitive bucketization permutation algorithm (CDMBPA).

In terms of the extended slicing methods for multiple sensitive attributes, Dhumal et al. [37]
applied the slicing technique without permuting the values of multiple sensitive attributes and did not
consider the quasi-identifier attributes while proposing this technique. Kiruthika et al. [38] proposed
some enhanced slicing techniques like Mondrian and suppression slicing. Mondrian slicing randomly
switches all the buckets whereas suppression slicing permutes the quasi-identifier attribute values
of the records. Suppression slicing maintains the microdata’s utility by guaranteeing the l-diversity
principle in each quasi-identifier attribute group. Luo et al. [39] extended the slicing technique from
single sensitive attribute to multiple sensitive attributes, which is called slicing on multiple sensitive
(SLOMS). Further, they proposed an MSB-KACA algorithm to anonymize the microdata with multiple
sensitive attributes by SLOMS. In [40], a dynamic data publishing technique for multiple sensitive
attributes was proposed, named the KC slice. The proposed technique integrates the features of
LKC-privacy and slicing techniques. Raju et al. [41] proposed a novel dynamic KCi-Slice publishing
prototype for retaining the privacy and utility of multiple sensitive attributes, which is an improvement
of KC-Slice. Reddy et al. [42] proposed a privacy preserving data publishing model that manages
personalization for publishing the microdata with multiple sensitive attributes. The model uses
the slicing technique supported by deterministic anonymization for quasi-identifier attribute, i.e.,
generalization for categorical sensitive attributes and fuzzy approach for numerical sensitive attributes
based on diversity. Susan et al. [43] conducted a work which combined the anatomy and slicing
techniques for multiple sensitive attributes, called anatomization with slicing for multiple sensitive
attributes (SLAMSA). They used anatomization to reduce information loss and enhanced the slicing
technique to improve attribute correlation.

In terms of the decomposition methods for multiple sensitive attributes, Ye et al. [44] proposed a
decomposition technique to achieve l-diversity for multiple sensitive attributes. In the decomposition
technique, vertical partitioning of multiple sensitive attributes is done that divides the original
table into two tables, i.e., a sensitive table and a non-sensitive table. But adding noise in the
decomposition technique causes distortion. Hence, Das et al. [45] extended the decomposition
technique by optimizing the noise value selection (i.e., choosing the noise value closer to the original
values), called decomposition plus.

The above methods for multiple sensitive attributes do not consider the sensitive requirements of
sensitive attributes. Because different sensitive attributes may have different sensitivity requirements,
Liu et al. [46] introduced a rating technique for multiple sensitive attributes, which is based on different
sensitivity coefficients for different attributes. This approach not only protects privacy for multiple
sensitive attributes, but also keeps a large amount of correlations of the microdata. But the rating
technique can be attacked by applying association rules due to the relationship between sensitive
attribute values. Yi et al. [47] removed the weaknesses of the rating technique and eliminated the threat
of association attack.

3. Notations and Definitions

In the real world, different values of a sensitive attribute may have different sensitivity requirements.
Some values of the sensitive attribute have no sensitivity requirement, i.e., these sensitive attribute
values do not need to be protected because their leakage is not harmful to the individual. Some values
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of the sensitive attribute have low sensitivity requirement, i.e., these sensitive attribute values need to be
protected to some extent because their leakage cause certain harm to the individual. Furthermore, some
values of the sensitive attribute have high sensitivity requirement, i.e., these sensitive attribute values
need to be well protected because their leakage cause serious harm to the individual. Accordingly,
three sensitive attribute security levels are defined as follows.

Definition 1 (sensitive attribute security Level 0). Sensitive attribute security Level 0 is the security level
of a sensitive attribute value with no sensitivity requirement, i.e., a sensitive attribute value with sensitive
attribute security Level 0 have no sensitivity requirement.

Definition 2 (sensitive attribute security Level 1). Sensitive attribute security Level 1 is the security level
of a sensitive attribute value with low sensitivity requirement, i.e., a sensitive attribute value with sensitive
attribute security Level 1 have low sensitivity requirement.

Definition 3 (sensitive attribute security Level 2). Sensitive attribute security Level 2 is the security level
of a sensitive attribute value with high sensitivity requirement, i.e., a sensitive attribute value with sensitive
attribute security Level 2 have high sensitivity requirement.

Let T =
{
A1, A2, . . . , Ap, S1, S2, . . . , Sd

}
be the microdata, where Ai denotes the ith quasi-identifier

attribute and 1 ≤ i ≤ p, S j denotes the jth sensitive attribute and 1 ≤ j ≤ d, p denotes the number of
quasi-identifier attributes and d denotes the number of sensitive attributes, n denotes the number of
records of T(i.e., n =|T|), tk denotes the kth record of T and 1 ≤ k ≤ n, and tk[X] denotes the value of the
attribute X of the kth record. An example of the microdata is shown in Table 1.

Table 1. An example of the microdata.

Records
Identifier Attributes Quasi-identifier Attributes Sensitive Attributes

SSN Name Age Sex Race Zipcode Physician Disease

t1 19200 Sam 21 M White 11000 John Flu
t2 17720 Anne 60 F Black 21000 John Pneumonia
t3 25000 Mike 56 M White 11400 Mary Cancer
t4 14520 Lily 28 F Black 65000 Bob Flu
t5 18010 Harry 60 M White 41000 Bob Pneumonia
t6 23800 Mona 55 F Black 41300 Anne Gastritis
t7 34000 Tony 43 M White 39000 John Gastritis
t8 12000 Lucy 26 F Black 15000 Sam HIV
t9 37080 Tim 37 M White 19000 Mary Flu

In Table 1, social security number (SSN) and name are two identifier attributes. Age, sex, race
and zipcode are four quasi-identifier attributes. Further, physician and disease are two sensitive
attributes. t1, t2, t3, t4, t5, t6, t7, t8 and t9 are nine records of the microdata. The values of the sensitive
attribute physician are John, Bob, Anne, Sam and Mary. Following this, the values of the sensitive
attribute disease are flu, pneumonia, gastritis, human immunodeficiency virus (HIV) and cancer.
For the former, the security levels of all sensitive attribute values can be set to sensitive attribute
security Level 1 because these sensitive attribute values have the same and low sensitivity requirement.
For the latter, the security level of flu can be set to sensitive attribute security Level 0 because the
sensitive attribute value has no sensitivity requirement. The security levels of Pneumonia and Gastritis
can be set to sensitive attribute security Level 1 because the two sensitive attribute values have the
same and low sensitivity requirement. Further, the security levels of HIV and cancer can be set to
sensitive attribute security Level 2 because the two sensitive attribute values have the same and high
sensitivity requirement.
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Definition 4 (composite sensitive attribute) [33]. A composite sensitive attribute is the whole of all sensitive
attributes of T, denoted by S = {S1, S2, . . . , Sd}, where the ith sensitive attribute Si (1 ≤ i ≤ d) is the ith
dimension of the composite sensitive attribute. D(Si) is the value field of Si, and |Si| represents the number of
D(Si).

Definition 5 (composite sensitive attribute vector) [33]. A composite sensitive attribute vector is a vector
form of all sensitive attribute values of the kth record tk in T, denoted by < tk[S1], tk[S2], . . . , tk[Sd] >.

Definition 6 (group) [33]. A group is a subset of records of T. each record of T belongs to only one group. All
groups of T is denoted as GT = {G1, G2, . . . , Gm}, where m denotes the number of all groups of T.

For Table 1, the composite sensitive attribute of the microdata is {Physician, Disease}, and
a composite sensitive attribute vector can be <John, Flu>. G1 = {t1, t2, t3}, G2 = {t3, t4, t5} and
G3 = {t7, t8, t9} can be three groups of the microdata, and G1 ∩G2 ∩G3 = φ.

Definition 7 (l-diversity for single sensitive attribute) [33]. For a group G with single sensitive attribute,
if v is the sensitive attribute value with the maximum frequency and c(v)/

∣∣∣G∣∣∣≤ 1/l , where c(v) denotes the
frequency of v, |G| denotes the number of records of G, then G satisfies l-diversity for single sensitive attribute.

Definition 8 (l-diversity for multiple sensitive attributes) [33]. For a group G with multiple sensitive
attributes, if each sensitive attribute of the composite sensitive attribute in G satisfies l-diversity for single
sensitive attribute, then G satisfies l-diversity for multiple sensitive attributes.

Definition 9 (l-diversity group for multiple sensitive attributes) [33]. An l-diversity group for multiple
sensitive attributes is a group of T and the group satisfies l-diversity for multiple sensitive attributes. All
l-diversity groups for multiple sensitive attributes are denoted as GTc = {G1, G2, . . . , Gmc}, where mc denotes
the number of all l-diversity groups for multiple sensitive attributes.

From Definitions 7, 8 and 9, all the sensitive attribute values of each group obey the same l-diversity
requirement, i.e., the same sensitive requirement is applied to them. This is not appropriate and will
cause extra information loss of the microdata. Because the maximal security level of sensitive attribute
values in the microdata shown in Table 1 is sensitive attribute security Level 2, so l is set to 3 in this
paper. Thus, only three diversity groups for multiple sensitive attributes can be formed. For different
sensitive attribute values with different sensitive attribute security levels, they should have different
l-diversity requirements because they have different sensitivity requirements. Hence, Lsl-diversity
for single sensitive attribute and Lsl-diversity for multiple sensitive attributes are defined as follows,
where Lsl ⊆ {l0, l1, l2}, l0 for sensitive attribute security level 0, l1 for sensitive attribute security Level 1,
l2 for sensitive attribute security Level 2, and l0, l1, l2 are set to 1, 2 and 3 in this paper, respectively.

Definition 10 (Lsl-diversity for single sensitive attribute). For a group G with single sensitive attribute,
if v0 is a sensitive attribute value with sensitive attribute security level 0 of G, then c(v0)/

∣∣∣G∣∣∣≤ 1/l0 , where
c(v0) denotes the frequency of v0 in G, |G| denotes the number of records in G. Similarly, if v1 is a sensitive
attribute value with sensitive attribute security level 1 of G, then c(v1)/

∣∣∣G∣∣∣≤ 1/l1 , where c(v1) denotes the
frequency of v1 in G. Further, if v2 is a sensitive attribute value with sensitive attribute security level 2 of G,
then c(v2)/

∣∣∣G∣∣∣≤ 1/l2 , where c(v2) denotes the frequency of v2 in G. Then, G satisfies Lsl-diversity for single
sensitive attribute.

Definition 11 (Lsl-diversity for multiple sensitive attributes). For a group G with multiple sensitive
attributes, if each sensitive attribute of the composite sensitive attribute in G satisfies Lsl-diversity for single
sensitive attribute, then G satisfies Lsl-diversity for multiple sensitive attributes.
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Definition 12 (Lsl-diversity group for multiple sensitive attributes). An Lsl-diversity group for multiple
sensitive attributes is a group of T and the group satisfies Lsl-diversity for multiple sensitive attributes. All
Lsl-diversity groups of T is denoted as GTs = {G1, G2, . . . , Gms}, where ms denotes the number of all Lsl-diversity
groups of T.

For Table 1, as described above, the security levels of all values of the sensitive attribute Physician
is sensitive attribute security Level 1. Further, the security level of Flu is sensitive attribute security
Level 0, the security levels of pneumonia and gastritis are sensitive attribute security Level 1, and the
security levels of HIV and Cancer are sensitive attribute security Level 2. Any record of the microdata
shown in Table 1 consists of one value of the sensitive attribute physician and one value of the sensitive
attribute disease. As a result, Lsl includes at least l1, so {l1}-diversity groups for multiple sensitive
attributes, {l0, l1}-diversity groups for multiple sensitive attributes, {l1, l2}-diversity groups for multiple
sensitive attributes and {l0, l1, l2}-diversity groups for multiple sensitive attributes can be formed.

Definition 13 (multiple dimensional bucket) [33]. A multiple dimensional bucket is a bucket that each
dimension of the composite sensitive attribute is one of dimensions of the bucket. Therefore, the records of T can be
mapped to corresponding buckets according to the sensitive attribute values of each dimension of their composite
sensitive attribute vectors. If the number of dimensions of the composite sensitive attribute in T is d, then d
dimensional buckets of T can be established, denoted as Bucket(S1, S2, . . . , Sd), where each d dimensional bucket is
denoted as buk < s1, s2, . . . , sd >, s j

∈ D(S j) and 1 ≤ j ≤ d, and the size of each d dimensional bucket of is denoted
as size(buk < s1, s2, . . . , sd >), i.e., the number of records in the d dimensional bucket. Further, the dimension
capacity of a certain value s0

j
∈ D(S j) on the S j dimension of the d dimensional bucket is the sum of all the bucket

sizes with the certain value s0
j on this dimension, denoted as Capa(s0

j) =
∑

s j=s0
j
size(buk < s1, s2, . . . , sd >).

According to Table 1, two-dimensional buckets of T can be established, as shown in Figure 1.
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In Figure 1, the leftmost column is the values of the sensitive attribute physician, and the
top row is the values of the sensitive attribute disease. The rightmost column is the dimension
capacities of the values of the sensitive attribute physician, and the bottom row is the dimension
capacities of the values of the sensitive attribute disease. Further, the five rows and five columns
in the middle are 2-dimensional buckets of T. For example, when s0

1 is Anne and s0
2 is gastritis,

buk < s0
1, s0

2 > is a certain two-dimensional bucket, i.e., {t6} in Figure 1, and size(buk < s0
1, s0

2 >) is the
size of buk < s0

1, s0
2 > and size(buk < s0

1, s0
2 >) = 1. Capa(s0

1) is the dimension capacity of s0
1 and

Capa(s0
1) =

∑
s1=s01

size(buk < s1, s2 >) = 0 + 0 + 1 + 0 + 0 = 1, and Capa(s0
2) is the dimension capacity

of s0
2 and Capa(s0

2) =
∑

s2=s02
size(buk < s1, s2 >) = 1 + 0 + 1 + 0 + 0 = 2.

In [33], the MSB method includes two stages: grouping phase and residual processing phase. In
the first stage, according to a greedy strategy, l buckets with different values on each dimension are
selected, and one record is extracted from each bucket to form an l-diversity group for multiple sensitive
attributes, which circulates until it cannot form a new l-diversity group for multiple sensitive attributes
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that meets the requirements. In the second stage, for the remaining records in the multi-dimensional
buckets after grouping, add them to the existing l-diversity groups for multiple sensitive attributes
as much as possible without destroying l-diversity for multiple sensitive attributes. Finally, records
that do not belong to any l-diversity group for multiple sensitive attributes are suppressed from the
published microdata. After the above steps, the quasi-identifier attributes of each l-diversity group
for multiple sensitive attributes are published as a quasi-identifier attribute table, and the sensitive
attributes of each l-diversity group for multiple sensitive attributes are published as a sensitive attribute
table. Further, both the additional information loss and the suppression ratio are taken as the standard
to measure the quality of the published microdata. The definition of additional information loss is
extended as follows.

Definition 14 (additional information loss). For GTs = {G1, G2, . . . , Gms} of T, its additional information
loss is

∑
1≤i≤ms

(
∣∣∣Gi

∣∣∣−lGi)/
∑

1≤i≤ms
lGi , where |Gi| denotes the number of records in Gi, and lGi denotes the l value

for the maximal sensitive attribute security level of sensitive attribute values in Gi.

Definition 15 (suppression ratio) [33]. After generating GTs = {G1, G2, . . . , Gms} of T, the suppression
ratio of T is ns/|T|, where ns denotes the number of suppressed records of T.

Obviously, the smaller the suppression ratio is, the less records are lost. When the suppression
ratio is the same, the smaller the additional information loss, the less information is lost.

4. Our Proposed Algorithms

In [33], three specific greed algorithms were proposed to implement the above MSB method, called
MBF, MSDCF, and MMDCF. According to Definitions 10, 11 and 12, a record with a high sensitive
attribute security level is more difficult to be used to form a group than a record with a low sensitive
attribute security level, so the record with a higher sensitive attribute security level should be prioritized
to form a group. In view of this idea, we also propose three specific greed algorithms based on the MBF,
MSDCF and MMDCF algorithms and the MSLF greedy policy, named as MBF-MSLF, MSDCF-MSLF
and MMDCF-MSLF, to implement the Lsl-diversity model for multiple sensitive attributes.

4.1. MBF-MSLF

The basic idea of the MBF-MSLF algorithm is to first select an unshielded non-empty d dimensional
bucket with the maximal sensitive attribute security level and the largest bucket size, and extract a
record from the bucket to add to a group and delete the record from the bucket. For this record, all
buckets of some certain dimensions of the record are shielded when adding any record of these buckets
to the group will destroy Lsl-diversity for multiple sensitive attributes of the group. By repeating the
above process, the Lsl-diversity group is formed. Following this, the shielding of each d dimensional
bucket is removed, and the above grouping process is repeated until a complete group cannot be
formed. For each remaining record, it is added to a formed group without destroying Lsl-diversity for
multiple sensitive attributes of the group. Finally, the records that cannot be added to any formed
group will be suppressed in the published microdata. The specific steps of the MBF-MSLF algorithm
are shown in Algorithm 1.
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1 2 1 2
0 0 0 1 0 0 0 0( , , , ) ( ) ( , , , )d j d

j dSelect buk s s s Max Capa s size buk s s s≤ ≤< > = + < >   (1) 

where 1 2
0 0 0( , , , )dsize buk s s s< > , 1 0( )j

j dMax Capa s≤ ≤ and 1 2
0 0 0( , , , )dSelect buk s s s< >  are the 

bucket size, the maximal single-dimensional capacity and the bucket selectivity of a certain bucket 
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4.2. MSDCF-MSLF

The basic idea of the MSDCF-MSLF algorithm is to first select an unshielded non-empty d
dimensional bucket with the maximal sensitive attribute security level and the largest bucket selectivity,
and extract a record from the bucket to add to a group and delete the record from the bucket. The
bucket selectivity in the MSDCF-MSLF algorithm is calculated as follows.

Select(buk < s0
1, s0

2, . . . , s0
d >) = Max1≤ j≤dCapa(s0

j) + size(buk < s0
1, s0

2, . . . , s0
d >) (1)

where size(buk < s0
1, s0

2, . . . , s0
d >), Max1≤ j≤dCapa(s0

j) and Select(buk < s0
1, s0

2, . . . , s0
d >) are the

bucket size, the maximal single-dimensional capacity and the bucket selectivity of a certain bucket
buk < s0

1, s0
2, . . . , s0

d >, respectively. For this record, all buckets of some certain dimensions of the
record are shielded when adding any record of these buckets to the group will destroy Lsl-diversity
for multiple sensitive attributes of the group. By repeating the above process, the Lsl-diversity group
is formed. Following this, the shielding of each d dimensional bucket is removed, and the above
grouping process is repeated until a complete group cannot be formed. For each remaining record, it is
added to a formed group without destroying Lsl-diversity for multiple sensitive attributes of the group.
Finally, the records that cannot be added to any formed group will be suppressed in the published
microdata. The specific steps of the MSDCF-MSLF algorithm are shown in Algorithm 2.

4.3. MMDCF-MSLF

The basic idea of the MMDCF-MSLF algorithm is to first select an unshielded non-empty d
dimensional bucket with the maximal sensitive attribute security level and the largest bucket selectivity,
and extract a record from the bucket to add to a group and delete the record from the bucket. The
bucket selectivity in the MMDCF-MSLF algorithm is calculated as follows.

Select(buk < s0
1, s0

2, . . . , s0
d >) =

∑
1≤ j≤d

Capa(s0
j) + size(buk < s0

1, s0
2, . . . , s0

d >) (2)

where size(buk < s0
1, s0

2, . . . , s0
d >),

∑
1≤ j≤d

Capa(s0
j) and Select(buk < s0

1, s0
2, . . . , s0

d >) are the

bucket size, the sum of all dimension capacities and the bucket selectivity of a certain bucket
buk < s0

1, s0
2, . . . , s0

d >, respectively. For this record, all buckets of some certain dimensions of the
record are shielded when adding any record of these buckets to the group will destroy Lsl-diversity
for multiple sensitive attributes of the group. By repeating the above process, the Lsl-diversity group
is formed. Following this, the shielding of each d dimensional bucket is removed, and the above
grouping process is repeated until a complete group cannot be formed. For each remaining record, it is
added to a formed group without destroying Lsl-diversity for multiple sensitive attributes of the group.
Finally, the records that cannot be added to any formed group will be suppressed in the published
microdata. The specific steps of the MMDCF-MSLF algorithm are shown in Algorithm 3.
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record of these buckets to G  will destroy slL -diversity for multiple sensitive 
attributes of G ; 

15.   else stop grouping process; 
16.   end if 
17.  end for 
18.  add G  to GTs ; 
19.  remove the shielding of each d  dimensional bucket; 
20. end while 
21. for each record of the non-empty d  dimensional buckets 
22.  add the record to an existing group iG GTs∈  without destroying slL -diversity for 

multiple sensitive attributes of iG ; 
23. end for 
24. suppress the remaining records of the non-empty d  dimensional buckets; 
25. output a quasi-identifier attribute table and a sensitive attributes table according to 

GTs . 
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complete records, and each record has nine fields, where the Occupation field, the Education field, the
Marital field, the Workclass field and the Race field are chosen as multiple sensitive attributes in this
paper, as shown in Table 2.

Table 2. Multiple sensitive attributes of the microdata.

Multiple Sensitive Attributes Occupation Education Marital Workclass Race

the number of sensitive attribute values 14 16 7 7 5

For the multiple sensitive attributes of the microdata, different sensitive attribute security levels
and composite sensitive attributes are chosen in this paper, as shown as Tables 3 and 4 respectively.

Table 3. Different sensitive attribute security levels for the multiple sensitive attributes of the microdata.

Multiple Sensitive
Attributes

Sensitive Attribute
Security Level 0

Sensitive Attribute
Security Level 1

Sensitive Attribute
Security Level 2

Occupation Other-service

Adm-clerical, Craft-repair, Exec-managerial,
Farming-fishing, Handlers-cleaners,
Machine-op-inspct, Priv-house-serv,
Prof-specialty, Protective-serv, Sales,

Tech-support, Transport-moving

Armed-Forces

Education /

10th, 11th, 12th, 1st-4th, 5th-6th, 7th-8th,
9th, Assoc-acdm, Assoc-voc, Bachelors,
Doctorate, HS-grad, Masters, Preschool,

Prof-school, Some-college

/

Marital / Married-civ-spouse, Never-married

Divorced,
Married-AF-spouse,

Married-spouse-absent,
Separated, Widowed,

Workclass Private, Without-pay Self-emp-inc, Self-emp-not-inc Federal-gov, Local-gov,
State-gov

Race Other, White Black Amer-Indian-Eskimo,
Asian-Pac-Islander

Table 4. Different composite sensitive attributes for the multiple sensitive attributes of the microdata.

The Number of Dimensions of a
Composite Sensitive Attribute Composite Sensitive Attributes

d = 2 {Occupation, Education}
d = 3 {Occupation, Education, Marital}
d = 4 {Occupation, Education, Marital, Workclass}
d = 5 {Occupation, Education, Marital, Workclass, Race}

The experiment mainly compares and analyzes the additional information loss, the suppression
ratio and the central processing unit (CPU) runtime of the algorithms from the following aspects: (1)
changing the number of records (i.e., the value of n is from 1000 to 10000) when the number of sensitive
attributes is set to three; (2) changing the number of sensitive attributes (i.e., the value of d is from 2 to
5) when the number of records is set to 2000.

5.1. Comparative Analysis of MBF and MBF-MSLF

Figures 2–4 are the additional information loss, the suppression ratio and the CPU runtime of
MBF and MBF-MSLF when the number of records is changed from 1000 to 10000 and the number of
sensitive attributes is set to 3, respectively.
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According to Figures 2–4, compared with MBF, the additional information loss of MBF-MSLF
increases a little, but the suppression ratio the MBF-MSLF directly decreases to 0, which greatly reduces
the information loss of the published microdata. With the increasing of data volume, the additional
information loss and the suppression ratio of MBF and MBF-MSLF tend to be stable because the
distribution of the sensitive attribute values in the microdata becomes more and more stable. In
addition, with the increasing of data volume, the CPU runtime of MBF and MBF-MSLF increase
gradually, and the CPU runtime of MBF-MSLF increases faster than the that of MBF.

Figures 5–7 are the additional information loss, the suppression ratio and the CPU runtime of
MBF and MBF-MSLF when the number of sensitive attributes is changed from 2 to 5 and the number
of records is set to 2000, respectively.
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According to Figures 5–7, compared with MBF, the additional information loss of MBF-MSLF
increases a little, but the suppression ratio of MBF-MSLF directly decreases to 0, which greatly reduces
the information loss of the published microdata. With the increasing of sensitive attribute number, the
additional information loss of MBF tends to be 0 quickly, and the suppression ratio of MBF increases
very fast. This shows that fewer and fewer groups can be formed, and it is more and more difficult to
add records to the formed groups with the increasing of sensitive attribute number. But for MBF-MSLF,
with the increasing of sensitive attribute number, its additional information loss increases quickly
and then decreases slowly, while its suppression ratio is always 0. This shows that all records of the
microdata can be grouped, but at first it is easier to add records to the formed groups, and then it is
more difficult to add records to the formed groups with the increasing of sensitive attribute number. In
addition, with the increasing of sensitive attribute number, the CPU runtime of MBF and MBF-MSLF
increase gradually, and the CPU runtime of MBF-MSLF increases faster than the that of MBF.

From the above comparative analysis of MBF and MBF-MSLF, compared with MBF, MBF-MSLF
can greatly reduce the information loss of the published microdata, but its runtime is only a small
increase. Like MBF, the information loss of MBF-MSLF tends to be stable with the increasing of data
volume. And MBF-MSLF can solve the problem that the information loss of MBF increases greatly
with the increasing of sensitive attribute number.

5.2. Comparative Analysis of MSDCF and MSDCF-MSLF

Figures 8–10 are the additional information loss, the suppression ratio and the CPU runtime of
MSDCF and MSDCF-MSLF when the number of records is changed from 1000 to 10000 and the number
of sensitive attributes is set to 3, respectively.

According to Figures 8–10, compared with MSDCF, the additional information loss of
MSDCF-MSLF increases a little, but the suppression ratio of MSDCF-MSLF directly decreases to
0. Thus, MSDCF-MSLF can greatly reduce the information loss of the published microdata. With the
increasing of data volume, the additional information loss and the suppression ratio of MSDCF and
MSDCF-MSLF tend to be stable. This is because the distribution of the sensitive attribute values in the
microdata becomes more and more stable. Moreover, with the increasing of data volume, the CPU
runtime of MSDCF and MSDCF-MSLF increase gradually, and the CPU runtime of MSDCF-MSLF
increases faster than the that of MSDCF.
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Figures 11–13 are the additional information loss, the suppression ratio and the CPU runtime of
MSDCF and MSDCF-MSLF when the number of sensitive attributes is changed from 2 to 5 and the
number of records is set to 2000, respectively.
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According to Figures 11–13, compared with MSDCF, the additional information loss of
MSDCF-MSLF increases a little, but the suppression ratio of MSDCF-MSLF directly decreases to
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0. Thus, MSDCF-MSLF can greatly reduce the information loss of the published microdata. With
the increasing of sensitive attribute number, the additional information loss of MSDCF tends to be 0
quickly, and the suppression ratio of MSDCF increases very fast. This means that fewer and fewer
groups can be formed, and it is more and more difficult to add records to the formed groups with the
increasing of sensitive attribute number. However, with the increasing of sensitive attribute number,
the additional information loss of MSDCF-MSLF increases quickly and then decreases slowly, while
its suppression ratio is always 0. This means that all records of the microdata can be grouped, but at
first it is easier to add records to the formed groups, and then it is more difficult to add records to the
formed groups with the increasing of sensitive attribute number. Moreover, with the increasing of
sensitive attribute number, the CPU runtime of MSDCF and MSDCF-MSLF increase gradually, and the
CPU runtime of MSDCF-MSLF increases faster than the that of MSDCF.

From the above comparative analysis of MSDCF and MSDCF-MSLF, compared with MSDCF,
MSDCF-MSLF can greatly reduce the information loss of the published microdata, but its runtime is
only a small increase. the information loss of MSDCF-MSLF tends to be stable with the increasing of
data volume, like MSDCF. Furthermore, MSDCF-MSLF can solve the problem that the information
loss of MSDCF increases greatly with the increasing of sensitive attribute number.

5.3. Comparative Analysis of MMDCF and MMDCF-MSLF

Figures 14–16 are the additional information loss, the suppression ratio and the CPU runtime
of MMDCF and MMDCF-MSLF when the number of records is changed from 1000 to 10000 and the
number of sensitive attributes is set to 3, respectively.Information 2019, 10, x FOR PEER REVIEW 19 of 26 
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Compared with MMDCF, the additional information loss of MMDCF-MSLF increases a little,
but the suppression ratio of MMDCF-MSLF directly decreases to 0, as shown in Figures 14–16.
Hence, MMDCF-MSLF can greatly reduce the information loss of the published microdata. With the
increasing of data volume, the distribution of the sensitive attribute values in the microdata becomes
more and more stable, so the additional information loss and the suppression ratio of MMDCF and
MMDCF-MSLF tend to be stable. Additionally, with the increasing of data volume, the CPU runtime
of MMDCF and MMDCF-MSLF increase gradually, and the CPU runtime of MMDCF-MSLF increases
faster than the that of MMDCF.

Figures 17–19 are the additional information loss, the suppression ratio and the CPU runtime of
MMDCF and MMDCF-MSLF when the number of sensitive attributes is changed from 2 to 5 and the
number of records is set to 2000, respectively.
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Compared with MMDCF, the additional information loss of MMDCF-MSLF increases a little, but
the suppression ratio of MMDCF-MSLF directly decreases to 0 according to Figures 17–19. Hence,
MMDCF-MSLF can greatly reduce the information loss of the published microdata. With the increasing
of sensitive attribute number, the additional information loss of MMDCF tends to be 0 quickly, and the
suppression ratio of MMDCF increases very fast. This illustrates that fewer and fewer groups can be
formed, and it is more and more difficult to add records to the formed groups with the increasing of
sensitive attribute number. With the increasing of sensitive attribute number, the additional information
loss of MMDCF-MSLF increases quickly and then decreases slowly, while its suppression ratio is
always 0. This illustrates that all records of the microdata can be grouped, but at first it is easier to
add records to the formed groups, and then it is more difficult to add records to the formed groups
with the increasing of sensitive attribute number. Additionally, the CPU runtime of MMDCF and
MMDCF-MSLF increase gradually, and the CPU runtime of MMDCF-MSLF increases faster than the
that of MMDCF with the increasing of sensitive attribute number.

From the above comparative analysis of MMDCF and MMDCF-MSLF, compared with MMDCF,
MMDCF-MSLF can greatly reduce the information loss of the published microdata, but its runtime is
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only a small increase. The information loss of MMDCF-MSLF tends to be stable with the increasing of
data volume, similar to Like MMDCF. Furthermore, MMDCF-MSLF can solve the problem that the
information loss of MMDCF increases greatly with the increasing of sensitive attribute number.

5.4. Comparative Analysis of MBF-MSLF, MSDCF-MSLF and MMDCF-MSLF

The suppression ratio of MBF-MSLF, MSDCF-MSLF and MMDCF-MSLF is 0 when the number
of records is changed from 1000 to 10000 and the number of sensitive attributes is set to 3. Further,
Figures 20 and 21 are the additional information loss and the CPU runtime of MBF-MSLF, MSDCF-MSLF
and MMDCF-MSLF when the number of records is changed from 1000 to 10000 and the number of
sensitive attributes is set to 3, respectively.
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With the increasing of data volume, the suppression ratio of MBF-MSLF, MSDCF-MSLF and
MMDCF-MSLF are all 0, but the additional information loss of MSDCF-MSLF or MMDCF-MSLF is
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smaller than that of MBF-MSLF according to Figure 20. This shows that all records can be grouped
by using MBF-MSLF, MSDCF-MSLF or MMDCF-MSLF, but the added records of MSDCF-MSLF or
MMDCF-MSLF is less than those of MBF-MSLF. In addition, with the increasing of data volume, the
CPU runtime of MBF-MSLF, MSDCF-MSLF and MMDCF-MSLF increase gradually, and the CPU
runtime of MSDCF-MSLF or MMDCF-MSLF increases faster than the that of MBF-MSLF according to
Figure 21.

The suppression ratio of MBF-MSLF, MSDCF-MSLF and MMDCF-MSLF is 0 when the number of
sensitive attributes is changed from 2 to 5 and the number of records is set to 2000. And Figures 22
and 23 are the additional information loss and the CPU runtime of MBF-MSLF, MSDCF-MSLF and
MMDCF-MSLF when the number of sensitive attributes is changed from 2 to 5 and the number of
records is set to 2000, respectively.
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attributes without destroying slL -diversity for multiple sensitive attributes of the group. Finally, the 
records that cannot be added to any formed slL -diversity group for multiple sensitive attributes will 
be suppressed in the published microdata. 

Figure 23. The CPU runtime of MBF-MSLF, MSDCF-MSLF and MMDCF-MSLF with different sensitive
attribute numbers (n = 2000).
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With the increasing of sensitive attribute number, the suppression ratio of MBF-MSLF,
MSDCF-MSLF and MMDCF-MSLF are all 0, but the additional information loss of MSDCF-MSLF
or MMDCF-MSLF is first smaller than that of MBF-MSLF, and then larger than that MBF-MSLF
according to Figure 22. This shows that all records can be grouped by using MBF-MSLF, MSDCF-MSLF
or MMDCF-MSLF, but the added records of MSDCF-MSLF or MMDCF-MSLF is first less than
those of MBF-MSLF, and then more than those of MBF-MSLF. In addition, with the increasing of
sensitive attribute number, the CPU runtime of MBF-MSLF, MSDCF-MSLF and MMDCF-MSLF increase
gradually, and the CPU runtime of MSDCF-MSLF or MMDCF-MSLF increases faster than the that of
MBF-MSLF according to Figure 23.

From the above comparative analysis of MBF-MSLF, MSDCF-MSLF and MMDCF-MSLF, their
information loss tends to be stable with the increasing of data volume. Compared with MBF-MSLF, the
runtime of MSDCF-MSLF or MMDCF-MSLF is only a small increase. Furthermore, when the number
of sensitive attributes is small, the information loss of MSDCF-MSLF or MMDCF-MSLF is lower than
that of MBF-MSLF, but the information loss of MSDCF-MSLF or MMDCF-MSLF is higher than that of
MBF-MSLF with the increasing of sensitive attribute number.

6. Conclusions

In this paper, we first defined three security levels for different sensitive attribute values, and given
an Lsl-diversity model for multiple sensitive attributes. Further, then we proposed three specific greed
algorithms based on the MBF, MSDCF and MMDCF algorithms and the MSLF greedy policy, named as
MBF-MSLF, MSDCF-MSLF and MMDCF-MSLF, to form Lsl-diversity groups for multiple sensitive
attributes. When forming an Lsl-diversity group for multiple sensitive attributes, the algorithms is
to first select an unshielded non-empty d dimensional bucket with the maximal sensitive attribute
security level and the largest bucket size (or the largest bucket selectivity), and extract a record from
the bucket to add to the group and delete the record from the bucket. For this record, all buckets of
some certain dimensions of the record are shielded when adding any record of these buckets to the
group will destroy Lsl-diversity for multiple sensitive attributes of the group. By repeating the above
process, the Lsl-diversity group for multiple sensitive attributes is formed. Following this, the shielding
of each d dimensional bucket is removed, and the above grouping process is repeated until a complete
Lsl-diversity group for multiple sensitive attributes cannot be formed. For each remaining record, it is
added to a formed Lsl-diversity group for multiple sensitive attributes without destroying Lsl-diversity
for multiple sensitive attributes of the group. Finally, the records that cannot be added to any formed
Lsl-diversity group for multiple sensitive attributes will be suppressed in the published microdata.

The experimental results show that the algorithms can greatly reduce the information loss of the
published microdata, but its runtime is only a small increase, when comparing with MBF, MSDCF
and MMDCF. Their information loss tends to be stable with the increasing of data volume, like MBF,
MSDCF and MMDCF. Further, they can solve the problem that the information loss of MBF, MSDCF
and MMDCF increases greatly with the increasing of sensitive attribute number. Compared with
MBF-MSLF, the runtime of MSDCF-MSLF or MMDCF-MSLF is only a small increase. Further, when
the number of sensitive attributes is small, the information loss of MSDCF-MSLF or MMDCF-MSLF is
lower than that of MBF-MSLF, but the information loss of MSDCF-MSLF or MMDCF-MSLF is higher
than that of MBF-MSLF with the increasing of sensitive attribute number. In this study, when there
are more than two unshielded non-empty d dimensional buckets with the same maximal sensitive
attribute security level and largest bucket size (or the largest bucket selectivity), we cannot know which
bucket should be selected first, so we can only select one of these buckets at random. We will further
introduce other security level greedy policies to solve this problem.
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