
  information

Article

Waveform Optimization of Compressed Sensing
Radar without Signal Recovery

Quanhui Wang 1 and Ying Sun 2,*
1 School of Information Engineering, Lingnan Normal University, Zhanjiang 524000, China
2 HuaWei Technologies CO., LTD., Shenzhen 518000, China
* Correspondence: sun-ying1984@hotmail.com

Received: 19 July 2019; Accepted: 25 August 2019; Published: 29 August 2019
����������
�������

Abstract: Radar signal processing mainly focuses on target detection, classification, estimation,
filtering, and so on. Compressed sensing radar (CSR) technology can potentially provide additional
tools to simultaneously reduce computational complexity and effectively solve inference problems.
CSR allows direct compressive signal processing without the need to reconstruct the signal. This study
aimed to solve the problem of CSR detection without signal recovery by optimizing the transmit
waveform. Therefore, a waveform optimization method was introduced to improve the output
signal-to-interference-plus-noise ratio (SINR) in the case where the target signal is corrupted by
colored interference and noise having known statistical characteristics. Two different target models
are discussed: deterministic and random. In the case of a deterministic target, the optimum transmit
waveform is derived by maximizing the SINR and a suboptimum solution is also presented. In the
case of random target, an iterative waveform optimization method is proposed to maximize the
output SINR. This approach ensures that SINR performance is improved in each iteration step.
The performance of these methods is illustrated by computer simulation.

Keywords: compressed sensing radar; waveform optimization; compressive signal processing;
transmit waveform

1. Introduction

Waveform design is the key aspect of multiple-input multiple-output (MIMO) radar research,
since the performance of MIMO radar depends on the specific signal design. The success or failure of
waveform design directly affects the performance of MIMO radar. According to the different tasks
of MIMO radar, radar performance can be improved by targeted MIMO waveform design. In [1],
the authors provide a unified system approach that summarizes the latest results of waveform
optimization and spectral compatibility requirements. The researchers in [2] investigated the
optimization of the full-polarization radar transmission waveform and the receiver response to
maximize either target detection or identification performance. The approach of embedding sensitive
information into radar emissions by changing the waveform during each radar pulse was investigated
in [3]. As a new signal acquisition paradigm, compressed sensing/sampling (CS) [4–7] can reduce the
required dataset size without reducing the resolution or quality of the compressed signal. CS technology
can be used in a variety of applications including radar, sonar, and imaging. Since radar target scenes
usually satisfy sparse features, such as only a few aircraft in the vast sky, researchers have come to
believe that compression sensing technology can be applied to radar signal processing. In the actual
radar working environment, there are usually nonwhite noise interferences, such as colored noise,
clutter, and so forth. Therefore, it is of great practical significance to study the optimal detection of
compressed measurement signals in interference environments [1]. Since the concept of compressed
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sensing radar (CSR) was originally proposed in the groundbreaking work of [6], many works on CSR
have been carried out [7–16].

There are two different schemes of CSR signal processing. In the first scheme, the signal is recovered
from compressed measurements and then processed by using conventional digital signal processing
(DSP) technology. This scheme offers three distinct advantages [6,8–10]: (i) eliminating the matched
filter in the radar receiver, (ii) reducing the sample rate required by the receiver’s analog-to-digital
converter (ADC), and (iii) offering a good potential for better resolution than traditional radar. However,
the recovery algorithms are always indispensable in the first scheme, which involves an iterative
optimization procedure and is therefore computationally expensive for long signals. In fact, signal
recovery is not important in many signal processing applications. Therefore, a second scheme has
been proposed to directly solve the inference problems (extracting certain information from the
measurement) [11–13]. In other words, it can effectively solve inference problems such as detection,
classification, estimation, and filtering problems while greatly reducing computational complexity.
This paper focuses on the CSR signal detection problem without signal recovery. Our goal is to
improve detection performance in the presence of colored interference and noise with known statistical
properties. According to the signal detection theory, detection probability is a nondecreasing function
of the signal-to-interference-plus-noise ratio (SINR) [15]. Therefore, the optimized SINR can be used as
an objective function to replace optimized detection performance [17]. In addition, the SINR depends
on the transmitted waveform. Therefore, the output SINR of the CSR can be improved by optimizing
its transmit waveform.

There are many CSR waveform design methods in the literature [7,14,18]. Optimal linear
processing in traditional radar interference environments uses waveform optimization to maximize
the output signal-to-noise ratio (SNR) [18]. Scholars have also proposed distributed compressed
sensing methods for complex scenes [14,19,20]. In [7], a waveform optimization algorithm based on
the simulated annealing algorithm was proposed, which can generate waveforms with small target
cross correlation. Since the recovery algorithm usually includes an iterative process, when the data
length is long, the recovery algorithm is also computationally intensive, and the signal processing
framework cannot meet the real-time requirements. However, all of these methods are considered for
the first scheme. In this scheme, in order to effectively reconstruct the target scene, the cross correlation
between different target responses must be small. Therefore, the waveform design problem comes
down to minimizing the cross correlation between different target responses. Obviously, these methods
are not suitable for waveform design problems of CSRs without signal recovery. For these reasons,
we propose in this paper a waveform optimization method to optimize the SINR of the CSR without
signal recovery in the scenario where the target signal is corrupted by colored interference and noise
with known statistical properties. In [21], a comprehensive theory of matched illumination waveforms
for both deterministic and random targets was presented. The design of matched waveforms based on
the maximization of both SNR and mutual information (MI) was considered. With this as motivation,
two different target models are discussed here. In the case of deterministic targets, the optimum
transmit waveform is derived by maximizing the SINR, and a suboptimum solution is also presented.
In the case of random targets, an iterative waveform optimization method is proposed to maximize the
output SINR. This approach ensures that SINR performance is improved in each iteration step. This
method converges quickly.

The following mathematical symbols are employed in this paper: T(z), the target impulse; f (n), a
finite duration vector signal; Ta(s), transfer function; Φ(n), measurement operator; h, the receiving
filter vector; x, low-rate sequence; x, the compressed signal; L, range of samples; M, N, receive nodes
and pulses; r(t), analog input signal; t(n), target impulse response; v(n), noise process; f, discrete
transmit signal vector; r, received signal vector; Φ, measurement matrix; (f, h), transceiver pair; Λ,
diagonal matrix; αp, a set of weights; fd, vector representation of the desired waveform; Up, eigenvectors
corresponding to the maximum eigenvalues; β, parameter for normalizing the waveform to unit
energy; ρ(f, h), SINR at the receiving filter output; Rt(m), target impulse response covariance; Rv,
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colored interference and noise covariance; z−1, unit delay operator; σ2, Gaussian noise variance; γ,
compressive ratio; and Γ, target transfer matrix. The rest of the paper is organized as follows. Section 2
builds the signal model of the CSR with no signal recovery and formulates this problem. The optimal
solution and the suboptimal solution are derived in Section 3 to optimize the SINR of the deterministic
target. Section 4 introduces an iterative method for calculating the optimal waveform and receive
filter for a stochastic target. Section 5 provides several numerical examples to illustrate performance
improvements. The conclusion is given in Section 6.

2. Problem Formulation

Let us consider the following simple one-dimensional, monostatic, single-pulse CSR. Figure 1a
displays the signal model of the CSR used in this paper. Note that the module of signal recovery
is not involved in this signal model because this paper only focuses on directly solving the signal
detection problem in the compressed measurement domain. As shown in Figure 1a: (1) The finite
duration vector signal f (n) is converted to analog waveforms and is modulated and transmitted. (2) The
waveform is reflected back by the target with transfer function Ta(s). (3) In the receiver, the reflected
waveform corrupted by additive colored interference and noise is received and demodulated. Colored
interference is an additive circularly symmetric complex-valued white Gaussian noise with zero-mean,
which is modeled as independent of the signal [22]. To alleviate the pressure on the conventional ADC,
an analog-to-information converter (AIC) is used and then the analog signal with a large bandwidth
is compressed to a discrete, low-rate sequence x. From a mathematical point of view, AIC can be
represented by the measurement operator Φ(n), which is the collection of K sampling waveforms{
ϕk(n)

}K
k=1, as shown in Figure 1c (i.e., Φ(n) , (ϕ1(n),ϕ2(n), · · · ,ϕk(n))

T). (4) Then, the compressed
signal x is processed by a vector h consisting of the receiving filter to further determine the existence of
the target. For each pulse repetition interval, L range samples are collected to cover the range interval.
With M receive nodes and N pulses, the received data for one coherent processing interval comprises
L ×M×N complex samples.

T(z) =
L∑

n=0

t(n)z−n (1)

where t(n) denotes the target impulse response. The noise process v(n) consists of additive colored
interference and Gaussian white noise, which is modeled as a wide-sense stationary (WSS) random
process with known variance:

Rv(m) , E[v(n)v(n−m)]H. (2)

This assumption was also made in [22–24].
The equivalent signal model of CSR is illustrated in Figure 2. In Figure 2, the M× 1 vector f and

the N × 1 vector r denote the discrete transmit signal vector and the received signal vector, respectively,
which are defined as

f , [ f (0) f (1) · · · f (M− 1)]T (3)

r , [r(0) r(1) · · · r(N − 1)]T. (4)

So, we can get the received signal:
r = Tf + v (5)

where
v , [v(0) v(1) · · · v(N − 1)]T. (6)
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T is the Toeplitz matrix representing the target of the form:

T ,



t(0) 0 · · · 0

t(1) t(0)
. . .

...
... t(1)

. . . 0

t(L)
...

. . . t(0)
... t(L)

. . . t(1)
...

. . . . . .
...

0 · · · 0 t(L)


. (7)
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discrete baseband equivalent model. (b) illustrates the discrete baseband equivalent model, where 
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Figure 1. Illustration of (a) the signal model of the compressed sensing radar (CSR) and (b) the
discrete baseband equivalent model. (b) illustrates the discrete baseband equivalent model, where
the target transfer function T(z) can be assumed to be a finite impulse response (FIR) filter of the form.
(c) illustrates the K sampling waveforms

{
ϕk(n)

}K
k=1, where r(t) is the analog input signal.
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Thereafter, the r is processed by the compressed sampling module to reduce the data size.
As illustrated in Figure 2, the K ×N(K � N) measurement matrix Φ is the discrete counterpart of the
analog Φ(n), which can be represented by a random matrix. The entries φi j of the random matrix Φ

are independent and identically distributed (i.i.d.) random variables. In order to avoid information
loss, classical sampling theorem dictates that K should be as large as N. However, CS technology allows
for K to be much less than N as long as the signal is sparse. For the S-sparse signal, the measurement
matrix Φ needs to satisfy the restricted isometry property (RIP). The S-restricted isometry constant δ of
the matrix Φ is the smallest number, such that

(1− δ)‖ c ‖22 ≤ ‖ Φc ‖22 ≤ (1 + δ)‖ c ‖22 (8)

holds for all S-sparse vectors c. Using the measurement matrix Φ, the K × 1 compressed sampling
vector x can be equivalently written as

x = Φr = ΦTf + Φv. (9)

Then, the compressed sampling vector x is processed by a K × 1 receiving filter vector h to further
determine the existence of the target. The receive filter output can be expressed as

y = hHx = hHΦTf︸  ︷︷  ︸
signal

+ hHΦv︸︷︷︸
interfernce
and noise

(10)

where
h , [h(0) h(1) · · · h(K − 1)]T. (11)

Using a priori information of the target impulse response and the second-order statistical properties
of colored interference and noise, our goal is to jointly optimize the transceiver pair (f, h) of CSR to
maximize the detection performance. The detection probability is a nondecreasing function of the
SINR according to the signal detection theory [13]. Our goal can be substituted to maximize the SINR
by designing the transceiver pair (f, h). Thus, the SINR at the filter output can be expressed as

ρ(f, h) =

∣∣∣hHΦTf
∣∣∣2

E
[∣∣∣hHΦv

∣∣∣2] . (12)

Our task is how to maximize the SINR subject to the power constraint, that is,

max
f,h

ρ(f, h) subject to ‖ f ‖2 ≤ 1. (13)

Comparing the transceiver pair (f, h) optimization problem in the CSR to its counterpart in
conventional radar, the only difference is that the CSR involves K ×N(K � N) compressed sampling
represented by the matrix Φ. It is worth observing that if the matrix Φ is an identity matrix, the radar
system illustrated in Figure 2 becomes conventional radar. For traditional radars, many classical
methods have been proposed [22–24] to solve the joint optimization problem. However, these methods
do not guarantee the optimum SINR in the CSR. To better interpret this point, we assume that (f0, h0)
is the optimal transceiver pair in conventional radar. If we use f0 as the transmitting waveform to pass
through the CSR system illustrated in Figure 2, then the N × 1 column filter vector h0 is employed to
achieve the maximum SINR. By comparing the CSR to conventional radar, the following equation holds

hHΦ = hH
0 (14)
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where Φ is the full row rank. For any given random matrix Φ, according to Equation (14), we have

hH = hH
0 ΦH(ΦΦH)

−1
. (15)

Because K < N, it is easy to draw the following conclusion:

hHΦ = hH
0 ΦH(ΦΦH)

−1
Φ , hH

0 . (16)

If and only if K = N, the corresponding SINR is optimal. However, in the CSR case, we have K <
N. Therefore, the corresponding SINR is no longer optimal.

3. Optimizing Methods for Deterministic Target Impulse Response

In this section, the optimum waveform f is derived by maximizing the SINR over all possible
choices of f. After that, a suboptimum waveform is presented to provide suboptimal SINR. To solve
(13), we can first solve h in terms of f. In this case, the optimization problem becomes

max
h

∣∣∣hHΦTf
∣∣∣2

hHΦRvΦHh
(17)

where Rv = E
[
vvH

]
, which can be obtained by using the prior second-order statistic properties defined

in Equation (2). The above problem can be recast as

min
h

hHΦRvΦHhsubject to hHΦTf = 1. (18)

This is the minimum variance distortionless response (MVDR) problem [25]. The solution to this
problem is

h = α(ΦRvΦH)
−1

ΦTf (19)

where α is a scalar satisfying the equality constraint. Substituting the above h back into the objective
function in Equation (12), the optimization problem becomes

max
f

fHTHΦH(ΦRvΦH)
−1

ΦTfsubject to ‖ f ‖2 ≤ 1. (20)

Now, this optimization problem only has one parameter f. To simplify the notation, we denote

R̂ = THΦH
(
ΦRvΦH

)−1
ΦT. Then, the objective function reduces to fHR̂f. Furthermore, we let

R̂ = UΛUH, where U = [u1, u2, · · · , uM] are the eigenvectors of R̂ and the diagonal elements of the
diagonal matrix Λ, λ1 ≥ λ2 ≥, · · · ,≥ λM > 0 are the corresponding eigenvalues. Then, the optimal
transmit waveform is the eigenvector corresponding to the largest eigenvalue of R̂.

In fact, for waveform design problems, some constraints should be considered, such as constant
modulus, range resolution, and range sidelobe level. A conventional waveform such as the linear
frequency modulation (LFM) waveform is a good candidate for achieving the above characteristics.
To obtain the “closest” waveform in the least-squares (LS) mean to the conventional waveform, we take
full advantage of the eigenvectors [u1, u2, · · · , uP] corresponding to the maximum P (P < K) eigenvalues
and then find a set of weights αp, such that

P∑
p=1

αpup = Upα = fd (21)
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where Up = [u1, u2, · · · , uP]; α = [α1,α2, · · ·αP]
T; and fd is a vector representation of the desired

waveform. According to Equation (21), we can obtain α = UH
P fd. Finally, the suboptimal waveform is

given by
fsubopt = βUPα = βUPUH

P fd (22)

where β is the parameter for normalizing the waveform to unit energy.

4. Iterative Method with Random Target Impulse Response

The methods introduced in Section 3 require that the information of the target impulse T(z) is
determined and known. In this section, we are concerned with the case where only partial information
from the target impulse response is available. The target impulse response is modeled as a WSS
random process. We assume that only the covariance of the process is known, which may be unrealistic
in an actual radar detection environment. In fact, the corresponding covariance is usually estimated by
an auxiliary sample [26–30]. An iterative method for maximizing the SINR is derived.

We assume that t(n) is a WSS process. To simplify calculations, we suppose that its covariance is
known and is defined as

Rt(m) , E
[
t(n)t(n−m)H

]
. (23)

In this case, the SINR at the receiving filter output is defined as

ρ(f, h) ,
E
[∣∣∣hHΦTf

∣∣∣2]
E
[∣∣∣hHΦv

∣∣∣2] . (24)

We first optimize the receiving filter h for the situation where the transmit waveform f is fixed.
Then, we optimize f under the situation where h is fixed. This iterative technique is used to guarantee
the SINR convergence. To solve h in terms of f, the optimization problem can be written as

max
h

hHΦRt, f ΦHh

hHΦRvΦHh
(25)

where Rt, f , E
[
TffHTH

]
. Define L−1

v, f ΦRt, f ΦHL−H
v, f and b , LH

v, f h by changing variables and the
optimization problem can be recast as

max
h

bHL−1
v, f ΦRt, f ΦHL−H

v, f b

bHb
. (26)

This is the well-known Rayleigh quotient, and the solution to the problem is the principal
component of the matrix L−1

v, f ΦRt, f ΦHL−H
v, f . Thus, solution h can be expressed as

h = L−H
v, f p

(
L−1

v, f ΦRt, f ΦHL−H
v, f

)
(27)

where p(L−1
v, f ΦRt, f ΦHL−H

v, f ) denotes the principal component of matrix L−1
v, f ΦRt, f ΦHL−H

v, f .
To solve f in terms of h, the optimization problem becomes

max
f

=
fHRt,hf

hHΦRvΦHh
subject to ‖ f ‖2 ≤ 1 (28)

where Rt,h , E
[
THΦHhhHΦT

]
. Please note that the denominator is temporarily scalar; therefore,

we can get
f = p

(
Rt,h

)
. (29)
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We summarize the iterative method for jointly optimizing the transmit waveform and the receiving
filter in the case of the random target impulse response as follows. Given the target impulse response
covariance Rt(m), the colored interference and noise covariance is Rv; for any given random matrix Φ,
calculate the Cholesky decomposition, ΦRvΦH = Lv, f LH

v, f ; initialize the transmitted waveform f to
the conventional LFM waveform, and the transceiver pair (f, h) can be optimized by repeating the
following steps:

(1) Compute Rt, f , E
[
TffHTH

]
.

(2) Use the resulting Lv, f to update h via (27).

(3) Calculate Rt,h , E
[
THΦHhhHΦT

]
.

(4) Use the principal component of Rt,h to update f via (29).
(5) f = f/‖ f ‖.
(6) The SINR subject to the power constraint via (13), then repeat until convergence. When SINR

basically does not change much, (f, h) can be considered to converge. We can also set the number
of iterations according to the accuracy requirements.

5. Numerical Results

We considered the CSR without signal recovery, as illustrated in Figure 2. The signal bandwidth
was 100 MHz. Assume that the received radar signal is corrupted by a colored interference and an
additive circularly symmetric complex-valued white Gaussian noise with zero-mean and variance
σ2 = 1. We borrowed the colored interference simulation model in [22], namely, the colored interference
is an autoregressive (AR) random process obtained by passing a circularly symmetric complex-valued
white Gaussian noise with zero-mean and variance σ2 through the following filter.

H(z) =
1

(1− 1.5z−1 + 0.7z−2)
4

(30)

where z−1 denotes the unit delay operator. The random K ×N matrix Φ is populated with i.i.d.
zero-mean Gaussian entries (of any fixed variance). Then, the orientation of the row space of Φ has a
random uniform distribution.

Next, we performed computer simulations considering two aspects. In this study, the parameters of
the simulation platform were a CPU Intel i3 2.0 GHz with 4 GB of memory and an operating environment
of MATLAB R2009b. First, a simulation example is provided for the case of a deterministic target
impulse response. The SINR performance of the proposed method was compared to a conventional
LFM waveform. The LFM waveform is designed to obtain a sharp ambiguity function, which is a good
candidate for distinguishing two-point targets. However, in complex environments involving color
interference, LFM waveforms may not have good SINR performance. Second, we provide a simulation
example for the case of a target with a random impulse response.

S(t) = rect
( t
τ

)
e jπµt2

(31)

where τ is the plus width and µ is the slope.

5.1. Deterministic Target Impulse Response

First, we considered the simplest example in the case where the target model is a point target.
Then, the target transfer matrix Γ became an M×M identification matrix. Monte Carlo simulation was
applied to illustrate the relationship between the output SINR and the compressed ratio γ (γ , K/N).
The simulation was performed by averaging among 1000 different colored interferences and white
noise implementations. We delivered four different waveforms through the CSR system, including the
design results for the optimal and suboptimal waveforms presented here, as well as the traditional LFM
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waveforms. Figure 3 shows the comparison of the SINR under various γ. One can see that the optimal
waveform had the best SINR performances among all of the methods under all γ. The suboptimal
waveform had better SINR performances than the LFM waveform in the low compressed ratio region,
but the advantage gradually subsided when γ increased. Its one execution time was almost 22 s.
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SINR improvement is equal to SINR-optimal or SINR-suboptimal minus SINR-LFM.
The comparison of the SINR improvement under various σ2/σ2

0 is illustrated in Figure 4. As we can
see from Figure 4, the SINR improvements provided by optimal and suboptimal waveforms were
more significant relative to the LFM waveform. When γ = 0.2 and σ2/σ2

0 = −20 dB, the optimal and
suboptimal waveforms provided approximately an 18 and 8 dB SINR improvement relative to the LFM
waveform, respectively. Note that the SINR improvement decreased as γ increases. Its one execution
time was almost 21 s.
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Figure 4. Comparison of the SINR versus σ2/σ2
0 under various compressed ratios γ.

Next, we considered two specific optimized transmit waveforms in the case where the compressed
ratio γ = 1 and γ , 1, respectively. Figure 5a,b show a comparison of the waveform spectra of optimal
and suboptimal waveforms when σ2/σ2

0 = −20 dB and γ = 1. As we expected, both the spectra
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of the optimal and suboptimal waveforms had notches corresponding to the peak locations of the
interference spectrum, which means that the transmit waveform energies were still concentrated in the
interference-free regions of the system bandwidth. The corresponding waveform series are shown in
Figure 6a,b. It is important to note that when γ = 1, the optimal waveform failed to work properly,
while the suboptimal waveform seemed to give a reasonable performance, such as the range resolution
and side lobe level.Information 2019, 10, x FOR PEER REVIEW 9 of 15 
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Next, we investigated the case where the compressed ratio γ , 1. For one example, we assumed
that γ = 0.2. Figure 7 illustrates the optimized waveform spectra’s comparison with the LFM waveform
spectra when σ2/σ2

0 = −20 dB. As can be seen from Figure 7a,b, both the spectra of the optimal and
suboptimal waveforms also had notches corresponding to the zenith locations of the interference
spectrum. Figure 8a,b show their corresponding waveform sequences. It is worth mentioning that the
optimum waveform provided a reasonable side lobe level and range resolution as well, which was
different from the γ = 1 case. Figure 8 shows that both optimized waveforms had reasonable distance
resolutions and side lobe levels.
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Next, we considered an example of the extended target case. The target impulse response is
given by

t(n) =
{

1, n = 1, 7, 20
0, otherwise

. (32)

The simulation was performed by averaging among 1000 different colored interferences and white
noise realizations. The comparison of the SINR curves is shown in Figure 9 under various γ. It can
be seen that both the optimal and suboptimal waveforms had significantly better SINR performance
than the LFM waveform, which was consistent with the point target case. Its one execution time was
almost 9 s. Figure 10 shows a comparison of the SINR under various σ2/σ2

0. It implies that the SINR
improvements provided by the optimal and suboptimal waveforms decreased as γ increased. Its one
execution time was almost 12 s.
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5.2. Random Target Impulse Response

This subsection describes how the coefficients of the target impulse t(n) were modeled as a
WSS random process with covariance Rt(n). The covariance Rt(n) was generated by using Rt(n) =
Ut(n) ∗Ut(n)

H, where Ut(n) is a sequence with a length of 20 and the coefficients {Ut(n)} are i.i.d.
circular complex Gaussian random variables. The simulation was performed by averaging among
1000 different target colored interferences and white noise realizations. The initial waveform used in
the iterative method was the conventional LFM waveform. Figure 11 shows the SINR performance as
a function of the number of iterations when γ = 0.5 and σ2/σ2

0 = 5 dB. One point to note here is that
the LFM waveform was fixed because its SINR was not a function of the number of iterations. From
Figure 11, we can observe that the iterative method converged very quickly. In this simulation example,
it converged in about six iterations. As we expected, the iterative method was also superior to the LFM
waveform for the random target impulse response case. Its one execution time was almost 21 s.
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γ = 0.5.

Assume that σ2/σ2
0 = −20 dB. The SINR curve comparison between that obtained from the

iterative method and the LFM waveform is illustrated in Figure 12. Its one execution time was almost
66 s. Figure 13 shows the comparison of the SINR under various σ2/σ2

0. It can be seen that the iterative
method had a significantly better SINR performance than the LFM waveform. Unlike the deterministic
target case, the SINR improvement increased as the compressed ratio γ increased.
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The computational complexity of the optimization approaches in both the deterministic and
random cases can be expressed by the one execution time. As can be seen, the deterministic case took
more time than the random case.

6. Conclusions

Modern radar systems often operate with large bandwidths. The resulting high sample rates
according to the Nyquist–Shannon theorem cause a large computational burden and large power
consumption for radar systems. CS technology provides a solution to radar signal processing problems
with significantly reduced data size. The benefit of reducing the amount of data is to save memory
and power consumption as well as reduce acquisition time. In this paper, we introduced a CSR
without signal recovery. Our mission was to improve the performance of its target detection. The
radar’s waveform optimization could significantly improve the SINR required to improve target
detection. This study examined the target with deterministic impulse response and the target with
random impulse response. In the first case, the optimal transmit waveform was derived by maximizing
the SINR and a suboptimal solution was also presented. In the second case, an iterative method of
jointly optimizing the transmit waveform and the receive filter was proposed to maximize the SINR.
For different target models, Monte Carlo simulations were performed to verify the effectiveness of the
proposed waveform optimization method. Finally, the numerical results showed that the proposed
method had a better SINR than the LFM waveform. The sparse signal compression detection results in
the clutter were mainly ideal clutter models. However, in actual radar systems, training data are often
used to estimate the covariance of clutter. The next step is to study the detection performance of the
sparse signal compression detector to estimate the clutter covariance. AIC is the core issue of CSR,
and radar performance can be further improved by optimizing AIC. The next step is to study AIC
design and its hardware implementation.
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