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Abstract: The transfer learning method is used to extend our existing model to more difficult scenarios,
thereby accelerating the training process and improving learning performance. The conditional
adversarial domain adaptation method proposed in 2018 is a particular type of transfer learning. It uses
the domain discriminator to identify which images the extracted features belong to. The features are
obtained from the feature extraction network. The stability of the domain discriminator directly affects
the classification accuracy. Here, we propose a new algorithm to improve the predictive accuracy.
First, we introduce the Lipschitz constraint condition into domain adaptation. If the constraint
condition can be satisfied, the method will be stable. Second, we analyze how to make the gradient
satisfy the condition, thereby deducing the modified gradient via the spectrum regularization method.
The modified gradient is then used to update the parameter matrix. The proposed method is compared
to the ResNet-50, deep adaptation network, domain adversarial neural network, joint adaptation
network, and conditional domain adversarial network methods using the datasets that are found
in Office-31, ImageCLEF-DA, and Office-Home. The simulations demonstrate that the proposed
method has a better performance than other methods with respect to accuracy.
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1. Introduction

Deep learning is a subset of machine learning, which is a subfield of artificial intelligence.
Deep learning has been widely applied, for example, in natural language processing, medical imaging
analysis, remote-sensing image analysis, and synthetic aperture radar (SAR) target recognition [1–5].
If the training dataset is insufficient, this insufficiency will affect the recognition accuracy. In some
applications, it is difficult to collect enough training data. Furthermore, manual annotation labels are
also considerably time-consuming [6]. In order to solve these problems, the transfer learning method
is used in deep learning. This method can search annotated data that are similar, transferring learning
to the target data and thereby increasing the size of the target dataset and improving the performance
of deep learning. Transfer learning can be used to transfer labels or data structures from the Source
domain (training dataset of other objects) to the Target domain (training dataset of the current object)
in order to improve the learning effect [7].

Transfer learning can be divided into two categories: heterogeneous transfer learning and
homogeneous transfer learning. In heterogeneous transfer learning, the Source and Target datasets
are different in both their features and label spaces. In homogeneous transfer learning, the Source
and Target datasets are the same in both their features and label spaces. Domain adaptation is
one form of homogeneous transfer learning. It is used to search the shared features between the
Source and Target domains in a high dimensional space [8]. Domain adaptation can be divided
into the distribution adaptation, subspace learning, and feature representation transfer methods.
The distribution adaptation method is a commonly used method of domain adaptation. This method
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can reduce the distribution distance between the Source and Target domains by applying certain
transformations [9,10]. The subspace learning method assumes that the subspace distribution of the
Source domain and the Target domain remains the same after transformation [11,12]. The feature
representation transfer method searches for similar features between the Source and Target domains
to realize domain adaptation. There are several methods involved in feature representation transfer,
such as the feature selection and structure preservation (FSSL) method [13]. This method uses feature
selection to find the same information for both the Source domain and Target domain to solve the issue
of domain adaptation.

The deep adaptation networks (DAN) method [14] uses three adaptation layers that lie behind the
feature extraction layer to calculate the distance between the Source and Target domains. The adaptation
layer is a layer in the networks that is used to examine the whole network’s ability to distinguish the
Source domain and Target domain. The smaller the distance measurement is, the better the network’s
performance is. Based on the DAN method, the joint adaptation network (JAN) method [15] proposed
a joint distribution measurement (JMMD) method which not only puts the data into the adaptation
layer, but also includes the labels of the data together in the adaptation layer. The residual transfer
network (RTN) [16] method does not involve the assumption that the Source and Target domains share
one classifier; instead, it uses two domain classifiers and a residual function to calculate the difference
between the Source classifier and Target classifiers. This can reduce the domain differences. The joint
convolutional neural network architecture for the domain and task transfer method [17] proposes
simultaneous transfer of the domain and task. It uses the class distribution relationship of the Source
domain to constrain the Target domain. The adaptive batch normalization (AdaBN) method [18] does
not involve an additional adaptive layer in the network but instead adds the adaptation of statistical
features into the normalization layer in order to complete the transfer. It does not require additional
components and parameters, making it very simple and effective.

Ganin Yaroslav was the first person to add the generative adversarial network to the domain
adaptation network to measure the data distribution difference between the Source and Target
domains [19]. The generative adversarial network [20] is used to generate data to extend an existing
dataset, but the generated data and real data cannot be distinguished by the discriminator. Based on
the proposed framework, the adversarial discriminative domain adaptation (ADDA) method [21]
proposes a generic framework of domain adaptation that uses the adversarial network. This method
uses the generative adversarial network loss function as the loss function of the proposed network,
and adds the discriminative network to the proposed network. The ADDA method can complete
transfer learning when the data distribution of the Source domain and Target domain features a large
difference. The conditional adversarial domain adaptation (CDAN) method [22] uses a multilinear
map to combine the features and labels from the Source domain and Target domains, adding the
information entropy into the loss function to reduce the adverse effect of the samples that are difficult

to transfer. The information entropy is H(g) = −
C∑

c=1
gc log gc (C is the total number of classes and gc is

the probability of predicting an example for class c). There are further domain adaptation methods
that can be used when searching for domain invariant features in which the features are shared by
the Source and Target domains. The Wasserstein distance guided representation learning (WDGRL)
method [23] uses the Wasserstein distance [24] to calculate the difference in the distance between
the Source and Target domains. The cycle-consistent adversarial domain adaptation (CyCADA)
method [25] constructs a network to search for optimal shared features between the Source and Target
domains. This network is used to generate a Target domain from the Source domain, and to generate a
Source domain from the generated Target domain. The whole domain generation process is cyclic,
so it is called a circular network. In unsupervised image-to-image translation (UNIT) [26], a network
framework is designed that is used to learn the joint distribution of different domains by using marginal
distribution. The selective adversarial networks (SAN) method [27] proposes partial transfer learning
to solve the problem of a Source domain that has far more data categories than the Target domain.
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In Section 1, we introduced transfer learning and some related algorithms concerning domain
adaptation. The conditional adversarial domain adaptation (CDAN) method is introduced in detail in
Section 2. The proposed method is then presented in Section 3. In Section 4, the simulation is presented
and discussed.

2. Conditional Adversarial Domain Adaptation

Although domain adaptation can help to solve a dataset that lacks labels, for domain adaptation,
which uses an adversarial network, some problems remain. First, the previous algorithms only aligned
the features of the data without also considering the labels. Second, if the modal structure of the
data features is highly complex, the current domain adaptation method—which uses an adversarial
network—cannot locate the multimodal structures, representing a simple cause of negative transfer.
Third, the minimax optimization method in the conditional domain discriminator imposes different
examples that have equal importance. This may result in adverse effects of hard-to-transfer examples
upon domain adaptation.

In order to solve these problems, a conditional adversarial domain adaptation (CDAN) method is
proposed [22]. The framework of the CDAN is outlined in Figure 1. In adversarial domain adaptation,
the classifier prediction result carries potentially discriminant information revealing multimodal
results. This potentially discriminant information is used to align the appropriate features to capture
multimodal information during network training. Based on this, the CDAN method combines
features and labels that are introduced to domain adaptation to obtain the loss function, which can be
expressed as:

min
G
ε(G) − λε(D, G), (1)

min
D
ε(D, G), (2)

where λ is a hyper parameter between the two objectives for the tradeoff source risk and domain
adversary; ε(G) is located on the source classifier G and ε(D, G) on the source classifier G and domain
discriminator D, which are respectively expressed as:

ε(G) = E(xs
i ,ys

i )∼DsL
(
G
(
xs

i

)
, ys

i

)
, (3)

ε(D, G) = −Exs
i∼Ds log[D( f s

i , gs
i )] − Ext

j∼Dt log[1−D( f t
j , gt

j)], (4)

where f and g are the feature and label of the Source domain and Target domain, respectively, L() is
the cross-entropy loss function, s is the Source domain and t is the Target domain.

The CDAN method uses a multilinear map to connect f and g to form h = ( f , g)—this can
represent the relationship between features and labels. f ⊗ g represents a multilinear map, and ⊗ is
tensor multiplication. However, when the dimensions of the feature and label are large, the dimension
of f ⊗ g is d f × dg and will suffer from exploding gradient problems. The authors addressed this issue
by randomly selecting some dimensions of f and g to construct a multilinear map:

T � ( f , g) =
1
√

d

(
R f f

)
�

(
Rgg

)
, (5)

where � is the element-wise product, R f and Rg are random matrices which are only sampled once and
are fixed during training, and d is the dimension. CDAN finds that T⊗ = T� is in a high-dimensional
space. Thus, when the dimensional multiplication of f and g is greater than 4096, a random strategy is
used for the multilinear map. Otherwise, the normal multilinear map is used:

T(h) =

T⊗( f , g) d f × dg ≤ 4096

T�( f , g) otherwise
. (6)
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Furthermore, the CDAN method uses entropy H(g) = −
C∑

c=1
gc log gc(C is the total number of

classes and gc is the probability of predicting for example to class c) to calculate the uncertainty of the
predicted result of the classifier. The certainty of the predicted result is expressed as:

ω(H(g)) = 1 + e−H(g), (7)

and then the loss function in (1) and (2) can be expressed as:

min
G

E(xs
i ,ys

i )∼DsL
(
G
(
xs

i

)
, ys

i

)
+λ

(
Exs

i∼Dsω
(
H
(
gs

i

))
log

[
D
(
T
(
hs

i

))]
+ Ext

j∼Dtω
(
H
(
gt

j

))
log

[
D
(
T
(
ht

j

))]) (8)

max
D

Exs
i∼Dsω

(
H
(
gs

i

))
log

[
D
(
T
(
hs

i

))]
+ Ext

j∼Dtω
(
H
(
gt

j

))
log

[
D
(
T
(
ht

j

))]
. (9)

Following the concepts introduced above, the network structure of CDAN is presented in Figure 1.
Figure 1a illustrates the network structure in a low-dimensional scenario, while Figure 1b features the
network structure in a high-dimensional scenario.
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Figure 1. Network structure of the conditional adversarial domain adaptation (CDAN). (a) Network
structure in a low-dimensional scenario; (b) Network structure in a high-dimensional scenario.

3. Proposed Method

The conditional domain adversarial network (CDAN) adds an adversarial network into domain
adaptation in order to search for a domain invariant feature. This adversarial network is composed of
a label classifier, feature extractor, and domain discriminator. The better the domain discriminator
performs, the more significantly the feature extractor gradient disappears. When the domain
discriminator is trained too well, the gradient of the feature extractor will reach zero, and when
the domain discriminator is trained too poorly, the gradient of the feature extractor does not decrease.
Only when the training of the domain discriminator is neither good nor bad does the feature extractor
exhibit a better performance.
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To overcome this problem, we introduced the 1-Lipschitz constraint condition into the adversarial
network of the CDAN method. The Lipschitz constraint condition is:

‖ f (x + δ) − f (x)‖2
‖δ‖2

≤ 1, (10)

where f () is a function, x is a variable, and δ is a smaller variable. In the proposed method, the output
of the nth layer can be expressed as:

Xn = f (WnXn−1 + bn), (11)

where Xn is output of the nth layer, f () is an activation function that corresponds to the function f () in
(10), Xn−1 is output of (n− 1)th layer, Wn and bn are the parameter matrix and bias of the network in
the n layer, respectively. The activation function is a ReLU (Rectified Linear Unit) function, so the bias
units can be ignored. Therefore, the output of the nth layer in (11) can be simplified as follows:

Xn = DnWnXn−1, (12)

where Dn is a diagonal matrix that is obtained by using the ReLU function as an activation function in
(11). In this way, the relationship between the output of the nth layer and input can be expressed as:

Xn(X0) = DnWnDn−1Wn−1 · · ·D2W2D1W1X0, (13)

and the norm of gradient Xn can be expressed as:

‖∇Xn‖2 =
‖Xn(X0+δ)−Xn(X0)‖2

‖δ‖2

=
‖DnWnDn−1Wn−1···D2W2D1W1(X0+δ)−DnWnDn−1Wn−1···D2W2D1W1X0‖2

‖δ‖2

=
‖DnWnDn−1Wn−1···D2W2D1W1δ‖2

‖δ‖2

(14)

where ‖∇Xn‖2 is the gradient of Xn, and δ is a smaller variable around X0. According to the computation
method of the maximum singular value of the matrix:

max
‖δ‖,0

‖Mδ‖2
‖δ‖2

= max
‖δ‖=1

‖M‖2, (15)

where M is a matrix. We can thus obtain the maximum value of ‖∇Xn‖2, with:

(‖∇Xn‖2)max = ‖DnWnDn−1Wn−1 · · ·D2W2D1W1‖2, (16)

where ‖DnWn . . .D1W1‖2 is the spectral norm of DnWnDn−1Wn−1 · · ·D2W2D1W1. According to:

‖AB‖2 ≤ ‖A‖2 × ‖B‖2, (17)

‖DnWnDn−1Wn−1 · · ·D2W2D1W1‖2 ≤ ‖Dn‖2‖Wn‖2‖Dn−1‖2‖Wn−1‖2 · · · ‖D2‖2‖W2‖2‖D1‖2‖W1‖2, (18)

where ‖D‖2 is the spectral norm of the diagonal matrix D, and ‖W‖2 is the spectral norm of the parameter
matrix W.Based on (16) and (18), we can deduce that:

(‖∇Xn‖2)max ≤ ‖Dn‖2‖Wn‖2‖Dn−1‖2‖Wn−1‖2 · · · ‖D2‖2‖W2‖2‖D1‖2‖W1‖2, (19)

when the activation function used in our proposed method is the ReLU function, and the diagonal
element is 1 when the diagonal element is greater than 0, and 0 when the diagonal element is less than
0. Therefore, the spectral norm of the diagonal matrix D is 1 [28]. When the activation function used is
sigmoid, the value of the diagonal element is between 0 and 1. Therefore, the spectral norm of the
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diagonal matrix that corresponds to the sigmoid function is still less than that of the corresponding
ReLU function. Based on the above analysis, the expression in (19) is correct when we use the ReLU
function or sigmoid function as an activation function. Thus, we can conclude that:

‖Dn‖2‖Wn‖2‖Dn−1‖2‖Wn−1‖2 · · · ‖D2‖2‖W2‖2‖D1‖2‖W1‖2 ≤

N∏
i=1

‖Wi‖2. (20)

Based on (14), (19) and (20), we can deduce that:

‖∇Xn‖2 ≤ (‖∇Xn‖2)max ≤

N∏
i=1

‖Wi‖2. (21)

Finally, in order to allow the gradient to meet the Lipschitz constraint in (10), we use the spectral
norm of the parameter matrix to correct the gradient:

‖∇X∗n‖2 =
‖∇Xn‖2
N∏

i=1
‖Wi‖2

≤
(‖∇Xn‖2)max

N∏
i=1
‖Wi‖2

=
‖DnWnDn−1Wn−1 · · ·D2W2D1W1‖2

N∏
i=1
‖Wi‖2

≤

N∏
i=1

‖Wi‖2
‖Wi‖2

= 1, (22)

where ‖∇X∗n‖2 is the normalized gradient norm of ‖∇Xn‖2. Based on (22), we can see that the corrected
gradient meets the 1-Lipschitz constraint. Therefore, if we use this corrected gradient as the new
gradient, the domain discriminator will be stable. The parameter matrix can be updated by:

Wn = Wn−1 − µ×∇X∗n, (23)

where µ is the learning rate,Wn is the parameter matrix of the nth layer, and Wn−1 is the parameter
matrix of the n− 1th layer.

Thus, the 1-Lipschitz constraint can be satisfied by dividing the network parameters matrix of
each layer by the spectral norm of the parameter matrix of the layer. The above shows the content of
the normalized spectrum. The specific network architecture of the proposed method is presented in
Figure 2.Information 2020, 11, 68 7 of 13 
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Figure 2. The network structure of the proposed method.

Figure 2 illustrates the framework of the proposed method, where the images of the source and
target domains are taken from the A and W domains in the Office-31 dataset. The basic network in this
article is ResNet-50. After the data are processed through the basic network, the labels and features
f s, gs of the source domain and f t, gt of the target domain are obtained. These features are then placed
into the adversarial network. In the first layer of the adversarial network, the labels and features first
pass through Spectrum layer 1 and then pass through the activation function layer ReLU 1, before
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finally passing through Dropout1. The processed data are then put into Spectrum layer2. These data
first pass through Spectrum layer 2 and are then input to the ReLU 2; finally, they are treated with
Dropout 2. Then, the data are placed into the third part, and the processed data are put into Spectrum
layer 3, before finally passing the sigmoid layer. The final output data are the labels of the source and
target domains.

4. Simulation and Discussion

We used three datasets in order to compare our proposed method with the other transfer learning
methods of ResNet-50 [1], DAN [14], DANN [19], JAN [15], and CDAN [22]. The three datasets
were Office-31 [29], ImageCLEF-DA, and Office-Home [2]. The Office-31 dataset is widely used in
transfer learning. This dataset contains 4652 images within 31 classes. These images are collected
from three domains: Amazon(A), Webcam(W), and DSLR(D). All transfer learning methods were
tested in six transfer tasks: A→W, D→W, W→D, A→D, D→A, and W→A. ImageCLEF-DA has twelve
classes and comprises three datasets: caltech-256 (C), ILSVRC 2012 (I), and Pascal VOC 2012 (P). In
using this dataset, the results from our proposed method were compared with the existing transfer
learning methods in the six transfer learning tasks: I→P, P→I, I→C, C→I, C→P, P→C. Office-Home,
which was first presented at the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
in 2017, has greater complexity than the Office-31 dataset. This dataset consists of 15,500 images,
65 classes, and 4 domains: artistic images (Ar), clip art (CI), product images (Pr), and real-word images
(RW). The four domains are significantly different.We tested our proposed method with others in the
following 12 transfer learning tasks: Ar→CI, Ar→Pr, Ar→Rw, CI→Ar, CI→Pr, CI→Rw, Pr→Ar, Pr→CI,
Pr→Rw, Rw→Ar, Rw→CI, and Rw→Pr. The basic network used in the experiment was ResNet-50,
and the deep learning framework was PyTorch [30]. PyTorch is a popular deep learning framework,
which is used by Facebook, Twitter, etc. The version of PyTorch we used is Pytorch1.1.

In all experiments, we used the same protocol with a conditional domain adversarial network,
and the classification accuracies were obtained through averaging the results of five randomized
experiments. The transfer loss and classifier loss had the same proportion for all methods. We used
importance-weighted cross-validation (IWCV) [31] to select all hyperparameters. The IWCV is a type
of cross-validation. It multiplies the loss function by the marginal distribution ratio of Source domain
to Target domain, and uses the obtained loss function as the basis for selecting all hyperparameters.
It is highly immune to covariate shift, i.e., data distributions of the Source domain and Target domain
are different, and the conditional adversarial domain adaptation method that we used to compare
to our proposed method also uses the IWCV to select all hyperparameters. Therefore, we also
used IWCV as a cross-validation method. Other methods have also used IWCV as a method for
cross-validation [22,32,33]. The main difference between IWCV and the cross-validation (CV) used in
references [18,19,27] is the marginal distribution ratio. CV directly uses the loss function, while IWCV
uses an improved loss function. We used IWCV to select the hyperparameter in task A→W.We first
divided the training set into ten parts. Second, we selected one part as a validation set, and the rest
was used as a training set in each cross-validation. The number of folds used in cross-validations was
ten. Finally, if the average accuracy was higher than the threshold, the hyperparameters were reserved
and applied to all datasets. The momentum, batch size, and weight decay were 0.9, 36, and 0.0005
for the mini-batch SGD (Stochastic Gradient Descent) used in our proposed method and the CADN
method, respectively. The learning rates of the proposed method and the CADN method were the
same (0.001). The operating system we used was Ubuntu 18.04, the CPU was an Intel Xeon E5-2678v3,
and the GPU was an NVIDIA GeForce GTX 1080Ti.

4.1. Comparison of Accuracy

Table 1 shows the results obtained from our proposed method and the other methods, including
the ResNet-50, DAN, DANN, JAN, and CDAN methods, based on the Office-31 dataset. As seen in
Table 1, the proposed method had the highest accuracy for all tasks, except forW→D. The accuracies
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of the proposed method and the CDAN method were the same for W→D, at 100%. We can also see
that compared to other methods, the improved accuracy of our proposed method was different for
different tasks. Compared with the CDAN method, our method improved the accuracy of task A→D
by 4.9%, task W→A by 3.7%, task D→A by 2.5%, task A→W by 2.2%, and task D→W by 0.7%. For our
proposed method, the improvement in accuracy was largest for task A→D and lowest for task W→D
when compared to the CDAN method. Compared to the CDAN method, the average accuracy of the
proposed method presented an increase of 2.3%. Based on the above analysis, the results show that the
proposed method had better accuracy than the others for the Office-31 dataset.

Table 1. Accuracy (%) on Office-31 for unsupervised domain adaptation (ResNet-50).

Method A→W D→W W→D A→D D→A W→A Avg

Resnet-50 68.4 ± 0.2 96.7 ± 0.1 99.3 ± 0.1 68.9 ± 0.2 62.5 ± 0.3 60.7 ± 0.3 76.1
DAN 80.5 ± 0.4 97.1 ± 0.2 99.6 ± 0.1 78.6 ± 0.2 63.6 ± 0.3 62.8 ± 0.2 80.4

DANN 82.0 ± 0.2 96.9 ± 0.2 99.1 ± 0.1 79.7 ± 0.4 68.2 ± 0.4 67.4 ± 0.5 82.2
JAN 85.4 ± 0.3 97.4 ± 0.2 99.8 ± 0.2 84.7 ± 0.3 68.6 ± 0.3 70.0 ± 0.4 84.3

CDAN 93.1 ± 0.5 98.2 ± 0.2 100 ± 0.0 89.8 ± 0.3 70.1 ± 0.4 68.0 ± 0.4 86.6
Proposed method 95.3 ± 0.2 98.9 ± 0.1 100 ± 0.0 94.7 ± 0.3 72.6 ± 0.2 71.7 ± 0.2 88.9

Table 2 shows the results that were obtained using our proposed method and the other methods,
the ResNet-50, DAN, DANN, JAN, and CDAN methods, based on the ImageCLEF-DA dataset. As seen
in Table 2, the proposed method also had the highest accuracy for all tasks, as well as highest average
accuracy compared to the other methods. The improved accuracy of our proposed method was
also different for different tasks. Compared to the CDAN method, the improved accuracy of our
proposed method(2.1%) was highest for C→P and lowest for I→C (0.5%). The average accuracy of the
proposed method exceeded the CDAN method by 1.3%. Based on the above analysis, the proposed
method presented the highest accuracy for all tasks and the highest average accuracy when using the
ImageCLEF-DA dataset.

Table 2. Accuracy (%) on ImageCLEF-DA for unsupervised domain adaptation (ResNet-50).

Method I→P P→I I→C C→I C→P P→C Avg

ResNet-50 74.8 ± 0.3 83.9 ± 0.1 91.5 ± 0.3 78.0 ± 0.2 65.5 ± 0.3 91.2 ± 0.3 80.7
DAN 74.5 ± 0.4 82.2 ± 0.2 92.8 ± 0.2 86.3 ± 0.4 69.2 ± 0.4 89.8 ± 0.4 82.5

DANN 75.0 ± 0.6 86.0 ± 0.3 96.2 ± 0.4 87.0 ± 0.5 74.3 ± 0.5 91.5 ± 0.6 85.0
JAN 76.8 ± 0.4 88.0 ± 0.2 94.7 ± 0.2 89.5 ± 0.3 74.2 ± 0.3 91.7 ± 0.3 85.8

CDAN 76.7 ± 0.3 90.6 ± 0.3 97.0 ± 0.4 90.5 ± 0.4 74.5 ± 0.3 93.5 ± 0.4 87.1
Proposed method 78.1 ± 0.2 91.5 ± 0.2 97.5 ± 0.2 92.1 ± 0.3 76.6 ± 0.3 95.0 ± 0.1 88.4

Table 3 presents the results that were obtained using our proposed method and the other
methods (i.e., ResNet-50, DAN, DANN, JAN, and the CDAN method, based on the Office-Home
dataset). The proposed method also had the highest accuracy for all tasks and average accuracy when
compared to other methods. Compared to the CDAN method, the improved accuracy of our proposed
method(5.1%) was the largest for CI→Pr and lowest for Ar→RW (1.8%), with an improved average
accuracy of 3.3%. Based on the above analysis, the proposed method had the highest level of accuracy
for all tasks and the highest average accuracy when using the Office-Home dataset.

Based on the analysis of Tables 1–3, the improved average accuracy of our proposed method as
compared to the CDAN method was the largest for the Office-Home dataset, followed byOffice-31
and ImageCLEF-DA. The accuracies of all methods were lower for the Office-Home dataset than for
the other datasets, so there is great potential for improved accuracy; the improved accuracy for the
Office-Home dataset was also larger than for the other datasets and in comparison with the other
methods. Based on the above analysis, the proposed method had better accuracy for all tasks and
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better average accuracy compared to the ResNet-50, DAN, DANN, JAN, and CDAN methods for
different datasets.

Table 3. Accuracy (%) on Office-Home for unsupervised domain adaptation (RseNet-50).

Method Ar→CI Ar→Pr Ar→RW CI→Ar CI→Pr CI→RW Pr→Ar Pr→CI Pr→RW RW→Ar RW→CI RW→Pr Avg

ResNet-50 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DAN 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3

DANN 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
JAN 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3

CDAN 49.0 69.3 74.5 54.4 66.0 68.4 55.6 48.3 75.9 68.4 55.4 80.5 63.8
Proposed
method 52.0 72.0 76.3 59.4 71.7 72.6 58.6 52.0 79.2 71.6 58.1 82.8 67.1

4.2. Comparison of the Convergence Speed

In this section, our proposed method is compared to the ResNet-50, DANN, and CDAN methods to
test the performance of its convergence in the test task of A→W using the Office-31 dataset. The results
of the comparison are shown in Figure 3.
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Figure 3 indicates that the proposed method had the lowest error, while the next best were the
CDAN, DANN, and RestNet-50 methods. From the perspective of convergence, the DANN and
RestNet-50 methods did not converge after 60,000 iterations. The CDAN method converged after
41,000 iterations, and the proposed method converged after 6999 iterations. When the methods
converged, the number of iterations by the proposed method was only about 741. Based on the above
analysis presented in Figure 3, the proposed method had faster convergence and fewer errors than the
other methods.

4.3. Comparison of Distribution Discrepancy

In this section, the A-distance [34], which is used by many researchers, is also used to test the
performance of different methods in distribution discrepancy. The A-distance can be used to reflect
the distribution discrepancy between two datasets. The A-distance can train a binary classifier in the
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Source and Target domain so that the trained binary classifier can distinguish whether the data come
from the Source or Target domain. The A-distance can be expressed as:

distA = 2(1− 2ε), (24)

where ε is the test error of the classifier. The smaller the A-distance, the closer the distance between the
Source and Target domains, which were processed by the network in this method. We separately tested
for the distribution discrepancy performance of the different methods in the A→W and W→D tasks in
the Office-31 dataset, I→P and P→I tasks in the ImageCLEF-DA dataset, and Ar→CI and CI→Ar tasks
in the Office-Home dataset. The results are presented in Figures 4–6, respectively. In Figure 4, for task
A→W, the A-distances of ResNet-50, DANN, CDAN, and the proposed method were 1.8,1.44,1.22,
and 0.88, respectively. The proposed method presented the smallest A-distances. In task W→D,
the A-distances of ResNet-50, DANN, CDAN, and the proposed method were 1.3,1.2,0.66, and 0.44,
respectively. The proposed method again featured the smallest A-distances. In Figures 5 and 6, we can
also see that the proposed method retained the smallest A-distances for different tasks. These results
imply that the proposed method has the best performance in extracting features.
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5. Conclusions

This paper presents the use of spectral normalization in a domain adaption method based on an
adversarial network in order to ensure that the gradient satisfies the Lipschitz constraint condition.
The results show that this can make the training of domain adaption more stable. The proposed
method presents a higher accuracy when compared to other methods based on three different datasets,
that is, Office-31, ImageCLEF-DA, and Office-Home. Further, the proposed method exhibits both faster
convergence speed and better distribution discrepancy than that achieved by other methods.
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