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Abstract: At present, there are two main problems in the commonly used radar emitter identification
methods. First, when the distribution of training data and testing data is quite different,
the identification accuracy is low. Second, the traditional identification methods usually include an
offline training stage and online identifying stage, which cannot achieve the real-time identification
of the radar emitter. Aimed at the above problems, this paper proposes a radar emitter identification
method based on transfer learning and online learning. First, for the case where the target domain
contains only a small number of labeled samples, the TrAdaBoost method is used as the basic
learning framework to train a support vector machine, which can obtain useful knowledge from the
source domain to aid in the identification of the target domain. Then, for the case where the target
domain does not contain labeled samples, the Expectation-Maximization algorithm is used to filter
the unlabeled samples in the target domain to generate the available training data. Finally, to make
the identification quickly and accurately, we propose a radar emitter identification method, based on
online learning to ensure real-time updating of the model. Simulation experiments show that the
proposed method, based on transfer learning and online learning, has higher identification accuracy
and good timeliness.
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1. Introduction

Radar emitter identification is the key link in radar reconnaissance. It extracts the characteristic
parameters and working parameters on the basis of radar signal sorting. Based on these parameters,
we can obtain information such as the system, use, type, and platform of the target radar, and further
deduce the battlefield situation, threat level, activity rule, tactical intention, etc., and provide important
intelligence support for its own decision-making [1].

Common radar emitter identification methods include feature matching based methods [2],
intra-pulse analysis based methods [3], and machine learning based methods [4]. In the past
battlefields, the types of radar emitters are simple and the number is limited, so the above methods can
solve the problem of radar emitter identification well. The complex electromagnetic environment of
the modern battlefield brings many difficulties to radar emitter identification, and poses two problems
in the commonly used identification methods. First, when the distribution of training data and testing
data is quite different, the identification accuracy is low and the traditional identification methods are
unable to respond effectively to an unknown radar emitter; second, the above identification methods
usually adopt two stages of offline training and online identification, which make the model training
and update speed slow, which cannot realize the real-time identification of the radar emitter.
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In recent years, with the continuous development of machine learning technology, the transfer
learning methods and the online learning methods have gained more and more attention.
Transfer learning does not require that training data and testing data meet the condition of the
same distribution in the model training process, and utilizes the knowledge of a large number of
known samples for training, which is good for cross-domain learning. However, the transferring of a
large amount of irrelevant information will also cause a negative transfer, which reduces the effect of
identification. Online learning does not require the saving a large amount of training data, and can
train the new classifier according to the latest samples and the current classifier, of which the training
speed is fast and the identification accuracy is high.

In view of the characteristics of transfer learning and online learning, in order to meet the
challenges brought by the complex electromagnetic environment of the modern battlefield, this paper
studies radar emitter identification under transfer learning and online learning. First, for the case
where the target domain contains only a small number of labeled samples, the TrAdaBoost method
is used as the basic learning framework to train a support vector machine, which can obtain useful
knowledge from the source domain to aid in the identification of the target domain. Then, for the case
where the target domain does not contain labeled samples, the Expectation-Maximization algorithm
is used to filter the unlabeled samples in the target domain to generate the available training data.
Finally, to make the identification quickly and accurately, we propose a radar emitter identification
method, based on online learning, to ensure real-time updating of the model.

Our major contributions are summarized as follows: (1) Focusing on the actual application
scenarios to study radar emitter identification, and simultaneously solving the problem that the
distribution of training data and testing data is quite different and the problem that the model cannot
be updated in real-time, which provides a good way of thinking for future research in this area;
(2) proposing the support vector machine model based on the TrAdaBoost method and transductive
transfer learning, based on the EM algorithm for the radar emitter identification task, which can
make fuller use of label information and sample information in the target domain; and (3) verifying
the effectiveness of combining the transfer learning algorithms with the online learning algorithm,
which helps to improve the speed of the transfer learning algorithms.

2. Relevant Research

2.1. Transfer Learning

Transfer learning refers to learning the knowledge in the source domain Ds, and using it in the target
domain Dt, which does not have the same distribution as Ds, but is related to Ds, which makes good the
problem of insufficient training data. Unlike traditional machine learning methods, transfer learning [5]
does not require training data and testing data to satisfy the same-distribution hypothesis. It can
discover and extract knowledge in the source domain Ds that matches the distribution of the target
domain Dt and is useful for identification in the target domain Dt. Then, it establishes classification
models in the target domain Dt, which can make efficient use of existing labeled samples to avoid
re-labeling in the target domain Dt.

From the perspective of transfer methods, transfer learning includes four basic methods:
Sample-based transfer, feature-based transfer, model-based transfer, and relationship-based transfer.
The sample-based transfer method refers to producing rules according to certain weights and reusing
data samples for transfer learning. The feature-based transfer method refers to mutual transfer by
feature transformation, which reduces the gap between the source domain and the target domain,
or transforms the data features of the source domain and the target domain into a unified feature space,
and then utilizes the traditional machine learning methods for identification. The model-based transfer
method refers to finding the parameter information shared between the source domain and the target
domain in order to implement transferring. The relationship-based transfer method has a completely
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different approach from the above three methods, and focuses on the similarity between the source
domain samples and target domain samples.

2.2. Online Learning

In the field of artificial intelligence and machine learning, in order to solve the problem of massive
streaming data computing, the online learning method has attracted more and more researchers’
attention. Online learning can be used in a dynamically changing learning environment, which sends
training samples into the classifier one by one, and feeds back the results of the real category and the
discriminant category to the classifier to complete the update of the classifier. It performs the training
and identification process simultaneously, and can realize identification in real-time. The online learning
method is good at capturing the trend of data, and can solve the problem of data different-distribution
and real-time learning [6].

The classic online learning methods mainly include: First-order online learning, second-order
online learning, budget quantity kernel method based online learning, and kernel approximation
based online learning. The most commonly used first-order online learning method is the Passive
Aggressive algorithm [7], which is a large-interval classifier with good performance in terms of stability
and classification accuracy. Second-order online learning methods include Confidence Weighted
algorithm [8], Soft Confidence Weighted algorithm [9], and Adaptive Regularization of Weight Vectors
algorithm [10], which can mine the deep structure in the feature. The most commonly used framework
of the budget quantity kernel method based online learning method is the Batch Stochastic Gradient
Descent algorithm [11]. It refers to when the prediction is wrong, the support vector is added to the
support vector set, and when the number of support vectors in the support vector set is greater than
the budget quantity, the budgetary maintenance strategy is taken.

The kernel approximation based online learning methods include the Fourier Online Gradient
Descent algorithm [12] and the Nyström Online Gradient Descent algorithm [13], which enables linear
online learning in a new sample space derived from the kernel function approximation.

3. Radar Emitter Identification under Transfer Learning and Online Learning

This section first proposes a support vector machine model based on the TrAdaBoost method for
the case where the target domain contains only a small number of labeled samples. Then, for the case of
the target domain without labeled samples, the EM algorithm is used for transductive transfer learning.
Finally, to overcome the problem of the poor timeliness of the above two methods, we propose a radar
emitter identification method based on online learning.

3.1. Support Vector Machine Model Based on the TrAdaBoost Method

The TrAdaBoost method [14] is an inductive transfer learning method that involves two domains:
The source domain Ds and the target domain Dt. In the radar emitter identification task, the source
domain Ds refers to the known radar emitter data collected at ordinary times, and the target domain
Dt refers to the new radar emitter data collected by means of reconnaissance in wartime. The labeled
samples in the source domain Ds and a small number of labeled samples in the target domain Dt are
used as training sets. By continuously adjusting the weights of the samples, the data in the source
domain Ds that is not suitable for the target domain Dt can be filtered out. In the process of training,
if the labeled sample in the source domain Ds is identified incorrectly, indicating that the correlation
between the sample and the target domain Dt is small, the weights of the sample are reduced, and in
the subsequent training, the impact of the sample on the model will also be weakened. If the labeled
sample in the target domain Dt is identified incorrectly, the weights of the sample are increased, and the
impact of the sample on the model will increase in later training. The principle of training is shown in
Figure 1.
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The support vector machine model has the characteristics of simple structure and global
optimization, and is good at solving small-sample and nonlinear problems. Therefore, this section
chooses the support vector machine model as the base classifier to perform radar emitter identification.
The TrAdaBoost method is used to train the base classifier support vector machine (SVM) model.
The labeled samples in the source domain Ds and a small number of labeled samples in the target
domain Dt are aggregated as the initial training set T. The unlabeled samples in the target domain Dt

are used as the test set S. The specific flow is shown in Algorithm 1.
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1. Initialize the weight vector W1 = (w1
1, . . . , w1

|Ds |+|Dt |
), where

w1
i =

{
1/

∣∣∣Ds
∣∣∣, i = 1, . . . ,

∣∣∣Ds
∣∣∣

1/
∣∣∣Dt

∣∣∣, i =
∣∣∣Ds

∣∣∣+1, . . . ,
∣∣∣Ds

∣∣∣+∣∣∣Dt
∣∣∣

2. For t = 1, 2, . . . , N

Set the weight distribution of the training set samples Pt = Wt

|Ds |+|Dt |∑
i=1

wt
i

;

Calculate the error rate of the SVM model hypothesis ht : X→ Y on the labeled samples in the

source domain Ds, which is εt =
|Dt |∑
i=1

wt
i

∣∣∣ht(xi)−c(xi)
∣∣∣

|Dt |∑
i=1

wt
i

;

If ht(xi) , c(xi)

Reset the weight vector,

wt+1
i =

 wt
i(1/(1 +

√
2 ln(

∣∣∣Ds
∣∣∣/N) ))

|ht(xi)−c(xi)|

, (xi, yi) ∈ Ds

wt
i(εt/(1− εt))

−|ht(xi)−c(xi)|, (xi, yi) ∈ Dt

.

N is the number of iterations.

End for
3. Get the final SVM model.

3.2. Transductive Transfer Learning Based on EM Algorithm

When there are labeled samples in the source domain Ds and there are only unlabeled samples
in the target domain Dt, the two domains face the same tasks, but their conditional probabilities
P(y

∣∣∣x) are still biased. The Expect Maximum algorithm (EM) [15] is good at finding the likelihood
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estimation value of the implicit parameters. Therefore, this section uses the EM algorithm to construct
a transductive transfer learning framework. The specific flow is shown in Algorithm 2.

Algorithm 2. Transductive transfer learning based on EM algorithm

1. Learn on labeled samples in the source domain Ds, and get the initial hypothesis probability.
2. Assume that unlabeled samples in the target domain Dt obey the data distribution Ωt.

For t = 1, 2, . . . , NExpect: Calculate the implied variable value according to the current hypothesis
probability, and obtain the label information of the unlabeled samples in the target domain Dt under the
data distribution Ωt;

Maximum: Recalculate the new hypothesis based on the label information obtained above,
and update the current hypothesis;

N is the number of iterations.

End for
3. Get the Optimal hypothesis Ωt.

The role of the EM algorithm is to be able to perform maximum likelihood estimation with implicit
parameters, where the implicit parameters refer to the label information of the unlabeled samples in
the target domain Dt. Therefore, the transductive transfer learning based on EM algorithm can realize
the maximum likelihood estimation of the label information of the unlabeled samples in the target
domain Dt by means of the parameter estimation ability of the EM algorithm to obtain the optimal
posterior hypothesis.

3.3. Radar Emitter Identification Based on Online Learning

The support vector machine model based on TrAdaBoost method and the transductive transfer
learning method, based on the EM algorithm above, can solve the problem of knowledge transfer in
different scenarios, but they still belong to offline learning models, which need the full set of training
data for each training, so their real-time performance is poor. Therefore, this section proposes a radar
emitter identification method, based on online learning, which can update the structure of the model
in real-time to achieve fast and accurate identification.

The main idea of the online learning method is to construct a classifier using a subset of the
training data instead of the full set. The measured parameters are x = [x1, x2, . . . , xl], and the unknown

parameters to be estimated areω =
l∑

i=1
βiφ(xi), where βi ∈ R is a group of generic coefficients. By adding

the definition of the kernel and the matrix K, ‖ω‖2 can be written as
l∑

i, j=1
βiβ jφ(xi) ·φ(x j) =

l∑
i, j=1

βiβ jKi j.

Therefore, the optimization problem can be transformed into the following form:

argmin
β,b

1
2

l∑
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βiβ jKi j + C
l∑

i=1
ξ

p
i

s.t. yi(
l∑
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βiKi j + b) ≥ 1− ξi ∀i = 1, 2, . . . , l

(1)

where C is error penalty factor, ξi is slack variable, the value of p is 1 or 2, and b ∈ R.
The Lagrangian operator is calculated as follows:

L′P =
l∑

i, j

(
1
2
βi − αiyi)β jKi j −

l∑
i=1

αi(byi − 1 + ξi) +
l∑

i=1

Cξp
i −

l∑
i=1

µiξi (2)
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where αi,µi ≥ 0 are the l-pair coefficients introduced.
Add Karush-Kuhn-Tucker conditions, and get

∂L′P
∂βi

=
l∑

j=1

(β j − α jy j)Ki j = 0, ∀i = 1, 2, . . . , l (3)

This section adopts the idea of one-against-one and uses the voting method to implement the
decision of the model. The flow of learning and updating is shown in Figure 2.
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When a new radar emitter arrives, if the emitter’s category is known, then it is judged as to
whether it meets the KKT conditions. If KKT conditions are met, it indicates that the emitter keeps
the classification boundaries of the existing model, so it is not necessary to update the model. If the
KKT conditions are not met, it indicates that new knowledge can be learned from the emitter to adjust
the classification boundaries of the existing model, so the model can be updated. If the category of
the emitter is unknown, then a new category needs to be added to the model and its classification
boundaries are re-adjusted.

4. Experiments

4.1. Experiment Settings

4.1.1. Experiment Environment

We built the simulation experiment development environment of Windows7 + Matlab2017b +

Libsvm3.22, where Libsvm3.22 was used to implement the SVM model as the base classifier. Its kernel

function was based on the radial basis function exp(− |x−xi |
2

σ2 ). On this basis, we used Matlab to realize
the transfer learning and online learning methods in this paper.

4.1.2. Experiment Data

We use the characteristic parameters such as pulse amplitude (PA), carrier frequency (CF),
pulse width (PW), pulse repetition interval (PRI), and angle of arrival (AOA) to represent the emitter
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data, and select three working modes of search, tracking, and guidance as the category labels of the
emitter. Three-thousand signal samples are generated using the above five pulse descriptors for each
working mode, and a total of 9000 signal samples are the source domain data. Using the above five
pulse descriptors for each working mode, 3000 signal samples are generated with different distributions,
and a total of 9000 signal samples are the target domain data. In addition, in order to verify the
performance of the proposed method, we add different degrees of noise to the experimental data.
The details of the experiment data are shown in Tables 1 and 2. Table 1 shows the conventional radar
characteristic parameters in the source domain, while Table 2 shows the unknown radar characteristic
parameters in the target domain.

Table 1. Conventional radar characteristic parameters.

Working Mode PA CF/MHz PW/µs PRI/µs AOA/◦

search [16, 20] [3121, 3333] [7.1, 7.2] [800, 860] [66, 68]
tracking [6, 16] [2019, 2020] [1.1, 1.3] [400, 550] [46, 48]
guidance [2, 12] [2150, 2250] [0.3, 0.5] [300, 400] [62, 64]

Table 2. Unknown radar characteristic parameters.

Working Mode PA CF/MHz PW/µs PRI/µs AOA/◦

unknown mode1 [22, 30] [2850, 3098] [4.5, 4.6] [620, 680] [45, 47]
unknown mode2 [11, 13] [2550, 2551] [0.4, 0.6] [700, 760] [25, 27]
unknown mode3 [4, 7] [2748, 2758] [0.5, 0.7] [220, 300] [50, 52]

The mean values and standard deviations after normalization of the source domain data and the
target domain data are significantly different, so they no longer satisfy the assumption of the same
distribution. The details are shown in Table 3. For the transfer learning scenario with only a small
number of labeled samples in the target domain, we set 15% of the samples in the target domain to
be labeled samples. For the transfer learning scenario with no labeled samples in the target domain,
we set all samples in the target domain to be unlabeled samples. For the online learning scenario,
we set 15% of the samples in the target domain as the training data, and randomly select 50% of the
samples as fixed samples, and add the remaining 50% of the samples as new samples to the training set
in order. Through the above construction of the experiment data, it can be used to verify the transfer
learning and online learning methods.

Table 3. Distribution difference after normalization of the source domain data and the target
domain data.

Source Domain Data Target Domain Data

Characteristic Parameter Mean Value Standard Deviation Mean Value Standard Deviation

PA 0.72 0.21 0.86 0.09
CF/MHz 0.81 0.12 0.61 0.26
PW/µs 0.76 0.32 0.44 0.13
PRI/µs 0.86 0.24 0.54 0.09
AOA/◦ 0.59 0.03 0.78 0.16

In the actual application process, when dealing with real radar data, we must first collect, process,
and sort the radar signals to get the pulse described words. The goal of this article is to identify the
system or behavior of radar emitters, so using only the pulse described words can meet the needs
of this article. However, if the modulation pattern of radar signals needs to be identified, we must
use more information in the radar waveforms. In addition, for fast time-varying scenarios, we must
improve the signal processing efficiency of radio frequency front modules as much as possible to
ensure the effective use of the method in this article, which will be an urgent problem in the future.
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4.1.3. Experiment Scenario

In the following, we will set up three different experiment scenarios to verify the effectiveness of
the proposed methods.

Scenario 1: In the scenario, there are only a few labeled samples in the target domain. It means
that some samples encountered during the actual application are the same as the original trained
samples, so we can easily obtain the labels of these samples.

Scenario 2: In the scenario, the target domain does not contain labeled samples. It means that all
the samples encountered in the actual application process are very different from the original trained
samples, so it is difficult for us to obtain the labels of these samples.

Scenario 3: In the scenario, we constantly encounter samples that are significantly different from
the original trained samples, so we must immediately update our model to identify these samples
quickly and accurately.

4.2. Contrast Experiments under Transfer Learning

For the transfer learning scenario where there are only a few labeled samples in the target domain,
we set up the following three sets of contrast experiments:

Experiment 1: We train the base classifier SVM model on the labeled samples in the target domain,
and then perform the identification on the unlabeled samples in the target domain, which is denoted
as SVM1_TransferOne.

Experiment 2: We train the base classifier SVM model on all labeled samples in the source domain
and target domain, and then perform the identification on the unlabeled samples in the target domain,
which is denoted as SVM2_TransferOne.

Experiment 3: We train the SVM model based on the TrAdaBoost method on all labeled samples
in the source domain and target domain, and then perform the identification on the unlabeled samples
in the target domain, which is denoted as TrAdaBoost_TransferOne.

The results of the experiment are shown in Figure 3. The identification accuracy of
SVM1_TransferOne in the measurement error range of 15% is only 52.6%, which is not up to the
actual application standard. The main reason is that the number of labeled samples in the target
domain is small, and the SVM model cannot be fully trained. Compared to SVM1_TransferOne,
SVM2_TransferOne uses more training samples, but the identification accuracy is lower, mainly because
the source domain data and the target domain data do not satisfy the same-distribution hypothesis,
and the SVM model cannot be effectively trained. TrAdaBoost_TransferOne achieves the highest
identification accuracy, which is up to 74.5% in the measurement error range of 15%, indicating that
the TrAdaBoost-based method can use the limited labeled samples in the target domain to filter
more samples of use to the target domain from the source domain. This proves the effectiveness of
the method.

For the transfer learning scenario where the target domain does not contain labeled samples,
we set up the following two sets of contrast experiments:

Experiment 4: We train the base classifier SVM model on the labeled samples in the source domain,
and then perform the identification on the unlabeled samples in the target domain, which is denoted
as SVM_TransferTwo.

Experiment 5: We use the transductive transfer learning based on EM algorithm to train on the
labeled samples in the source domain and the unlabeled samples in the target domain, and then perform
the identification on the unlabeled samples in the target domain, which is denoted as EM_TransferTwo.
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The experiment results are shown in Figure 4. The identification accuracy obtained by
SVM_TransferTwo is very low, at only 46.1% in the measurement error range of 15%. The main
reason is that the source domain data and the target domain data do not satisfy the same-distribution
hypothesis, but the target domain does not contain labeled samples, so the TrAdaBoost-based method
is not applicable. Compared to SVM_TransferTwo, the identification accuracy of EM_TransferTwo is
significantly improved, up to 69.9% in the measurement error range of 15%. This indicates that the
transductive transfer learning based on EM algorithm can realize the transfer of knowledge in the case
where the target domain does not contain labeled samples, and proves the effectiveness of the method.
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In summary, in the scenario where there are only a few labeled samples in the target domain and
the target domain does not contain labeled samples, the transfer learning method is significantly better
than the traditional method. It indicates that the transfer learning method can effectively utilize a large
number of labeled samples in the source domain, extract useful knowledge, and reduce the number of
wasted labeled samples. In addition, it can overcome the problem that training data and testing data
do not satisfy the same-distribution hypothesis, resulting in low identification accuracy.

4.3. Contrast Experiments under Online Learning

For the online learning scenario, we set up the following two sets of contrast experiments:
Experiment 6: We train the base classifier SVM model on the training data in the target domain,

and then perform the identification on the testing data in the target domain, which is denoted as
SVM_Online.
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Experiment 7: We use the radar emitter identification method based on online learning to train
the training data in the target domain, and then perform the identification on the testing data in the
target domain, which is denoted as REI_Online.

SVM_Online and REI_Online are repeated 20 times to average the results, and the running time
and identification accuracy are shown in Figures 5 and 6. From the perspective of the model running
time, SVM_Online requires longer training time, and the longest training time is 189 s. The main reason
is that the previous training results cannot be used effectively when only using the base classifier
SVM model. When the new samples are added to the training set, the training has to be restarted.
When the number of training samples increases, the training time will increase linearly. However,
REI_Online uses the online learning method, and the time required is almost constant. Its average
running time is only 10.5 s. From the perspective of the identification accuracy, with the continuous
addition of new samples, the identification accuracy obtained by REI_Online will continue to increase,
and will converge towards SVM_Online’s, and the final identification accuracy is slightly lower than
SVM_Online’s. The main reason is that the number of training samples is small at the beginning
of training, which results in low identification accuracy. When the number of training samples
increases, the online classifier will be improved and the identification accuracy will be improved
accordingly. However, SVM_Online uses the complete training set each time, so it can obtain the highest
identification accuracy. In addition, due to the limited number of training samples used, SVM_Online
and REI_Online do not have the identification accuracy of more than 60%. In summary, the radar
emitter identification method based on online learning can obtain the identification accuracy similar to
the traditional method, but it can greatly shorten the running time. This proves the effectiveness of
the method.
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4.4. A Combination of Transfer Learning Method and Online Learning Method

In the actual combat background, the above REI_Online can greatly shorten the running time,
but its identification accuracy cannot reach the standard of practical application. The main reason is
that it is difficult to obtain enough labeled data in the target domain. Therefore, in response to the above
problem, when the target domain contains only a small number of labeled samples and new samples
are continuously added for online learning, we combine the transfer learning method with the online
learning method, which can make comprehensive use of useful information in the source domain data
and the target domain data. We use the combination method to perform the identification on the testing
data in the target domain, which is denoted as TrAdaBoost_Online. The results of the experiment
are shown in Figures 7 and 8. The running time of TrAdaBoost_Online is only 5.3% of the above
TrAdaBoost_TransferOne, with an average of 23 s, which is significantly reduced. The identification
accuracy of TrAdaBoost_Online almost reaches the level of TrAdaBoost_TransferOne, and reaches
73.5% in the measurement error range of 15%, which has good noise adaptability.
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In the first stage, we use the detected radar emitter data to train our model. However, in the stage
of practical application, the situation is often changing rapidly, and there will be many radar emitters
that have not been seen in the past. Satisfactory results cannot be achieved by using the original model,
so we can use the method based on online learning to update the model in real-time in order to meet
the actual needs of the battlefield. In addition, we have verified the effectiveness of combining the
transfer learning algorithms with the online learning algorithm in the radar emitter identification
task. Therefore, the method based on online learning can be used to improve the speed of the transfer
learning algorithms proposed in this paper.
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5. Conclusions

In this paper, the ideas of transfer learning and online learning are applied to the field of radar
emitter identification. For two different transfer learning scenarios, we propose the support vector
machine model based on the TrAdaBoost method and transductive transfer learning based on the
EM algorithm. Finally, in order to overcome the problem of the poor timeliness of the above two
methods, we propose a radar emitter identification method based on online learning. Simulation
experiments show that the combination of transfer learning and online learning methods can obtain
higher identification accuracy and good timeliness, and can be applied in the actual combat background.
The next step is to optimize the combination model and to improve the identification accuracy to
enhance its practicability.
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