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Abstract: As a cause of accidents, drowsiness can cause economical and physical damage. A range of
drowsiness estimation methods have been proposed in previous studies to aid accident prevention
and address this problem. However, none of these methods are able to improve their estimation
ability as the length of time or number of trials increases. Thus, in this study, we aim to find an
effective drowsiness estimation method that is also able to improve its prediction ability as the
subject’s activity increases. We used electroencephalogram (EEG) data to estimate drowsiness, and
the Karolinska sleepiness scale (KSS) for drowsiness evaluation. Five parameters (α, β/α, (θ+α)/β,
activity, and mobility) from the O1 electrode site were selected. By combining these parameters
and KSS, we demonstrate that a typical support vector regression (SVR) algorithm can estimate
drowsiness with a correlation coefficient (R2) of up to 0.64 and a root mean square error (RMSE) of
up to 0.56. We propose a “recurrent SVR” (RSVR) method with improved estimation performance,
as highlighted by an R2 value of up to 0.83, and an RMSE of up to 0.15. These results suggest that
in addition to being able to estimate drowsiness based on EEG data, RSVR is able to improve its
drowsiness estimation performance.
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1. Introduction

Drowsiness, the difficulty in maintaining consciousness, is a natural phenomenon experienced
by human beings. In normal circumstances, it is caused by circadian rhythms, and is usually felt
at night, as the state before sleep. However, when experienced during tasks at work that require
concentration, or driving, drowsiness can cause harmful accidents. Therefore, drowsiness estimation
needs investigation for such accidents to be prevented. Recently, a range of methods for detecting
drowsiness have been proposed. By noting the tendency of people to yawn frequently when they
felt sleepy, a study proposed a yawn detection-based estimation technique, in which a camera, for
identifying when a driver yawns, is placed under a car’s interior mirror [1]. Drowsiness while driving
can also be detected using a trajectory sensor [2,3] that monitors a vehicle’s movement, as a driver’s
control becomes erratic if they are drowsy. Other researchers have proposed the use of biological
data, such as electrocardiogram (ECG) [4–6], electrooculogram (EOG) [7–9], respiratory [10,11],
electromyogram (EMG) [12] and electroencephalogram (EEG) [13–16] signals to assess drowsiness.
In this study, we have selected EEG data as a parameter for assessing drowsiness, since it is
fundamentally related to the activity of the human brain [17].

Prior studies have shown that EEG data can be used to detect drowsiness, which can be classified
further on either a two or three-level scale [13,14,16]. However, these studies used a relatively big
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dataset to detect drowsiness and they did not consider improving their estimation performance as
more of the subject’s activity was encountered. We hypothesize that in real conditions, training
data are initially limited, although though these data will accumulate gradually as activity increases,
and more scenarios are identified. However, the limited dataset available undermines the accuracy
of estimation. Thus, a study investigating drowsiness estimation techniques, which use a limited
dataset and can improve the estimation performance as more of a subject’s activity is encountered,
is required. In previous studies where the initial baseline consisted of a limited dataset, estimation was
completed using regression rather than classification methods, due to the ability of these techniques to
approximate an output label outside the pre-defined range [18]. Likewise, we will employ support
vector regression (SVR) as the basis for drowsiness estimation.

In this study, we employ a questionnaire to characterize drowsiness in nine levels, represented
by the Karolinska sleepiness scale (KSS), ranging from very alert to very sleepy. Then, we propose
a “recurrent SVR” (RSVR) technique to estimate the appropriate KSS level from EEG parameters
obtained during simulated driving. Finally, we analyze if the RSVR technique is able to maintain or
improve its estimation performance as more driving trials are gradually encountered, regardless of its
initial reliance on a limited dataset.

2. Materials and Methods

2.1. Participants

Sixteen healthy males were selected to participate in this study (mean age: 23.06 ± 3.88 years old).
All subjects were confirmed to have a valid driving license and gave their informed consent before
the experiments. Subjects were also asked to have breakfast and lunch before each trial; sleep for at
least 7.5 h the night before [19]; and to refrain from consuming any prescription medication, alcohol,
caffeinated beverages, and from smoking [20,21] before the day of the experiment.

2.2. Tasks

Each participant completed all the experiments in four days. Two trials were assigned to the
subjects in a day, with one conducted between 08:00 and 10:00 and the other between 13:00 and 15:00,
such that eight trials were completed for each subject in total. In each trial, each subject was instructed
to drive in a simulator (DA-110, Honda Motor, Tokyo, Japan) and maintain a speed of 100 km/h for
50 min. To induce drowsiness, we selected an oval track with no traffic obstacles. In addition, each
subject was also instructed to remain in a resting state in the driving simulator’s seat, and asked to
report their drowsiness condition every 30 s for a period of 5 min before and after each trial, in a direct
observation process. During this period, the subjects’ facial expressions were recorded. Drowsiness
evaluation was again conducted at a different time after the trial had finished, by asking the subject to
complete a drowsiness questionnaire every 30 s for 5 min using this recorded footage, in an indirect
observation process. These data were used as a validator for the similarity test in the statistical analysis.
The questionnaire evaluation was carried out not only 5 min before and after each trial, but also during
50 min of driving. However, as such a form of evaluation could affect the subject’s psychological
condition, the questionnaire evaluation during this period was performed by the subject after the trial
finished, using the indirect observation technique (i.e., filling a drowsiness questionnaire by using
the recorded footage of their facial expressions during simulated driving to recall their drowsiness
condition). All procedures used in this study were approved by the Ethical Committee of the Faculty
of Advanced Science and Technology, Kumamoto University.
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2.3. Recordings

2.3.1. Physiological Measurements

EEG signals were recorded according to the international 10–20 system, at a sampling frequency
of 500 Hz, using an electrode cap (E1-L, Nihonkohden, Tokyo, Japan) with 19 electrodes, as shown
in Figure 1. The EEG signals were filtered with a 0.5–50 Hz bandpass filter, and amplified using
an electroencephalograph (EEG-9100, Nihonkohden, Tokyo, Japan). The electrode impedance was
maintained below 5 kΩ. Subjects’ faces were also recorded using a web camera (HD Pro Webcam C920,
Logicool, Suzhou, China) to aid in psychological analysis.
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2.3.2. Psychological Measurements

The subjects’ drowsiness was evaluated using the KSS, based on a subjective questionnaire that
characterizes drowsiness in nine levels. Odd numbers on this scale represent the drowsiness level,
which ranges from very alert to very sleepy, that is, great effort is required to keep awake, while the
even numbers represent increments between the range defined by the odd numbers [15].

2.4. Data Analysis

2.4.1. Feature Extraction

The EEG data obtained from the 50 min driving task were analyzed in both the frequency and
time domains. To extract parameters in the frequency domain, EEG signals were processed using
a fast Fourier transform (FFT), and the resulting functions were divided into five signal bands: delta (δ:
0.5–4 Hz), theta (θ: 4–8 Hz), alpha (α: 8–13 Hz), beta (β: 13–30 Hz) and gamma (γ: 30–50 Hz). After
this, the absolute power of each frequency band was extracted. Time domain analysis was carried out
by extracting the Hjorth parameters [22–24], consisting of activity, mobility, and complexity, from the
EEG signal. The formulas for calculating these parameters are described in Equations (1)–(3):

Activity(x(t)) = var(x(t)), (1)

Mobility(x(t)) =

√
var(x′(t))
var(x(t))

, (2)

Complexity(x(t)) =
Mobility(x′(t))
Mobility(x(t))

, (3)

where x(t) are time-series EEG data, and x′(t) is the first derivative of these time-series data. Parameters
from both the domains were computed at intervals of 30 s in each 50 min driving task by using the
data from all 19 electrodes, such that there were 800 sets of EEG data per parameter for each subject.
We also computed two power band ratios, β/α and (θ+α)/β [25], for use in both training and testing.
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2.4.2. Statistical Analysis

For further verification, we investigated which electrodes and parameters best matched the
physiological conditions described in the KSS questionnaires. To do this, we calculated Pearson’s
correlation coefficient (R2), and selected parameters with the best correlation to a drowsiness condition
for subsequent analysis. We also used Pearson’s correlation and root mean square error (RMSE)
analysis for evaluating the performance of the regression analysis. A Wilcoxon signed-rank analysis
was used to assess the similarity between the subjective drowsiness perspective evaluated during
simulated driving, and the perspective derived based on participants recalling their drowsiness
condition by watching a video of their facial expression. A similarity test was also conducted to ensure
that the drowsiness evaluation conducted by the subjects’ watching a video of their facial expression
correlated to the EEG data obtained during simulated driving. The Wilcoxon signed-rank analysis was
also used to compare the pre-trial and post-trial estimation of our proposed method and a standard
SVR technique.

2.4.3. Recurrent Support Vector Regression (RSVR)

In consideration of the feasibility of drowsiness estimation in conditions where the dataset
is initially limited, we propose a “recurrent support vector regression (SVR)” technique, which is
completed by performing the following steps:

(1) Build an initial regression model from one trial dataset and use this to estimate the drowsiness
condition in the next trial dataset.

(2) Perform analysis of the correlation between the drowsiness condition estimated from regression
analysis and each signal parameter selected from statistical analysis. Calculate the mean of the
correlation coefficients and RMSE evaluated.

(3) If the second driving trial is being conducted, include the estimates from regression analysis with
the training data, rebuild the regression model, and record the mean of the correlation coefficients
and RMSE.

(4) For experiments later than the second driving trial, verify whether the current mean of the
correlation coefficients is larger and RMSE is smaller than the previously recorded value. If this is
so, include the estimates from regression analysis with the previous training data and rebuild the
regression model. Otherwise, keep the previous regression model and training data. It means the
new estimates from the regression analysis will not be included to the previous training data.

(5) Use the current regression model to estimate drowsiness for further driving trials.
(6) Repeat Steps 4–5 until the final driving trial.

The process was repeated eight times to analyze the performance of regression analysis with
different baselines, and the effect of the order in which different trial data were introduced. A two-fold
cross-validation method was also employed in this analysis. We used a radial basis function (RBF)
as the kernel function for the RSVR algorithm. Automatic selection of the best values of cost, and
the gamma and epsilon parameters were facilitated using the Scikit-learn library implemented in
Python [26].

3. Results

3.1. Validation of KSS Similarity

In this study, we recorded KSS measurements of the subjects while driving, by asking them to
assess recordings of their facial expressions during simulated trials, after an experiment. This ensures
that the self-assessment process does not affect their physiological condition. As such, the similarity
of KSS data obtained from indirect observation (watching facial expressions) to those obtained from
direct observation needs to be investigated, to ensure any further analysis is valid. Hence, we recorded
KSS data every 30 s for a duration of 5 min before and after each experiment, using direct observation
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methods, and asked the subjects to recall their drowsiness during this period at a later time, in the
same manner as detailed above, to collect KSS data from indirect observation to be used in analysis.
According to the results of the Wilcoxon signed-rank test summarized in Table 1, there was no
significant difference between the subjects’ direct and indirect estimation of their drowsiness (p-value
> 0.05), meaning that the indirect observation method is sufficiently accurate for obtaining a subjective
perspective of drowsiness during simulated driving.

Table 1. Validation of similarity between KSS evaluated from direct and indirect observation.

Subject
Pre-Driving Task Post-Driving Task

Direct Observation Indirect Observation Direct Observation Indirect Observation

#1 5.4 ± 0.9 5.4 ± 0.9 NS 6.3 ± 0.6 6.3 ± 0.6 NS

#2 3.6 ± 0.4 3.6 ± 0.4 NS 6.1 ± 0.5 6.1 ± 0.5 NS

#3 4.6 ± 2.6 4.6 ± 2.5 NS 6.8 ± 2.2 6.7 ± 2.2 NS

#4 6.4 ± 1.9 6.4 ± 1.8 NS 7.8 ± 1.0 7.8 ± 1.1 NS

#5 4.8 ± 2.4 4.8 ± 2.4 NS 8.1 ± 1.2 8.0 ± 1.3 NS

#6 3.6 ± 2.5 3.6 ± 2.5 NS 7.1 ± 0.9 7.1 ± 0.9 NS

#7 6.0 ± 2.0 6.0 ± 2.0 NS 7.3 ± 1.5 7.3 ± 1.5 NS

#8 4.3 ± 2.2 4.2 ± 2.2 NS 6.0 ± 2.4 6.0 ± 2.4 NS

#9 6.0 ± 2.0 6.0 ± 2.0 NS 7.2 ± 0.9 7.1 ± 0.9 NS

#10 3.5 ± 0.4 3.5 ± 0.4 NS 6.3 ± 0.9 6.3 ± 0.8 NS

#11 4.0 ± 1.4 4.0 ± 1.4 NS 6.3 ± 1.6 6.3 ± 1.6 NS

#12 3.8 ± 1.1 3.8 ± 1.2 NS 5.4 ± 0.7 5.3 ± 0.7 NS

#13 3.4 ± 0.3 3.4 ± 0.3 NS 5.2 ± 2.9 5.2 ± 2.9 NS

#14 4.2 ± 0.7 4.2 ± 0.7 NS 5.9 ± 0.7 5.9 ± 0.7 NS

#15 4.1 ± 1.2 4.1 ± 1.2 NS 6.4 ± 0.7 6.4 ± 0.7 NS

#16 2.0 ± 0.8 2.0 ± 0.8 NS 5.9 ± 0.6 5.9 ± 0.6 NS

NS: No-significance vs. direct observation (p > 0.05). All values are expressed as mean ± SD.

3.2. Feature Extraction and Selection

For additional validation of KSS data, we compared these data with EEG signals obtained from
a variety of locations, to identify any underlying correlation. In this process, frequency and time-domain
parameters were extracted from the EEG signals and analyzed individually. Furthermore, signals from
each electrode were analyzed separately, such that we were able to identify which parameters and
electrode location had the best correlation to the drowsiness condition represented by the KSS. The
results of this correlation analysis are summarized in Table 2. From this table, we observed that signals
from the occipital site, specifically those from the O1 electrode, had the best correlation to KSS data,
especially α, β/α, (θ+α)/β, activity, and mobility parameter. Hence, we used these five parameters,
extracted from the O1 electrode, as the basis for our regression analysis.

Table 2. Analysis of correlation between each parameter, and drowsiness condition represented by KSS
(Karolinska sleepiness scale) for all electrode sites. Act: Activity, Mob: Mobility, Com: Complexity.

Electrode
Name

Correlation Coefficient (R2)

δ θ α β γ β/α (θ + α)/β Act. Mob. Com.

Fp1 0.04 0.13 0.14 0.22 0.19 0.01 0.06 0.15 0.10 0.05
Fp2 0.12 0.13 0.27 0.24 0.21 0.02 0.07 0.12 0.03 0.05
F3 0.10 0.11 0.10 0.20 0.16 0.07 0.10 0.09 0.00 0.01
F4 0.02 0.05 0.09 0.25 0.21 0.06 0.09 0.11 0.09 0.13
F7 0.10 0.11 0.10 0.19 0.16 0.02 0.10 0.12 0.04 0.01
F8 0.12 0.07 0.06 0.24 0.20 0.03 0.07 0.09 0.01 0.02
Fz 0.13 0.17 0.04 0.24 0.19 0.03 0.04 0.13 0.07 0.01
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Table 2. Cont.

Electrode
Name

Correlation Coefficient (R2)

δ θ α β γ β/α (θ + α)/β Act. Mob. Com.

C3 0.17 0.10 0.19 0.12 0.19 0.12 0.18 0.20 0.09 0.08
C4 0.15 0.10 0.20 0.15 0.18 0.20 0.22 0.31 0.11 0.09
Cz 0.17 0.08 0.30 0.14 0.19 0.30 0.22 0.31 0.18 0.09
P3 0.12 0.20 0.50 0.14 0.20 0.54 0.42 0.52 0.43 0.15
P4 0.10 0.16 0.46 0.13 0.19 0.46 0.38 0.48 0.33 0.17
Pz 0.15 0.20 0.60 0.13 0.19 0.61 0.60 0.53 0.49 0.15
O1 0.18 0.18 0.85 0.17 0.20 0.76 0.74 0.70 0.69 0.18
O2 0.18 0.17 0.75 0.16 0.21 0.64 0.72 0.64 0.59 0.18
T3 0.15 0.06 0.29 0.15 0.24 0.30 0.23 0.22 0.09 0.08
T4 0.13 0.06 0.28 0.15 0.22 0.23 0.24 0.21 0.12 0.09
T5 0.15 0.18 0.36 0.14 0.20 0.23 0.30 0.40 0.31 0.01
T6 0.14 0.17 0.37 0.15 0.22 0.25 0.31 0.36 0.30 0.01

3.3. Analysis of Regression Techniques

In this study, we used SVR and a new technique proposed in this paper, RSVR, for regression
analysis. A comparison of the performance of these techniques was completed using a combination of
correlation and RMSE analysis. Figures 2 and 3 illustrate how the values of R2 and RMSE obtained
from a single subject respond to additional data, as a representative result of this correlation analysis.
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From Figure 2, we note that with the SVR algorithm, the R2 value fluctuates as data from more
driving trials are included. For example, when data from trial #1 were the baseline, the correlation
coefficient increased from an initial value of 0.63 when considering trial #2, to 0.80 when considering
trial #4. However, it subsequently decreased to 0.77, 0.53, and 0.42 when data from trials #5, #6, and #7,
were included, respectively. In addition, when data from trials #1, #3, and #4 were the baseline, there
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was a decrease between the correlation coefficient calculated using only data from the first driving
trial (i.e., pre-estimation correlation coefficient), and the value calculated when data from the last
driving trial were included (post-estimation). In contrast, with our RSVR method, with trial #1 as the
baseline, R2 increased from 0.63, pre-estimation, to 0.87, post-estimation, in spite of the fact that there
was a slight decrease in this value when data from trial #5 were first included. Similarly, with trial #2
as the baseline, R2 increased from 0.69 (where trial #3 is the first dataset) to 0.95 (with trial #1 as the
final dataset), even though, again, there was a decrease when trial #5 was included. A similar trend is
observed when the rest of the datasets (trials #3, #4, #5, #6, #7, and #8) are used as baselines.

Figure 3 shows that the RMSE obtained using SVR fluctuates similarly, when data from more
driving trials are included. With trials #1, #2, #3, and #4 as the baselines, the RMSE increased from 0.59
to 0.62, 0.55 to 0.6, 0.54 to 0.63, and 0.59 to 0.63, respectively. In contrast, with the RSVR technique,
the RMSE generally decreased with additional driving trials, regardless of the baseline. For example,
with trial #1 as the baseline, the RMSE was decreased from an initial value of 0.59 to a final value of
0.20. When trial #2 became the baseline, RMSE again decreased from 0.57 to 0.15. We noted a similar
tendency using the rest of trials as a baseline.
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3.4. Statistical Analysis of Estimation Methods

To quantify the change in the performance of the SVR and RSVR techniques and verify their
adaptivity to additional driving data, we conducted a Wilcoxon signed-rank test using the pre- and
post-estimation R2 and RMSE values obtained from all subjects. The results of this statistical analysis
are shown in Figures 4 and 5.
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Figures 4 and 5 illustrate that there was no statistically significant (p > 0.05) improvement in the
performance of SVR pre- and post-estimation, based on either R2 or RMSE. In contrast, with RSVR, R2

increased from 0.63 ± 0.04 to 0.83 ± 0.06, and RMSE decreased from 0.59 ± 0.08 to 0.15 ± 0.04 (p > 0.05).
In addition, with this technique the post-estimation improvements were retained when tested with
p < 0.001.
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4. Discussion

4.1. Validation of KSS Similarity

As evaluating the drowsiness of the subject through a questionnaire during 50 min of driving
could affect the subject’s psychological condition, this study considered evaluating drowsiness after
the completion of each trial by watching the footage of the subject’s facial expression recorded
during the driving period. However, there was a resting stage before and after each trial to ensure
a similar drowsiness perspective during simulated driving and watching the footage video. At this
stage, the questions were asked directly to the subject at intervals of 30 s for 5 min (referred to as
“direct observation”). After the completion of the trial, the subject was asked to fill the drowsiness
questionnaire during the resting and driving periods based on the recorded facial expression (referred
to as “indirect observation”). The Wilcoxon signed-rank analysis was performed to analyze the
similarity between direct observation KSS and indirect observation KSS. As the results summarized in
Table 1 indicate, there was no significant difference between the direct and indirect observation of their
drowsiness of the subjects (p-value > 0.05), meaning the subjects were able to recall their drowsiness
condition by watching the footage of their facial expression during simulated driving at different times
after the completion of the trial.

4.2. Feature Extraction and Selection

Based on results discussed in previous studies, we recorded the absolute power of five common
features of EEG signals in the frequency-domain (δ, θ, α, β, and γ). These studies have noted that
the absolute power of the α-band correlates well to drowsiness, especially when this signal has been
obtained from an occipital site [13,16,25,27]. Because previous studies claimed that α-band, especially
from occipital site correlates to drowsiness, we also wanted to check if the results of this study are
also similar, as this indicator can ensure the validity of the data collected in this study for drowsiness
assessment. We confirmed this observation, as we note that of all the frequency-domain features, the
α-band from the O1 occipital site had the best correlation to physiological condition represented by
the KSS. As the α-band from the O2 occipital site also showed the second highest correlation, the
combined utilization of both occipital sites is considerable. However, we did not employ it together
because fewer electrodes and minimal processing are advantageous for feasible implementation in the
future. In addition to the powers of the different parameters, we investigated the power-ratios of the
frequency bands, since previous studies have noted that the amplitudes of low-frequency EEG bands
increase while those of high-frequency bands decrease when a subject is drowsy [16,27]. In particular,
employing the β/α and (θ+α)/β power ratios for detecting drowsiness in sleep-deprived subjects
has been suggested [25]. We found that both these ratios correlated well with a typical subject’s
drowsiness condition, represented by the KSS, confirming this hypothesis. Finally, we observed that,
of the time-domain features extracted, only the activity and mobility parameters showed a correlation
to drowsiness represented by the KSS. This result validates our previous study, which suggested that
activity and mobility parameters could be used to detect drowsiness [13].

4.3. Drowsiness Estimation and RSVR

In previous studies of drowsiness estimation, researchers typically focused on the reliability of
EEG signals in classifying two distinct states: awake and drowsy conditions. Garcés Correa et al.
employed a time, spectral, and wavelet analysis of EEG signals to estimate these two conditions in
a driving environment [28]. From this analysis, they selected six parameters (central frequency, the
standard deviation of EEG, first quartile frequency, maximum frequency, and θ and α bands), with
which they were able to detect awake conditions up to an accuracy of 87.4%, and drowsy conditions at
an accuracy of 83.6%, using an artificial neural network (ANN) classifier. Yeo et al. demonstrated that
an SVM classifier could be used to differentiate between alert and drowsy states, based on the spectral
features of EEG signals [16]. With this technique, they were able to assess two levels of drowsiness
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with an accuracy of up to 99.3%. Other studies [13,16] have attempted to classify drowsiness using
three levels: An awake condition; a strong drowsy condition; and a weak drowsy condition, which can
be considered to be the transition stage between the binary awake and drowsy conditions, as detecting
this weak drowsy condition enables early assessment of drowsiness. However, all these studies focused
only on detecting drowsiness by using a relatively big dataset and divided into such portion to train
and test. In addition, previous studies did not consider improving the estimation performance as the
subject trial increases.

The key idea in this study was to investigate whether EEG parameters can be used as a predictor
for a subjective drowsiness evaluation score, using a model trained with a limited dataset. In addition,
this model should be able to improve its estimation performance automatically as more data are
acquired. Thus, in this study we used a limited dataset to train our RSVR model. Then, as additional
trial data were included, the RSVR model estimated the drowsiness condition characterized by these
data, and automatically decided if the result was sufficiently accurate and whether to include the trial
data as additional training data. Since the RSVR only chooses data that lead to a high R2 value and
a low RMSE as additional training data, its estimation performance can be improved. The combination
of initial and additional data is then used for building a new RSVR model to estimate drowsiness for
the next set of trial data.

The concept of recurrence in RSVR refers to the use of the output of estimation as the input for
building the next regression model. In spite of its use of actual drowsiness conditions as the initial
training data, the RSVR uses model estimates as additional training data. This is in consideration of
ease of use, as it is not convenient for a system to prompt the subject to assess their drowsiness every
time a new activity occurs. Thus, by using the estimate from a previous trial as training data, operation
of the model is made more convenient. In spite of this design, Figures 2 and 3 show that, in general,
including more driving trial data increases the value of R2 obtained with RSVR, and decreases the
RMSE, regardless of the initial baseline. Although both the R2 and RMSE values sometimes fluctuated,
the overall results were better than those obtained with SVR. This indicates that the RSVR algorithm
can predict subjectively assessed drowsiness.

Another consideration is early drowsiness detection, which in some previous studies has been
enabled by classifying drowsiness into three categories [13,16]. However, while this is better than
binary classification, three conditions are still not enough for accident prevention, where drowsiness
should be detected as early as possible to prevent accidents. Once the earliest state of drowsiness has
been detected, the ideal system is able to give an early warning to the subject, allowing them to take
preventive action to avoid accidents. Since drowsiness changes gradually over time, it is possible to
detect its earliest state, which occurs before the transition stage defined for three-level drowsiness
classification systems. To accommodate this, more detailed categories are needed as markers for early
drowsiness states. Thus, in this study, we employed a nine-level drowsiness evaluator, with categories
ranging from very alert to very sleepy, as defined by the KSS.

Our statistical analysis shows that, with standard SVR, there is no significant difference in the R2

and RMSE values obtained pre-estimation and post-estimation (Figures 4 and 5). In contrast, with
RSVR, there was a statistically significant (p < 0.001) increase in R2, from 0.63 to 0.83, and a statistically
significant (p < 0.001) decrease in RMSE, from 0.59 to 0.15. A previous study showed that drowsiness
estimates obtained by relating SVR to physiological parameters had R2 and RMSE values of up to
0.69 and 0.27, respectively [18]. The studies listed in Table 3, that used adaptive ANN (AdANN) and
multinomial logistic regression (MLR) methods to estimate drowsiness, obtained RMSEs of 0.96 and
0.25, respectively [29,30]. Based on these results, our RSVR method outperforms the standard SVR
technique, and ANN and MLR methods as implemented in previous studies.
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Table 3. Comparison of previous studies and the current study in drowsiness estimation.

Estimation Method Drowsiness Categories RMSE

Jacobé et al. [29] AdANN 5 0.96
Murata et al. [30] MLR 3 0.25
This study RSVR 9 0.15

While the techniques presented in this paper have demonstrated potential for estimating
drowsiness, some limitations need to be considered. At present, we use a self-assessed questionnaire
to evaluate the trial participants’ drowsiness condition, which raises issues regarding the subjective
drowsiness perspective recorded [31]. However, as this questionnaire is widely used in other studies,
it is difficult to conclude that it is not reliable in evaluating drowsiness [15,16,30]. Other possible
limitations relate to the subject and research environment where tests were performed. In this study,
sixteen male subjects were selected for participation. While this may seem to be a small number,
many studies in the drowsiness estimation research field have used similarly small populations of
10–20 subjects [18,32–35]. Moreover, as this study focuses on intra-subject optimization, the number
of subjects does not affect the quality of the model. Although the experiments were conducted in
a driving simulator environment, the findings of this study are not solely applicable to drowsy driving
problems; we selected the specific research environment and settings because the monotony of the
driving task induces drowsiness easily. Further, we employed young male volunteers only in this
study. As mentioned above, we believe that the model quality is not affected by this issue. However,
we should conduct this experiment with middle-aged or elderly and female participants in the future,
for consideration of a more representative demographic.

5. Conclusions

In this study, we investigated the feasibility of estimating drowsiness from EEG parameters.
To model an actual scenario, we trained our technique with a limited dataset, and gradually increased
the quantity of data as the subject’s activity increased. In spite of the limited training data initially
provided, the proposed method was still able to improve its drowsiness estimation performance as
more of a subject’s activity was considered. Using five physiological parameters extracted from O1
electrode site (the absolute power of α, the β/α and (θ+α)/β ratios, and activity and mobility) and
a custom regression method (RSVR), we were able to estimate drowsiness with R2 and RMSE values up
to 0.83 and 0.15, respectively. Even though our experiments were conducted in a driving environment,
the technique suggested can be adapted for other purposes and is not limited to driving activity.
In addition, our technique classifies drowsiness in nine levels represented by the KSS, in contrast to the
two- and three-level classifications typically used.
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