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Abstract: Distantly Supervised relation extraction methods can automatically extract the relation
between entity pairs, which are essential for the construction of a knowledge graph. However,
the automatically constructed datasets comprise amounts of low-quality sentences and noisy words,
and the current Distantly Supervised methods ignore these noisy data, resulting in unacceptable
accuracy. To mitigate this problem, we present a novel Distantly Supervised approach SEGRE
(Semantic Enhanced Graph attention networks Relation Extraction) for improved relation extraction.
Our model first uses word position and entity type information to provide abundant local features
and background knowledge. Then it builds the dependency trees to remove noisy words that are
irrelevant to relations and employs Graph Attention Networks (GATs) to encode syntactic information,
which also captures the important semantic features of relational words in each instance. Furthermore,
to make our model more robust against noisy words, the intra-bag attention module is used to weight
the bag representation and mitigate noise in the bag. Through extensive experiments on Riedel
New York Times (NYT) and Google IISc Distantly Supervised (GIDS) datasets, we demonstrate
SEGRE’s effectiveness.

Keywords: distantly supervised; relation extraction; graph attention network; dependency tree

1. Introduction

Relation extraction aims to extract relations between pairs of marked entities in texts, which is
one of the fundamental tasks in natural language processing (NLP) [1–3]. One primary problem
of traditional supervised relation extraction (RE) methods is the requirement of large-scale manual
labeling, which is very time-consuming and labor-intensive. Thus, Mintz et al. [4] proposed a Distantly
Supervised RE, which constructs the dataset by aligning a known knowledge base (KB) and sentences
crawled from web pages of the New York Times (NYT) automatically. Under the assumption that,
if there is a relation between two entities in KB, then all sentences containing these two entities also
represent the same relation. The problem of incorrect labeling often occurs. Riedel et al. [5] proposed
a multi-instance learning method to relax this assumption. Despite the problem of wrong labeling,
the Distantly Supervised methods still suffer from low-quality sentences, which are automatically
generated by crawling web pages [6]. To handle the problem of low-quality sentences, we have to face
two major challenges: (1) increase valuable auxiliary information; (2) reduce the noise of irrelevant
words in the sentence. Noisy words in the text refer to words that do not contain semantics or words
that have nothing to do with the information conveyed by the text. Non-noisy words refer to words
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that contain semantics and are also a part of text semantics. When the noisy words are removed from
the text, the rest are non-noisy words.

For the use of valuable auxiliary information, an idea model should make full use of local features
or external information to extract precise semantic features from low-quality sentences containing
noisy words. On the one hand, by encoding the position information of the word in the sentence,
the position features of the corpus can be obtained. On the other hand, entity type information provides
abundant background knowledge, which can be used to enhance semantics and the effectiveness of
RE. For instance, the sentence “[SeamlessWeb]e1 is a symbol of the heavy time commitment demanded
by many of [NewYork]e2’s professional service firms”, the entity pair SeamlessWeb and NewYork
has a relation /business/company/place_ f ounded, which is difficult to extract if the information
Seamlessweb is a company and new_york is a location is lacking. Therefore, entity features learned
from entity types are prior knowledge to initialize the RE model. We will use the entity type information
to obtain more entity semantic features in this paper.

As for the other challenge, syntactic structure information is used to capture the semantic
relationship and reduce the noise in the sentence. Figure 1 illustrates two methods for acquiring
sentence semantics. In (a), the shortest dependent path between the entity pairs is displayed in the
dependency tree and highlighted in bold (edges and marks). The dependency tree is used to express
the dependency relationship between words in a sentence. Specifically, it analyzes and recognizes the
grammatical components such as “subject-predicate-object” and “fixed adverbial complement” in the
sentence. The dotted line is not the shortest path, but it also has a semantic impact on the critical path.
Through the syntactic dependency graph, we can more intuitively discover the syntactic relationship
between two entity pairs, reduce the interference of irrelevant words, which helps understand sentences
and achieve more accurate relationship extraction. In (b), sequence structure refers to reading the
words in a sentence sequentially from left to right. The sequence method is using adjacent words
to obtain sentence semantics, which cannot obtain the direct connection between the keywords in
the sentence. Comparing the advantages and disadvantages of the two methods, this paper chooses
the dependency tree method, making full use of the syntactic structure to effectively analyze the
semantic connection between the entity pairs, and judging the relationship between the entity pairs
more reasonably.

Figure 1. The example uses dependency tree and sequence structure to obtain sentence semantic,
and assist in extracting relations between entities (indicated in red). In (a), the dependency tree can
clearly express the dependency relationship between words in the sentence. Specifically, it analyzes
and recognizes the grammatical components such as “subject-predicate-object” and “fixed adverbial
complement” in the sentence. Each node is representing a word. In (b), the words in the sentence
are read sequentially, usually from the left to the right, such as LSTM and GRU, while there are also
two-way sequential reading forms, such as BiLSTM and BiGRU.

In this paper, we propose a novel semantic enhanced Distantly Supervised relation extraction
method SEGRE, which utilizes additional semantic information and dependent syntactic to improve
effective semantics against noisy words and reduce inner-sentence noise. For improving effective



Information 2020, 11, 528 3 of 12

semantics, SEGRE adopts word position and entity type information to provide abundant local features
and background knowledge. Furthermore, it uses encoded syntactic information obtained from Graph
Attention Networks along with embedded additional semantic information to improve neural relation
extraction. Our contributions can be summarized as follows:

• We propose SEGRE, a novel semantic enhanced method for improving Distantly Supervised RE,
which utilizes additional semantic features and knowledge learned from word position and entity
type information to strengthen its robustness against low-quality corpus.

• To handle the problem of low-quality sentences, SEGRE uses Graph Attention Networks for
modeling syntactic information and enhancing semantic features of important words, which has
been shown to perform competitively.

• Experimental results show that SEGRE has achieved significant results on benchmark datasets,
which improves the Precision/Recall (PR) curve area from 0.39 to 0.41 and increases P@100 by
4.7% over the state-of-the-art work.

The rest of this paper is organized as follows. Section 2 summarizes previous studies on relation
extraction. Section 3 details the proposed model SEGRE and describes its various modules. Section 4
presents the experimental results. Section 5 concludes the paper.

2. Related Work

Relation extraction is a key component of constructing a relational knowledge graph and can
be applied to structured search, sentiment analysis, question answering, and summary. Distantly
Supervised relation extraction is proposed by Mintz et al. [4] to solve the problem of the lack of labeled
training data. However, the sentence that refers to these two entities does not necessarily represent
the relationship in the known knowledge base. Distantly Supervised inevitably causes an incorrect
labeling problem. Thus, multi-instance learning methods are adopted to address this issue [5,7,8].

Deep neural network models are often used to perform relation extraction tasks. Here we
introduce several basic types of deep neural networks: RNN [9] is widely used in the processing of
time series data but has the problem of Long-Term Dependencies. The LSTM [10] model was born and
used to improve this situation. biLSTM is a combination of the forward lstm and the backward lstm,
which can encode front-to-back and back-to-front information and capture bidirectional semantics.
LSTM also has many variants, among which the most used is GRU [11], which combines the forget
gate and the input gate into a single update gate. The biGRU is a combination of the forward GRU and
the backward GRU.

The large-scale automatically constructed dataset by crawling web pages will lead to the amount
of low-quality sentences [12]. The use of additional semantic information provides abundant features
and knowledge to enhance semantics against low-quality corpus. Zeng et al. [13] adopted piecewise
convolution neural networks (PCNNs), which use the position information of words in a sentence
to model the sentence representation. Yaghoobzadeh et al. [14] also tried to mitigate the noise in DS
by combining entity type and relation extraction models. Vashishth et al. [15] used entity type and
relation alias information to impose soft constraints when predicting relations. However, the above
methods ignore inner-sentence noise.

As neural networks have been widely used, an increasing number of researches have been
proposed. Lin et al. [16] proposed selective attention to neural network examples. Ji et al. [12] assigned
more precise attention weights using entity descriptions. Nagarajan et al. [17] used attention to
learn from multiple valid sentences. We also used attention mechanisms [18] to learn sentence and
bag representations.

Moreover, features based on dependency trees are beneficial for relation extraction [4].
Xu et al. [19] adjusted the neural model to encode the shortest dependent path. Zhang et al. [20]
adopted a path-centric pruning strategy. He et al. [21] established Subtree Parsing (STP) to delete
noisy words that are not related to relations. Graph convolution network (GCN) [22] incorporates
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structural information based on dependencies into the neural models. Song et al. [23] used GCN
to directly encode the complete dependency graph. Zhang et al. [3] proposed Attention Guided
Graph Convolution Networks (AGGCNs), a soft pruning method that automatically selects useful
substructures. More recently, Velickovic et al. [24] proposed graph attention networks (GATs),
which uses the attention mechanism to weight neighborhood states. The combination of reducing
inner-sentence noise and using additional semantic information can better improve the performance
of relation extraction.

Recently, scholars adopt feature extraction and text analysis methods in specific application
scenarios to improve performance. Ali et al. [25] proposed a big data analytics engine based on data
mining techniques, ontologies, and BiLSTM to improve healthcare monitoring accuracy. Ali et al. [26]
used ensemble deep learning and feature fusion approaches to predict heart disease. Kaplan et al. [27]
applied feature extraction technology to diagnose bearing vibration signals. Ayvaz et al. [28] studied
to diminish the deficiency in the strategic cost management and prediction of economic crises with
deep learning methods. Distantly supervised relation extraction is also beneficial for the construction
of a knowledge graph in a specific application domain.

3. SEGRE Model (Semantic Enhanced GATs Relation Extraction)

An overview of the proposed SEGRE for Distantly Supervised relation extraction is illustrated
in Figure 2. SEGRE consists of three modules used to learn the representation of a given bag and
feed it into the softmax classifier. Firstly, the input sentences concatenate word, position and entity
type embedding to encode the local context of each word and get the multi-level word representation.
Secondly, we construct a syntactic dependency tree for each word in the sentence through a Bi-GRU
and input it into the graph attention network to get the syntactic sentence representation. Furthermore,
a group of bags sharing the same relation label in the training set is aggregated using the intra-bag
attention module to weight the bag representation. Finally, the bag representation is fed to a softmax
classifier to get the relation of the entity pair in the sentence. Each module will be described in detail
in subsequent sections.

Figure 2. The framework of the proposed Semantic Enhanced Graph attention networks Relation
Extraction (SEGRE). SEGRE first encodes each word in the sentence by concatenating word, position,
and entity type information. Then the sentence representation is achieved by constructing a graph
attention network using a syntactic dependency tree. Next, the bag representation is calculated by
weighting sentence embeddings using intra-bag attention. Finally, the bag representation is fed to a
softmax classifier to get the relation of the entity pair.

3.1. Multi-Level Word Representation

The multi-level word representation concatenates word information, position information,
and entity type information. The word information is encoded by Bert [29] to obtain the semantics of
the current word in the sentence. The position information records the position of the current word
in the sentence, inspired by Zeng et al. [13]. When the word is in different positions, it represents
different semantics and importance. Entity type information refers to the type to which the current
word belongs. For example, the entity type of Seamlessweb is the company, so through the entity type
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company you can know that Seamlessweb is the name of a company. Therefore, more meaningful word
semantics can be obtained by using multi-level word representation. The specific implementation is
as follows.

The inputs of the network are word, position tokens and entity type, which are transformed
to the distributed representations before being input into the neural model. We extract meaningful
word representations from different level semantics, i.e., the word embedding ew(w), the position
embedding ep(w), and the entity type embedding et(w).

For the word w in the sentence x, we represent each word by k dimensional Bert embedding.
In order to integrate the relative position of tokens with respect to target entities, we use p

dimensional position embedding. Specifically, we use Pos1 and Pos2 to refer to the relative distance
between the current word and the head and tail entities respectively. For instance, in Figure 1 relative
distances of symbol from seamlessweb and newyork are 3 and −9 respectively. Then the position of
each word is transformed to a pdimensions.

Entity types can enforce constraints on the prediction of the relation between subject and object.
For instance, in Figure 1 the relation/business/company/place_founded can only exist between a
company and a location. The entity type embedding refers to FIGER [30] by kt dimensional embedding.
Note that if the word in the sentence is not an entity, the entity type is completed with 0.

The final word presentation is obtained by concatenating these three parts of embeddings:

e(w) = [ew(w)⊕ ep(w)⊕ et(w)] (1)

where ⊕ denotes the concatenation operation. Thus, we get a sequence of word vector {vt}.

3.2. Bidirectional Gated Recurrent Unit

Based on the word vector {vt}, we adopt a layer of bidirectional Gated Recurrent Unit (GRU) [11]
to learn the semantic information of the sentence, which uses a hidden state vector {ht} to remember
important signals. At each step, a new hidden state is computed based on previous hidden state using
the same function.

zt = σ(WzVt + Uzht−1) (2)

rt = σ(WrVt + Urht−1) (3)

h̃t = tanh(WhVt + Uh(rtΘht−1)) (4)

ht = (1− zt)Θht−1 + ztΘh̃t (5)

where zi and ri are the update gate and reset gate, σ(·) is a sigmoid function, and Wz, Wr, Wh, Uz, Ur,
Uh are parameters. e(wk|s) is the representation of wk given s, which comes from the hidden vectors
of hk,t.

Furthermore, Bi-GRU that implements GRU in both forward and reverse can be used to access
the long-distance semantics of the future and the past.

−→
ht = GRU(wk,

−−→
ht−1) (6)

←−
ht = GRU(wk,

←−−
ht−1) (7)

h∗ = αt
−→
ht + βt

←−
ht + bt (8)

where αt and βt represent the weights corresponding to the forward hidden layer state
−→
ht and the

reverse hidden state
←−
ht at time t, and bt indicates the hidden state bias at time t.
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3.3. Graph Attention Network

Although Bi-GRU can capture local context, it fails to capture long-range dependencies that can
be captured through dependency edges. We employ Graph Attention Networks for encoding features
from syntactic dependency trees to improve relation extraction. The syntactic dependency tree is
generated by Stanford CoreNLP [31].

We use the constructed syntactic dependency tree to form a graph, ζ(ν, ε), where the nodes
ν are the words in the sentence and the edges ε are the syntactic relations in the dependency tree.
An edge from node u to node v with label luv is represented as (ν, ε, luv). If there is a relation label
existing between two words in the sentence, then the two words in the dependency graph are directly
connected. Since the dependency tree has 55 different relation labels, which makes the constructed
dependency graph too complicated. We use the same processing method as Nguyen and Grishman [32]
to construct the graph, and only three kinds of edge labels are used to represent the relation, which are
forward (→), backward (←), self-loop (⊥), defined as follows:

luv =


→ if edge is a forward edge

← if edge is a backward edge

⊥ if edge is a selfloop edge

(9)

The input of GATs is h∗ = {h∗1 , h∗2 , ..., h∗m}, where m is the number of words in sentence.
eij represents the importance of the characteristics of node j to node i. We put up the structure
of the dependency graph and only calculate the eij where node j is adjacent to node i in the graph.
In order to make coefficients easy to compare between different nodes, we use the softmax function to
normalize them across all choices of j. For each word wi, GATs embedding hgat

i is defined as:

αij = so f tmaxj(eij) =
exp(LeakyReLU(a−τ [Wh∗i ||Wh∗j ]))

∑k∈Ni
exp(LeakyReLU(a−τ [Wh∗i ||Wh∗j ]

(10)

where the single-head attention mechanism αij is a single-layer feedforward neural network and
applies the LeakyReLU nonlinearity [24]. LeakyReLU activation function is a variant of the ReLu
activation function, and ReLu is the most commonly used activation function in neural networks.
The LeakyReLU activation function has a small slope for negative inputs, and because the derivative is
always non-zero, it can reduce the appearance of silent neurons and allow gradient-based learning,
and solves the problem that neurons do not learn after the Relu function enters the negative interval.
αk

ij are normalized attention coefficients computed by the kth attention mechanism αk, and Wk

is the corresponding input linear transformation’s weight matrix. The syntactic graph encoding
from GATs and Bi-GRU output vector are concentrated to obtain the final sentence representation
hconcat

i = [h∗i ; hgat
i ].

3.4. Bag Aggregation

In this section, the first step of bag aggregation is to calculate the weight of different sentences in
the bag through the intra-bag attention mechanism, and the second step is to multiply the sentence
embedding and its weight and then accumulate to get the bag representation. After bag aggregation,
the bag representation is sent to the softmax classifier to obtain the classification of the relationship
between entities.

For utilizing all valid sentences, we employ the attention mechanism used by Jat et al. [33] over
sentences to obtain a representation for the entire bag. For sentence si in the bag, attention weight αi is
calculated as follows:

αi =
exp(si)

∑n
j=1 exp(sj)

(11)
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Bag representations B are calculated by weighting sentence embedding using intra-bag attention,
which can deal with noise at sentence-level.

B =
m

∑
j=1

αihconcat
i (12)

Finally, the bag representation is fed to the softmax classifier to obtain the probability distribution
of different relations.

p(y) = So f tmax(W · B + b) (13)

4. Experiments

In order to demonstrate the performance and adaptability of SEGRE, we compare several methods
on two benchmark datasets, Riedel New York Times (NYT) and Google IISc Distantly Supervised
(GIDS) datasets, and give implementation details and experimental results analysis.

4.1. Compared Methods

We have chosen seven methods to compare their performance with the proposed SEGRE. Mintz [4]
first proposes a multi-class logistic regression model for Distantly Supervised; MultiR [7] uses a
probabilistic graphical strategy for multi-instance learning; MIMLRE [8] jointly models multiple
instances and multiple tags. PCNN [13] adopts a relation extraction model combining piecewise and
CNN. PCNN + ATT [16] uses PCNN and attention mechanisms to obtain sentence representations.
BGWA [33] adopts a word and sentence level attention strategy for relation extraction. RESIDE [15]
applies entity type and relation alias information to impose soft constraints.

In addition, we also change the partial structure of SEGRE, and compare the performance of
three variations of the proposed SEGRE. Specifically, SEGREGAT∗ uses undirected edges to construct
GAT instead of directed edges; SEGREGCN uses GCN to embed sentence dependency information
instead of GAT; SEGREtype− removes the entity type information in multi-level word representation;
and SEGREatt− implements bag representation without an attention mechanism.

4.2. Data Sets

We evaluated SEGRE on Riedel NYT [5] and GIDS datasets. Riedel NYT dataset has been widely
used for RE by keeping the relation between Freebase and the New York Times Corpus consistent,
using sentences in 2005–2006 to create training sets and sentences in 2007 for test sets. The entities
were annotated with the Stanford NER tool [34] and linked to Freebase.

The GIDS dataset was created by Jat et al. [33], which extends the Google relation extraction corpus
with other instances of each entity pair. The GIDS dataset guarantees the “at-least-one” assumption
of multi-instance learning, which makes automatic evaluation more reliable, thereby eliminating the
need for manual verification. The corpora statistics of the two datasets are shown in Table 1. There are
53 types of relations between entity pairs in the Riedel NYT dataset, and 5 types of GIDS datasets.
The training set (TRAIN), validation set (VALID) and testing set (TEST) are officially segmented.

Table 1. Corpora Statistics for the Riedel New York Times (NYT) and Google IISc Distantly Supervised
(GIDS) datasets.

Datasets TRAIN DEV TEST

Riedel NYT sentences 455,771 114,317 172,448
entities 233,064 58,635 96,678

GIDS sentences 11,297 1864 5663
entities 6498 1082 3247
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4.3. Implementation Details

If the comparison methods and SEGRE are implemented in an identical experimental environment,
we directly copy the results of these experiments, otherwise the methods will be reproduced in the
context of this paper.

SEGRE uses TensorFlow libraries and python 3. We used cross-validation to tune our model and
grid search for super-parameter optimization, and chose the best performance setting as the final setting.
In this experiment, we applied the Adam optimizer with the learning rate decay. GRU size m = 230,
position embedding size p = 16, entity type embedding size k = 50. To avoid hyperparameters,
we adopted the 38 coarse-grained types of FIGER’s first layer instead of all 112 fine-grained entity types.

4.4. Experimental Results

In order to evaluate the effectiveness of our proposed SEGRE, we compared it with the method
described in Section 4.1. We use the Precision–Recall curve and top-N precision (P@N) metric to
evaluate the performance in our experiments. Notice that we only use the neural compared methods
on the GDS dataset.

The Precision–Recall curves on Riedel NYT and GIDS are shown in Figure 3. We found that
SEGRE achieved higher accuracy in the entire recall range of both datasets. On the Riedel NYT
dataset, all non-neural network methods are not very effective, because they use existing NLP tools
for feature extraction, which may produce errors. The PR curve areas of PCNN, PCNN + ATT, BGWA,
and RESIDE are about 0.332, 0.386, 0.394 and 0.409 respectively, while SEGRE increases it to 0.417.
Meanwhile, on the GIDS dataset, the PR curve areas of PCNN, PCNN + ATT, BGWA, and RESIDE are
about 0.694, 0.743, 0.751, and 0.787 respectively, while SEGRE increases it to 0.791. The result indicates
that our SEGRE can use word position and entity type information to increase additional semantic
information, and use syntactic dependency trees to eliminate unrelated noise words in sentences,
it finally achieves more accurate sentence representations for relationship extraction.

Figure 3. Comparison of Precision–Recall curves. SEGRE achieves higher precision over the entire
range of recall than all the baselines on both datasets.

Following previous works, we adopt P@N as a quantitative indicator to compare our model with
baselines based on various instances under each relational tuple. P@N means the precision of the
relation classification results with the top N highest probabilities in the test set. Table 2 shows the
P@N value of relation extraction as the number of sentences in the bag changes. Here, one, two and
all represent the number of sentences randomly selected from the package, forming three types of
data sets. The table shows the P@100, P@200, P@300, and their means of the SEGRE model and its
compared methods on the test sets. We can see our proposed methods achieved higher P@N values
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than previous work, and the P@100, P@200 and P@300 values of SEGRE have been improved to 3.6%,
2.9%, 1.7% over state-of-the-art model, respectively.

Table 2. P@N for relation extraction using a variable number of sentences in bags in the Riedel dataset.

One Two All
P@100 P@200 P@300 Mean P@100 P@200 P@300 Mean P@100 P@200 P@300 Mean

PCNN 73.3 64.8 56.8 65.0 70.3 67.2 63.1 66.9 72.3 69.7 64.1 68.7
PCNN + ATT 73.3 69.2 60.8 67.8 77.2 71.6 66.1 71.6 76.2 73.1 67.4 72.2

BGWA 78.0 71.0 63.6 70.9 81.0 73.0 64.0 72.7 82.0 75.0 72.0 76.3
RESIDE 80.0 75.5 69.3 74.9 83.0 73.5 70.6 75.7 84.0 78.5 75.6 79.4
SEGRE 82.6 74.3 68.3 75.1 84.9 78.7 73.5 79.0 87.6 81.4 77.3 82.1

Figure 4 shows the performance of different ablated versions of our proposed SEGRE on the Riedel
NYT and GIDS datasets. We observe that after SEGRE changes different components, the performance
of the model varies significantly. The PR curve area of SEGRE is 0.007 higher than that of SEGREGAT∗

on the NYT dataset, and 0.023 higher than that of SEGREGAT∗ on the GIDS dataset. Because the
syntactic dependency tree constructed in this paper is directional. The direction information includes
the relationship between words in the text. The directed edge in GAT can better reflect the syntactic
dependency tree structure than the undirected edge. The PR curve area of SEGRE is 0.015 higher
than that of SEGREGCN on the NYT dataset, and 0.046 higher than that of SEGREGCN on the GIDS
dataset. This result confirms that GAT effectively encodes grammatical information and removes
irrelevant word noise in sentences. In addition, the PR curve area of SEGRE is 0.053 higher than that
of SEGREtype− on the NYT dataset, and 0.128 higher than that of SEGREtype− on the GIDS dataset.
The introduction of entity type information indicates that it supplements text features and can enhance
the relationship extraction performance. Further, the PR curve area of SEGRE is 0.031 higher than
SEGREatt− on the NYT dataset, and 0.057 higher than SEGREatt− on the GIDS dataset. This proves
that the attention mechanism in the bag helps reduce the noise between sentences. In conclusion,
the entity type information has the greatest impact on the performance of the model because it provides
additional semantics and is very helpful for the task.

Figure 4. Performance comparison of different SEGRE ablated version on two datasets.

5. Conclusions

In this paper, we propose SEGRE, a novel semantic enhanced approach for Distantly Supervised
relation extraction. It aims at dealing with the low-quality datasets by increasing valuable additional
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semantic information and reducing the noise of irrelevant words in the sentence. Compared with other
methods, the main innovations of the proposed method are as follows: In the word representation
stage, SEGRE uses multi-level word representation, including word information, position information,
and entity type information, which enriches the semantics contained in a word embedding. In the
sentence representation stage, SEGRE uses a graph attention network, which extracts important
information more effectively than a graph convolutional network and reduces noise in a sentence.
In the bag representation stage, SEGRE added an intra-bag attention mechanism to calculate the
representation of the bag, reducing the noise in the bag. SEGRE increases valuable semantic information
throughout all stages of the model. Experimental results show that SEGRE achieves state-of-the-art
results on two benchmark datasets.

Using graph neural networks to extract sentence semantics is our preliminary study on Relation
extraction. We only considered semantic analysis at the sentence level, but future work should focus
on the document level. Furthermore, the information contained in the document will be richer than a
single sentence, but it will also bring more noise. Future work should reduce document-level noise
and improve the effective use of document-level information.
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Abbreviations

The following abbreviations are used in this manuscript:

SEGRE Semantic Enhanced Graph attention networks Relation Extraction
GATs Graph Attention Networks
NYT New York Times
GIDS Google IISc Distantly Supervised
RE Relation extraction
NLP Natural Language Processing
KB Knowledge Base
RNN Recurrent neural network
LSTM Long short-term memory
BiLSTM Bidirectional long short-term memory
GCN Graph Convolution Network
GRU Gated Recurrent Unit
biGRU Bidirectional Gated Recurrent Unit
PCNNs piecewise convolutional neural networks
STP Subtree Parsing
AGGCNs Attention Guided Graph Convolution Networks
ReLU Rectified linear unit
P@N top-N precision
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