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Abstract: This paper presents a multi-sensor model combination system with class-specific voting for
physical activity monitoring, which combines multiple classifiers obtained by splicing sensor data
from different nodes into new data frames to improve the diversity of model inputs. Data obtained
from a wearable multi-sensor wireless integrated measurement system (WIMS) consisting of two
accelerometers and one ventilation sensor have been analysed to identify 10 different activity types of
varying intensities performed by 110 voluntary participants. It is noted that each classifier shows
better performance on some specific activity classes. Through class-specific weighted majority
voting, the recognition accuracy of 10 PA types has been improved from 86% to 92% compared with
the non-combination approach. Furthermore, the combination method has shown to be effective
in reducing the subject-to-subject variability (standard deviation of recognition accuracies across
subjects) in activity recognition and has better performance in monitoring physical activities of
varying intensities than traditional homogeneous classifiers.
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1. Introduction

Physical activity (PA) is any bodily movement worked by skeletal muscles that requires more
energy expenditure than resting [1], such as walking, running, swimming, or aerobic exercise and
strength training. Getting proper physical activity throughout the day can lower the risk of type
2 diabetes, cardiovascular disease, stroke, and obesity. However, most people do not do enough
physical activity, because it is not easy to be measured. Therefore, accurate tracking and monitoring of
PA under free-living conditions is of significant importance to cultivate scientific living habits and
improve an individual’s health.

The target of PA monitoring is oriented to recognize the type of activity, duration of time, and
the intensity of daily activities in real-time. By estimating the energy consumption, it provides
important guidance for people’s scientific fitness. Accelerometer-based PA monitoring has become a
popular and handy choice recently due to its low subject burden and non-invasive nature. Hendelman
et al. have demonstrated the correlations between accelerometer counts and energy expenditure [2].
Scanaill et al. highlighted that the wearable telemonitoring system has provided a mechanism
of assessing health status in the living environment [3]. However, a single accelerometer cannot
accurately represent activities that produce similar acceleration profiles but have different energy
expenditures [4]. For example, walking at a certain speed may result in acceleration outputs similar to
that of walking at the same speed while carrying a load, but the energy expenditure is very different.
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To address the drawbacks of this method, researchers have investigated alternative techniques. Shoaib
et al. placed multiple sensors (accelerometer, gyroscope, and linear acceleration sensor) on different
parts of the body for human activity recognition [5]. Ermes et al. have extracted signal features
from three-axis accelerometers on the hip, wrist, and GPS signal [6]. To investigated advanced
computational techniques, machine learning and sensor fusion are applied to differentiate the activity
patterns [7]. Altini et al. have fused data from five sensor units to estimate the energy consumption
of various activities with different intensities [8]. A multi-sensor integrated measurement system
was developed with two three-axial accelerometers and a ventilation sensor to monitor and measure
physical activities [9].

Machine learning is the technology where existing knowledge is reorganized to improve its own
performance continuously [10]. Some methods based on machine learning have been utilized to
recognize physical activity patterns. The hidden Markov model (HMM) and artificial neural network
(ANN) have been typically employed to estimate the type of PA [4,11,12]. Support Vector Machines
(SVMs) have been used for medical and biomedical assessment due to its powerful classification
and estimation capabilities [13–15]. A single SVM classifier has also been utilized for PA recognition
based on a multi-sensor system [16]. Considering that even for the same activity, there will be
differences among different people, it is not easy to characterize the diversities between subjects
by a single classifier. In order to improve the generalization ability of machine learning, ensemble
learning, which combines multiple classifiers to achieve a better predictive capacity, is proposed and
applied in pattern recognition [17,18]. Zheng et al. ensembled the models based on the different
temporal scales and statistic features of an accelerometer [19]. Ravi et al. combined multiple different
classifiers using plurality voting for activity recognition from a single accelerometer [20]. In addition,
different sensor nodes or different types of sensors can establish heterogeneous classification models.
Kaur et al. achieved sustainable results on a set of common activities through ensemble learning [21].
Since sensor nodes in different parts can acquire different statistics of movement, the multi-sensor
measurement system has the potential to achieve better performance in the identification of PA type
than a homogeneous classifier. Some preliminary research on the majority voting-based ensemble
learning has been carried out for PA monitoring. The conventional weight-based ensemble method
typically treated the outputs of the same base classifier with the same weight. Mo et al. have ensembled
multiple classifiers with conventional weighted voting to improve the accuracy of the identification of
six PA types [22]. Considering that the combination of different sensors and classifiers may acquire
different performances in recognizing different PA patterns, increasing the diversity of model inputs
and differentiating the weights of the different types of activity classifiers may make a direct impact on
the classification ability of the models.

In this paper, a multi-sensor activity monitoring system proposed for PA tracking and pattern
recognition has been analyzed in detail, gathering multiple classifiers that support the vector machine
algorithm corresponding to different combinations of sensor nodes data. Taking into consideration
that the accuracy of classifying distinct PA types has been reflected within different types of classifiers,
the Class-specific Weighted Majority Voting (CWMV) has been presented for the model combination.
In order to verify the idea of this paper, the experiments of classification by using different classifier
integration methods have been conducted. The data on the performance of 110 participants’ activity
have been evaluated and recorded by both model combination and non-combination. Moreover,
the comparison between the CWMV and the plurality majority voting for the multi-sensor model
combination system are also explored and analyzed.

2. Model Combination Method

In machine learning, an ensemble learning method combines multiple classifiers to obtain a better
predictive performance than that obtained by any of the constituent classifiers [17,23,24], and it is a
technique that usually combines a number of weak classifiers together to produce a strong classifier.
Empirically, the model combination classifier tends to yield better results when a significant diversity
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among the classifiers exists [18,25]. Many model combination methods, therefore, seek to promote
diversity among the classifiers by using different resampling technologies, such as bagging [26],
boosting [27], and Ada-boost [28]. Another approach to achieve diversity is to use different training
parameters for different classifiers or to use a variety of strong learning algorithms [29]. For multi-sensor
measurement systems, different sensors would have different statistical distributions. Therefore, with
the multi-sensor model combination, the model can be designed with better generalization ability than
a single multi-input model. By choosing different sensors, it is easier to realize the diversity of the
classifier datasets than traditional approaches. Moreover, the model combination as an application of
ensemble learning is also a good choice for realizing multi-sensor data fusion.

2.1. Model Combination System Design

The overall architecture of the multi-sensor model combination system with CWMV is given
in Figure 1 below. The data sets used for the following model combination step were collected by
combining the dataflow of different sensor nodes of the multi-sensor measurement system. Furthermore,
the activity recognition features that are relevant to these sensor combination datasets have been
extracted and selected. By selecting sensor nodes and feature combinations, classifiers of different
feature sets could be derived from each sensor data set. The diversity of the base classifiers could
be achieved as well. As for each base classifier, a machine-learning model was selected and trained.
The partially independent data set was divided as a testing dataset to validate the performance of every
single base classifier. Under these conditions, each classifier had its own results for PA recognition.
At length, the final classification decision was obtained through fusing the classification results from
all the base classifiers, especially with a class-specific weighted majority voting.
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2.2. Class-Specific Weighted Majority Voting

Combining strategy refers to the voting method/scheme where different classifiers are combined
based on their different sensors to obtain better predictive performance. It is another important
consideration of any model combination system in addition to the diversity of the classifiers. Several
different model combination strategies have been studied for the model combination system, such as
plurality majority voting, weighted majority voting, and stacking [30]. Specifically, weighted majority
voting is a popular classifier combination method for ensemble learning, which assigns different voting
weights to the different classifiers with different accuracies. By doing so, it generally achieves better
results than plurality voting. However, since the classifiers based on the different sensor sets usually
have different recognition accuracies of the different PA types, it is not reasonable to assign a consistent
weight for each classifier. Therefore, a class-specific weighted majority voting is presented in this study
for the multi-sensor model combination system.
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Defining a subject space {Sj|Sj ∈ S, 1 ≤ j ≤ N} and multiple base classifiers {Ct|Ct ∈ C, 1 ≤ t ≤ T}, dt,j
which represents the decision of the tth classifier Ct on a subject Sj can be described as:

dt, j =

{
1, if Ct votes S j
0, if Ct votes others

(1)

Further, assuming that there is a way of estimating the identification performance of each classifier,
and that weight wt is assigned to the classifier Ct in proportion to its accuracy, then, the total weighted
voting scores gj of subject Sj can be calculated as:

g j =
T∑

t=1

wtdt, j (2)

where T is the number of classifiers. Among all the subject space S, the one which gets the maximum
voting scores is the final voting subject Svote. It can be described as:

Svote = SJ, when J = argmax
j

(g j) (3)

Or

Svote = SJ, when
T∑

t=1

wtdt,J =
N

max
j=1

T∑
t=1

wtdt, j (4)

where the function argmax returns an integer J, which stands for the index of the maximum voting scores.
Equations (3) and (4) is the normal weighted majority voting being wildly used [31]. Every classifier
has a different voting weight according to its identification accuracy. However, for the multi-sensor
system, different classifiers have different accuracies on the different PA types. For example, a classifier
based on the sensor dataset of a single wrist accelerometer has better identification accuracy on the
computer work than the treadmill exercise. For this reason, in the process of voting, weighing the
decisions of the classifier with different confidence on different PA types may further improve the
overall performance than that obtained by normal weighted majority voting with the same weight for
the same classifier on different PA type recognition. Through the training and testing, the weight wt,j

of classifier Ct in proportion to its estimated performance on the different subjects j (different PA types)
can be obtained. The weight wt,j can be defined as:

wt, j = getPresicion(Ct on S j) (5)

The function getPrecision returns the precision of a classifier on a specific subject. The precision of
the model is derived from the confusion matrix, which can be described as:

Precision =
TP

TP + FP
(6)

where the TP is the true positive and the FP is the false positive [32]. Then, the total voting scores gj of
subject Sj can be calculated as:

g j =
T∑

t=1

wt, jdt, j (7)

The final voted subject Svote can be calculated as:

Svote = SJ, when J = argmax
j

T∑
t=1

wt, jdt, j (8)
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This class-specific weighted majority voting is more reasonable than the normal weighted majority
voting for the model combination system. It considers the different identification accuracies of the
different classifiers (based on the different sensor sets) on the different PA types.

3. Multi-Sensor Measurement Platform

3.1. Multi-Sensor Monitoring System Based on the WIMS

The multi-sensor wireless integrated measurement system (WIMS) is designed to assess human
physical activity. Figure 2 illustrates the overall architecture of the multi-sensor activity monitoring
system. By attaching multiple sensors to the human body, physical activity signals corresponding to
different parts of the human body can be obtained. Feature extraction and selection are then performed.
Through certain machine learning algorithms, the physical activity patterns are identified and the
fitness of the body is evaluated. Based on the assessment results, expert guidance and suggestions can
be provided to people to improve their health and fitness.

Figure 2. The overall architecture of the multi-sensor activity monitoring system.

3.2. WIMS System Design and Realization

The sensor locations of the WIMS were selected according to the survey on the wearable sensor
convenience [13]. As a result, the two accelerometers are attached to the hip and wrist respectively,
while the ventilation sensor is attached around the abdomen. For free-living acceptance, the WIMS is
designed with wireless capability, low burden, extended battery life, easy operation, and sufficient
data storage [33]. The WIMS measures the body motion and respiration of a human subject, and the
collected data are subsequently fused to determine the PA types and quantify the PA-related energy
expenditure. Specifically, three sensor units are included in the WIMS:

1. Hip Unit: one tri-axial accelerometer ADXL345 worn at the hip, to measure the body motions
that characterize the degree of PA of the lower part of the body;

2. Wrist Unit: one tri-axial accelerometer ADXL345 worn on the wrist, to measure the arm and hand
motions that characterize the PA of the upper part of the body;

3. Abdominal Unit: one ventilation sensor made of piezoelectric crystal wrapped around the
abdomen, for measuring the expansion and contraction resulting from the subject’s respiration
(breathing rate and volume).

Figure 3 illustrates the hardware configuration of the WIMS. All the sensor units have embedded
ZigBee and MCU modules. The wrist unit and the abdominal unit transmit the sensor data to the hip
unit wirelessly via the ZigBee protocol. The collected data are subsequently fused to be stored into a
2-GB micro secure digital (SD) card embedded in the hip unit [33].
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Figure 3. The setup of the WIMS.

4. Experiment Design and Data Processing

4.1. Design of Experiments

A total of 110 subjects, including 51 males and 59 females, were enrolled in the experiment for
activity monitoring. The participants’ statistical characteristics are given in Table 1 below. As for
each individual, the actual PA labels and time period executed by the subjects were recorded, and the
dataflow with the different PA types was put into storage correspondingly by the WIMS. Every PA type
would be performed for 7 min, and then a 2-min rest period was given to calm heart rate. Prior to the
start of each test, subjects were asked to lie down on a bed (for consistency with previous calibration
studies [4]) and rest for 10 min to achieve the resting metabolic rate. All the tests were performed
during the daytime, and the subjects were asked to eat four hours before the test, after which no food
or drink was allowed to be taken, except for water. The total duration of each subject test session was
about 2 h.

Table 1. Subject Characteristics.

Charact-Eristics
Distribution Statistics

Category Number Percentage Mean Standard Deviation

Gender
F 59 53.6% N/A N/A
M 51 46.4%

Age (years)

20–30 30 27.3%

38.7182 11.8385
30–40 28 25.5%
40–50 25 22.7%
50–60 27 24.5%

Mass (kg)

<50 2 1.8%

71.2500 14.8677

50–60 26 23.7%
60–70 34 30.9%
70–80 13 11.8%
80–90 21 19.1%
>90 14 12.7%

Height (cm)

150–160 16 14.5%

169.555 9.2474
160–170 43 39.1%
170–180 33 30.0%

>180 18 16.4%

BMI (kg/m2)

<18.5 1 0.9%

25.0211 4.2116
18.5–25 65 59.1%
25–30 30 27.3%
>30 14 12.7%
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Each subject performed 10 types of activities of varying intensities, which are commonly
seen in daily lives as shown in Table 2, including motions from different parts of the body, e.g.,
upper-limb-dominant activities such as computer work, lower-limb-dominant activities such as cycling
and treadmill running, and whole-body activities such as tennis playing. These ten activities are the
target classes of the classifiers.

Table 2. Physical activity types for testing.

Activities Category Abbr.

Computer work Sedentary activity CW
Filing paper FP

Moving boxes
Household and other

MB
Vacuuming VA

Cycling with 1-kp resistance C1

Treadmill at 3.0 mph Moderate locomotion T3

Treadmill at 4.0 mph

Vigorous activity

T4
Treadmill at 6.0 mph T6

Tennis TE
Basketball BA

4.2. Data Processing

4.2.1. Sensor Sets Generation and Diversification

On this occasion, seven classifiers with seven sensor data training sets were designed for this
model combination system based on the inertial sensor units in the WIMS. Each sensor dataset
consisted of a set of some base classifiers. For the same reason, seven datasets were involved to
build these base classifiers separately, including (1) C1 (classifier responds for the wrist accelerometer
dataset), (2) C2 (classifier responds for the hip accelerometer dataset), (3) C3 (classifier responds for the
abdomen ventilation dataset), (4) C4 (classifier responds for both the hip accelerometer and the wrist
accelerometer datasets), (5) C5 (classifier responds for both the hip accelerometer and the abdomen
ventilation datasets), (6) C6 (classifier responds for both the wrist accelerometer and the abdomen
ventilation datasets), and (7) C7 (classifier responds for all the three sensor placements datasets).
Note that if a classifier combination contained multiple (n) classifiers that were built by different
feature training sets (random selection), 7 × n classifiers and 7 × n testing results altogether could
be obtained. The final fusion result was decided by these 7 × n base classifiers with class-specific
weighted majority voting.

4.2.2. Feature Extraction and Selection

Multiple features were extracted from the different datasets of the multi-sensor WIMS system,
as shown in Figure 4. Specifically, for each single sensor dataflow, seven time-domain features (10th,
25th, median, 75th, 90th percentiles, the mean value, and standard deviation) were extracted to provide
statistic distribution information. The 10th and 90th percentiles represent an estimate of the low and
high values in each signal. The middle three percentiles (25th, 50th, and 75th) characterize signal
distributions. The mean value and standard deviation of the PA signals were calculated to provide a
general description of the activity intensity levels. In the view of the coordination of PA, a correlation
coefficient feature of the hip accelerometer and the wrist one was obtained as well, which provided
a reference for the variation between the upper limb and the body during a complete PA. Likewise,
two frequency-domain features (energy and entropy) were extracted for accelerometers. As for the
respiratory sensor around the abdomen, the dominant frequency of the breathing signal acquired from
the spectral analysis was imported as a frequency feature. All these features were calculated within a
30 s length sliding window, and then linear scaling was used to normalize the whole feature set to
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the range between the value 0 and 1, in case the greater numeric ranges would cover those smaller
numeric values.

Lei Gao elaborated on a multi-sensor system where the redundant feature sets were not required
to acquire high recognition accuracy [34]. Raffaele indicated that the multi-sensor data fusion was well
established with the wearable system [35]. Accordingly, 49 time-domain, 1 correlation feature and
14 frequency-domain features have been extracted for the following pattern recognition. To realize the
diversity of the training of each base classifier, 70% of the overall features were picked up randomly
for the classifiers training.
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4.2.3. Model Selection, Training, and Testing

The SVM has been selected as the base classifier for the combination system first. Most of the
analysis and comparison would use this algorithm as the base classifier. After that, two different base
classification algorithms, k-nearest neighbor (KNN) and naive Bayes (NB), would be calculated and
compared. The chosen feature set was imported to the SVM model. In general, two steps were taken
to predict the labels of PA. First, a training dataset that consists of the selected features from all the
110 participants but one was constructed for building the SVM model and configuring the penalty
parameter C and Gaussian kernel parameter γ [36]. Maksim proposed SVM+, which is a broadening
of SVM to the LUPI framework, and weighted SVM which could achieve a better effect on classifying
by choosing weights of SVMs once some features were not in work [37]. SMO (Sequential Minimal
Optimization), a kind of SVM which meant sequential minimal optimization was implemented, as
the exponent value of poly kernel is configured as 2.0 aimed at forming the non-linear SVM, and the
model parameters were selected through a grid-search with 5-fold cross-validation. The configuration
parameters that reached the highest recognition accuracy would be preserved during the procedure.
Afterward, once the training finished, the SVM classification model was applied to the testing set that
was produced in the training step, and then the activity label was predicted according to the 30 s length
data series. Such a two-step procedure stands for the “leave-one-subject-out” cross-validation, which
was performed on each participant data. The accuracy calculated from the confusion matrix would be
used to evaluate the model performance.

5. Results and Discussion

5.1. Separate Classifier Results

Seven classifier clusters based on the seven different sensor datasets, including three single-sensor
datasets, three dual-sensor datasets, and one triple-sensor dataset, have been evaluated. Each cluster
included three classifiers generated by different random feature selections from the same dataset to
enhance the diversity of classifier. The mean and standard deviation of the classification accuracy of
the 7 × 3 classifiers are shown in Figure 5. It is seen that within the same classifier cluster, the mean and
standard deviation of the classification accuracy are equivalent to each other. Overall, the classifiers
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yielded better accuracy with more sensor inputs, e.g., the classifiers in the C7 cluster had the best
accuracy of activity type classification.Information 2019, 10, x FOR PEER REVIEW 9 of 15 
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5.2. PA Types Identification of Different Classifier Clusters

So as to combine the different base classifiers through the class-specific weighted majority voting,
it is essential to balance the voting weight set of these different classifier combinations. Furthermore,
due to the relation of these classifiers to the instances from different datasets, diverse confidences
and accuracies on classifying the PA types were yielded. Hence, the average voting weights of these
base classifiers were calculated and presented in Table 3 below. It can be seen that the base classifiers
have achieved different accuracies (voting weights) on PA label prediction. The different sensor
combinations probably reflect the divergences among the different PA types.

Table 3. The voting weights setting of different sensor classifiers for different PA types.

PA Types
The Voting Weights (%)

C1 C2 C3 C4 C5 C6 C7

CW 75.29 95.29 0 98.82 96.47 82.35 97.65
C1 83.45 82.07 51.03 94.48 91.72 88.97 93.79
T3 58.24 92.94 70.59 93.53 92.35 62.35 92.94
T4 67.23 84.87 9.24 92.44 84.87 68.91 92.44
FP 100.0 16.13 0 98.39 64.52 100.0 98.39
VA 96.77 80.65 0 98.39 69.35 93.55 95.16
BA 76.19 42.86 0 73.81 61.90 76.19 73.81
MB 91.67 45.24 22.62 86.90 54.76 91.67 86.90
TE 80.65 58.06 0 77.42 56.45 82.26 79.03
T6 95.24 97.62 0 95.24 90.48 100.0 100.0

5.3. Results of Different Model Combinations

The capability of this model combination system is in view of the number, type, and identification
accuracy of the base classifiers selected. Based on that, a variety of attempts on how to make
a combination have been experimented and evaluated. A description of these different model
combinations are listed in Table 4, where MC1 assigns the classifiers of C7, MC2 gathers the classifiers
of C1, C2, and C3, while MC3 gathers the classifiers of C4, C5, and C6, and MC4 gathers all the
classifiers (C1–C7).
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Table 4. Definitions of different model combinations.

Model Combination Definition of Different Combinations

MC1 Classifier of C7.
MC2 A combination of classifiers of C1, C2 and C3.
MC3 A combination of classifiers of C4, C5 and C6.
MC4 A combination of all the classifiers (C1 + C2 + C3 + C4 + C5 + C6 + C7).

For these constructed classifiers, features were randomly selected three times for each sensor
dataset, which resulted in three different classifiers in each classifier cluster. Theoretically, the more
classifiers that are generated, the better the combination result will be. On the other hand, the more
the classifiers, the more computational resources are needed. Thus, a study has been conducted to
investigate how the number of different classifiers generated in each classifier cluster affected the
classification performance. Figure 6 shows the mean and standard deviation of the classification
accuracy of the model combination corresponding to different numbers of feature selection. It is seen
that when the feature selection times exceeded three, the performance of the model combination
classifier reached a plateau and had little variation.
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Figure 7 illustrates the PA classification results of the various model combination classifiers E1–E4.
It is seen that the more classifiers and more sensor datasets included in the model combination classifier,
the better the result was. For example, the classifier E4 integrated all the classifiers (total 21), and it
yielded the best classification mean accuracy of 92.1% with the smallest standard deviation of 7.43%.
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5.4. Comparison between Model Combination and Non-Combination Classifiers

The comparison between the model combination and non-combination classifiers is shown in
Figure 8. Three different base classification algorithms, k-nearest neighbor (KNN), naive Bayes (NB)
and support vector machine (SVM), were calculated and compared. For all three base classification
algorithms, their model combination classifiers had better overall performance than non-combination
versions, reflected by the higher mean accuracies and lower standard deviations. Among these
model combination classifiers, the SVM based model combination classifier provided the best
performance improvement of 6.3% over the non-combination version. Specifically, compared with
the non-combination SVM classifier, the model combination classifier improved the mean accuracy
from 86.6% to 92.1% and decreased the standard deviation from 9.26% to 7.43%. Confusion matrices
of the classification accuracies of the ten different PA types with respect to the combination and
non-combination SVM classifiers are shown in Table 5. The areas in grey are the specific classification
precisions of the model for all the activities. Furthermore, a box chart of the classification result of these
two algorithms was given in Figure 9. It shows that the model combination classifier performed better
and obtained more stable classification ability than the non-combination one for all the ten PA types.
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Table 5. Classification Results Comparison.

Predict PA Type
True PA Type

CW C1 T3 T4 FP VA BA MB TE T6

Model
Combination
with CWMV

CW 97.56 0 0 0 7.12 0 0 0 0 0
C1 0 92.91 0.86 0 0 2.38 0 0 0 0
T3 0 0 75.00 0 0 0 0 0 0 0
T4 0 0 2.59 94.95 0 0 0 0 0 0
FP 2.44 5.51 2.59 2.02 92.86 0 0 5.77 0 0
VA 0 1.57 18.97 0 0 97.62 0 1.92 4.55 0
BA 0 0 0 3.03 0 0 95.56 11.54 0 1.67
MB 0 0 0 0 0 0 0 80.77 0 0
TE 0 0 0 0 0 0 0 0 95.45 0
T6 0 0 0 0 0 0 4.44 0 0 98.33

SVM

CW 70.21 0.88 0 0 16.67 0 0 0 0 0
C1 21.28 90.27 1.89 0 1.67 9.09 0 0 0 0
T3 0 0 78.30 0 0 7.27 0 0 0 0
T4 0 0 0 90.48 0 1.82 0 2.13 0 0
FP 8.51 5.31 0.94 0.95 81.67 5.45 0 8.51 0 0
VA 0 3.54 17.92 0.95 0 76.36 0 2.13 0 0
BA 0 0 0 7.62 0 0 100.0 0 4.55 3.17
MB 0 0 0.94 0 0 0 0 87.23 0 0
TE 0 0 0 0 0 0 0 0 95.45 0
T6 0 0 0 0 0 0 0 0 0 96.83
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SVM classifiers.

5.5. Comparison Between Voting Methods

For this multi-sensor model combination system, the comparison between the class-specific
weighted majority voting and the normal weighted majority voting is shown in Figure 10. Compared
with the normal weighted majority voting, the class-specific weighted majority voting improved
the mean accuracy from 90.2% to 92.1% and decreased the standard deviation from 7.70% to 7.43%.
Because different sensors and classifiers have different accuracies and voting weights to different PA
types, the model combination with class-specific weighted majority voting has better performance
than the traditional mean value majority voting combination for the activity monitoring system.
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6. Conclusions

In this paper, a combination of models with the CWMV system was designed and evaluated for the
multi-sensor activity monitoring system (WIMS). Different sensor and classifier combinations would
achieve different performances on recognizing different PA patterns. Based on that, the approach
proposed splices the data measured by the three sensor nodes into a new data frame to enhance
the diversity of the model inputs and combines the multiple different classifiers according to the
classification accuracies of the different PA types. For the non-combination classifier, all the data
obtained from the multiple sensors were merged as a single set of features, which assumes that all the
data obtained from the various sensors were sampled from one multivariate statistical distribution.
On the other hand, the method in this study maintains the statistical distribution of each sensor dataset
of its own and fuses their decisions with the class-specific weighted majority voting. Compared to the
non-combination classifier, the CWMV system has achieved higher mean accuracies, lower standard
deviations, and better generalization capability with “leave-one-subject-out” cross-validation.

Although promising results have been demonstrated in this study, there are limitations that need
to be addressed. For example, CWMV has obtained a higher classification accuracy at the expense of
taking more computational resources than non-combination classifiers. More participants will need
to be involved in future research to improve the robustness in generalizability. Furthermore, there
are several issues that remain unanswered, e.g., (1) number and type of sensors to be used to achieve
the best classification performance, (2) sensor placement, (3) features and classifiers that are optimal
for the model combination system, and (4) comparison of this method with other model combination
methods for PA classification. These issues will be addressed in future result to further improve the
performance and robustness of the multi-sensor activity monitoring system.
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