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Abstract: Automatic dialog act recognition is an important step for dialog systems since it reveals the
intention behind the words uttered by its conversational partners. Although most approaches on
the task use word-level tokenization, there is information at the sub-word level that is related to the
function of the words and, consequently, their intention. Thus, in this study, we explored the use of
character-level tokenization to capture that information. We explored the use of multiple character
windows of different sizes to capture morphological aspects, such as affixes and lemmas, as well as
inter-word information. Furthermore, we assessed the importance of punctuation and capitalization
for the task. To broaden the conclusions of our study, we performed experiments on dialogs in
three languages—English, Spanish, and German—which have different morphological characteristics.
Furthermore, the dialogs cover multiple domains and are annotated with both domain-dependent
and domain-independent dialog act labels. The achieved results not only show that the character-level
approach leads to similar or better performance than the state-of-the-art word-level approaches on
the task, but also that both approaches are able to capture complementary information. Thus, the best
results are achieved by combining tokenization at both levels.

Keywords: dialog act recognition; character-level; multilinguality; multidomain

1. Introduction

Dialog act recognition is an important task in the context of a dialog system, since dialog acts are
the minimal units of linguistic communication that reveal the intention behind the uttered words [1].
Identifying the intention behind the utterances of its conversational partners allows a dialog system to
apply specialized interpretation strategies, accordingly. Thus, automatic dialog act recognition is a
task that has been widely explored over the years on multiple corpora and using multiple classical
machine learning approaches [2]. However, recently, most approaches on the task focus on applying
different Deep Neural Network (DNN) architectures to generate segment representations from word
embeddings and combine them with context information from the surrounding segments [3–6]. All of
these approaches look at the segment at the word level. That is, they consider that a segment is a
sequence of words and that its intention is revealed by the combination of those words. However, there
are also cues for intention at the sub-word level. These cues are mostly related to the morphology of
words. For instance, there are cases, such as adverbs of manner and negatives, in which the function,
and hence the intention, of a word is related to its affixes. On the other hand, there are cases in
which considering multiple forms of the same lexeme independently does not provide additional
information concerning intention and the lemma suffices. This information is provided by different
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groups of characters that constitute relevant morphological aspects. Thus, it is hard to capture using
word-level approaches.

We aimed at capturing sub-word information and, consequently, improving the state-of-the-art
on dialog act recognition by performing character-level tokenization and exploring the use of
multiple context windows surrounding each token to capture different morphological aspects.
Although character-level approaches are typically used for word-level classification tasks, such as
Part-of-Speech (POS) tagging [7], their use for dialog act recognition is supported by the interesting
results achieved on other short-text classification tasks, such as language identification [8] and review
rating [9]. In addition to the aspects concerning morphological information, using character-level
tokenization allows assessing the importance of aspects such as capitalization and punctuation for the
task. Furthermore, we assessed whether the character-level approach is able to capture all the relevant
word-level information or if there are some aspects that can only be captured using a word-level
approach. That is, we assessed whether the word- and character-level approaches are complementary
and can be combined to improve the performance on the task.

In the conference paper that this article extends [10], we performed experiments on two corpora,
Switchboard Dialog Act Corpus (SwDA) [11] and DIHANA [12], which vary in terms of domain,
the nature of the participants, and language—English and Spanish, respectively. However, in both
cases, we focused on assessing the performance of character-level approaches to predict generic
domain-independent dialog act labels. Here, we extended that study by assessing the performance
when predicting the domain-dependent dialog act labels of the LEGO corpus [13] (an annotated subset
of the Let’s Go Corpus) and the Levels 2 and 3 of the dialog act annotations of the DIHANA corpus,
which are both domain-dependent and multilabel. Additionally, we assessed the performance on the
German dialogs of the VERBMOBIL corpus [14]. The latter is interesting since the German language
features morphological aspects that are not predominant in English or Spanish.

In the remainder of the article, we start by providing an overview of previous approaches
on dialog act recognition, in Section 2. Then, in Section 3, we discuss why using character-level
tokenization is relevant for the task and define the aspects that we want to explore. Section 4 describes
our experimental setup, including the used datasets in Section 4.1, our classification approach in
Section 4.2, and the evaluation method and word-level baselines in Section 4.3. The results of our
experiments are presented and discussed in Section 5. Finally, Section 6 states the most important
conclusions of this study and provides pointers for future work.

2. Related Work

Automatic dialog act recognition is a task that has been widely explored over the years, using
multiple classical machine learning approaches, from Hidden Markov Models (HMMs) [15] to Support
Vector Machines (SVMs) [16,17]. The article by Král and Cerisara [2] provides an interesting overview
on many of those approaches on the task. However, recently, similar to many other Natural Language
Processing (NLP) tasks [18,19], most studies on dialog act recognition take advantage of different
Neural Network (NN) architectures.

To our knowledge, the first of those studies was that by Kalchbrenner and Blunsom [3].
The described approach uses a Convolutional Neural Network (CNN)-based approach to generate
segment representations from randomly initialized word embeddings. Then, it uses a Recurrent Neural
Network (RNN)-based discourse model that combines the sequence of segment representations with
speaker information and outputs the corresponding sequence of dialog acts. By limiting the discourse
model to consider information from the two preceding segments only, this approach achieved 73.9%
accuracy on the SwDA corpus.

Lee and Dernoncourt [4] compared the performance of a Long Short-Term Memory (LSTM) unit
against that of a CNN to generate segment representations from pre-trained embeddings of its words.
To generate the corresponding dialog act classifications, the segment representations were then fed to a
two-layer feed-forward network, in which the first layer normalizes the representations and the second
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selects the class with highest probability. In their experiments, the CNN-based approach consistently
led to similar or better results than the LSTM-based one. The architecture was also used to provide
context information from up to two preceding segments at two levels. The first level refers to the
concatenation of the representations of the preceding segments with that of the current segment before
providing it to the feed-forward network. The second refers to the concatenation of the normalized
representations before providing them to the output layer. This approach achieved 65.8%, 84.6%,
and 71.4% accuracy on the Dialog State Tracking Challenge 4 (DSTC4) [20], ICSI Meeting Recorder
Dialog Act Corpus (MRDA) [21], and SwDA corpora, respectively. However, the influence of context
information varied across corpora.

Ji et al. [5] explored the combination of positive aspects of NN architectures and probabilistic
graphical models. They used a Discourse Relation Language Model (DRLM) that combined a Recurrent
Neural Network Language Model (RNNLM) [22] to model the sequence of words in the dialog with
a latent variable model over shallow discourse structure to model the relations between adjacent
segments which, in this context, are the dialog acts. This way, the model can perform word prediction
using discriminatively-trained vector representations while maintaining a probabilistic representation
of a targeted linguistic element, such as the dialog act. To function as a dialog act classifier, the model
was trained to maximize the conditional probability of a sequence of dialog acts given a sequence of
segments, achieving 77.0% accuracy on the SwDA corpus.

The previous studies explored the use of a single recurrent or convolutional layer to generate the
segment representation from those of its words. However, the top performing approaches use multiple
of those layers. On the one hand, Khanpour et al. [23] achieved their best results using a segment
representation generated by concatenating the outputs of a stack of 10 LSTM units at the last time step.
This way, the model is able to capture long distance relations between tokens. On the convolutional side,
Liu et al. [6] generated the segment representation by combining the outputs of three parallel CNNs
with different context window sizes to capture different functional patterns. In both cases, pre-trained
word embeddings were used as input to the network. Overall, from the reported results, it is not
possible to state which is the top performing segment representation approach since the evaluation
was performed on different subsets of the SwDA corpus. However, Khanpour et al. [23] reported
73.9% accuracy on the validation set and 80.1% on the test set, while Liu et al. [6] reported 74.5% and
76.9% accuracy on the two sets used to evaluate their experiments. Additionally, Khanpour et al. [23]
reported 86.8% accuracy on the MRDA corpus.

Liu et al. [6] also explored the use of context information concerning speaker changes and from the
surrounding segments. The first was provided as a flag and concatenated to the segment representation.
Concerning the latter, they explored the use of discourse models, as well as of approaches that
concatenated the context information directly to the segment representation. The discourse models
transform the model into a hierarchical one by generating a sequence of dialog act classifications
from the sequence of segment representations. Thus, when predicting the classification of a segment,
the surrounding ones are also taken into account. However, when the discourse model is based on
a CNN or a bidirectional LSTM unit, it considers information from future segments, which is not
available to a dialog system. However, even when relying on future information, the approaches based
on discourse models performed worse than those that concatenated the context information directly to
the segment representation. In this sense, providing that information in the form of the classification of
the surrounding segments led to better results than using their words, even when those classifications
were obtained automatically. This conclusion is in line with what we had shown in our previous
study using SVMs [17]. Furthermore, both studies have shown that, as expected, the first preceding
segment is the most important and that the influence decays with the distance. Using the setup with
gold standard labels from three preceding segments, the results on the two sets used to evaluate the
approach improved to 79.6% and 81.8%, respectively.

Finally, considering the focus of this study, it is important to make some remarks concerning
tokenization and token representation. In all the previously described studies, tokenization was
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performed at the word level. Furthermore, with the exception of the first study [3], which used
randomly initialized embeddings, the representation of those words was given by pre-trained
embeddings. Khanpour et al. [23] compared the performance when using Word2Vec [24] and Global
Vectors for Word Representation (GloVe) [25] embeddings trained on multiple corpora. Although both
embedding approaches capture information concerning words that commonly appear together, the best
results were achieved using Word2Vec embeddings. In terms of dimensionality, that study compared
embedding spaces with 75, 150, and 300 dimensions. The best results were achieved when using
150-dimensional embeddings. However, 200-dimensional embeddings were used in other studies [4,6],
which was not one of the compared values.

3. The Character Level

It is interesting to explore character-level tokenization because it allows us to capture
morphological information that is at the sub-word level and, thus, cannot be directly captured using
word-level tokenization. Considering the task at hand, that information is relevant since it may
provide cues for identifying the intention behind the words. When someone selects a set of words to
form a segment that transmits a certain intention, each of those words is typically selected because
it has a function that contributes to that transmission. In this sense, affixes are tightly related to
word function, especially in fusional languages. Thus, the presence of certain affixes is a cue for
intention, independently of the lemma. However, there are also cases, such as when affixes are used
for subject–verb agreement, in which the cue for intention is in the lemmas and, thus, considering
multiple forms of the same lexeme does not provide additional information.

Information concerning lemmas and affixes cannot be captured from single independent
characters. Thus, it is necessary to consider the context surrounding each token and look at groups
of characters. The size of the context window plays an important part in what information can be
captured. For instance, English affixes are typically short (e.g., un-, -ly, and a-), but in other languages,
such as Spanish, there are longer commonly used affixes (e.g., -mente, which is used to transform
adjectives into adverbs in the same manner as -ly in English). Furthermore, to capture the lemmas
of long words, the agglutinative aspects of German, and even inter-word relations, wider context
window sizes must be considered. However, using wide context windows impairs the ability to
capture information from short groups of characters, as additional irrelevant characters are considered.
This suggests that, to capture all the relevant information, multiple context windows should be used.

Using character-level tokenization also allows us to consider punctuation, which is able to provide
both direct and indirect cues for dialog act recognition. For instance, an interrogation mark provides a
direct cue that the intention is related to knowledge seeking. On the other hand, commas structure the
segment, indirectly contributing to the transmission of an intention.

Additionally, character-level tokenization allows us to consider capitalization information.
However, in the beginning of a segment, capitalization only signals that beginning and, thus,
considering it only introduces entropy. In both English and Spanish, capitalization in the middle
of a segment is typically only used to distinguish proper nouns, which are not related to intention.
In German, all nouns are capitalized, which simplifies their distinction from words of other classes,
such as adjectives. However, while some nouns may be related to intention, others are not.
Thus, capitalization information is not expected to contribute to the task.

Finally, previous studies have shown that word-level information is relevant for the task and
that word-level approaches are able to identify intention with acceptable performance. Although we
expect character-level approaches to be able to capture most of the information that is captured at the
word level, exploring the character level highly increases the number of tokens in a segment, which
introduces a large amount of entropy. Thus, it is possible that some specific aspects can only be captured
at the word level. In this case, it is important to assess whether both approaches are complementary.
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4. Experimental Setup

To assess the validity of the hypotheses proposed in the previous section, we performed
experiments on different corpora and compared the performance when using word- and character-level
tokenization. The used datasets, the classification and evaluation approaches, and the word-level
baselines are described below.

4.1. Datasets

In the conference paper extended by this article [10], we performed experiments on two corpora,
SwDA [11] and DIHANA [12]. These datasets allowed us to assess the performance of character-level
approaches when predicting generic domain-independent dialog act labels in both English and Spanish.
In this article, we extended our study by exploring an additional language, German. To do so,
we relied on the VERBMOBIL corpus [14]. Additionally, we assessed the performance of character-level
approaches when predicting the domain-specific dialog act labels of the LEGO corpus [13] and the
lower levels of the dialog act annotation of the DIHANA corpus. Each of these corpora and their
dialog act annotations are described below.

4.1.1. Switchboard Dialog Act Corpus

The Switchboard [26] corpus consists of about 2400 telephone conversations among 543 American
English speakers. Each pair of speakers was automatically attributed a topic for discussion, from
70 different ones. Furthermore, speaker pairing and topic attribution were constrained so that no two
speakers would be paired with each other more than once and no one spoke more than once on a
given topic. The Switchboard Dialog Act Corpus (SwDA) [11] is a subset of this corpus, consisting of
1155 manually transcribed conversations, containing 223,606 segments.

The corpus was annotated for dialog acts using the SWBD-DAMSL tag set, which was structured
so that the annotators were able to label the conversations from transcriptions alone. It contains
over 200 unique tags. However, to obtain a higher inter-annotator agreement and higher example
frequencies per class, a less fine-grained set of 44 tags was devised. Jurafsky et al. [11] reported an
average pairwise Kappa [27] of 0.80, while Stolcke et al. [15] referred to an inter-annotator agreement
of 84%, which is the average pairwise percent agreement. As shown in Table 1, the class distribution
is highly unbalanced, with the three most frequent classes—Statement-opinion, Acknowledgement,
and Statement-non-opinion—covering 68% of the corpus. The tag set is typically further reduced
to 42 categories [15], by merging the Abandoned and Uninterpretable categories and by merging the
segments labeled as Segment with the previous one by the same speaker. Although there are other
variations of the tag set [16,28,29], we used the 42-label version in our experiments, since by analyzing
the data we came to the conclusion that it is the most appropriate.

We selected this corpus for our experiments because it is the most explored for the dialog
act recognition task, since it contains a large amount of annotated data, which can lead to solid
results. Furthermore, since its tag set is domain-independent and the domain of the dialog varies,
the probability of drawing conclusions that depend on the domain of the corpus is reduced.
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Table 1. Label distribution in the Switchboard Dialog Act Corpus (SwDA) [11].

Label Count % Label Count %

Statement-non-opinion 72,824 36 Collaborative Completion 699 0.4
Acknowledgement 37,096 19 Repeat-Phrase 660 0.3
Statement-opinion 25,197 13 Open-Question 632 0.3
Agreement 10,820 5 Rhetorical-Question 557 0.3
Abandoned 10,569 5 Hold 540 0.2
Appreciation 4663 2 Reject 338 0.2
Yes-No-Question 4624 2 Negative Non-no Answer 292 0.1
Non-verbal 3548 2 Non-understanding 288 0.1
Yes Answer 2934 1 Other Answer 279 0.1
Conventional Closing 2486 1 Conventional Opening 220 0.1
Uninterpretable 2158 1 Or-Clause 207 0.1
Wh-Question 1911 1 Dispreferred Answers 205 0.1
No Answer 1340 1 3rd-party-talk 115 0.1
Response Acknowledgement 1277 1 Offers/Options 109 0.1
Hedge 1182 1 Self-talk 102 0.1
Declarative Yes-No-Question 1174 1 Downplayer 100 0.1
Other 1074 1 Maybe 98 <0.1
Backchannel-Question 1019 1 Tag-Question 93 <0.1
Quotation 934 0.5 Declarative Wh-Question 80 <0.1
Summarization 919 0.5 Apology 76 <0.1
Affirmative Non-yes Answer 836 0.4 Thanking 67 <0.1
Action Directive 719 0.4

4.1.2. LEGO

The LEGO corpus [13] is an annotated subset of 347 calls from the Carnegie Mellon University
(CMU)’s Let’s Go Bus Information System [30] recorded during 2006. It features 14,186 utterances—9083
system utterances and 5103 user utterances. Since system utterances are generated through slot filling
of fixed templates, they have no errors and contain casing and punctuation information. In contrast,
the transcriptions of user utterances were obtained using an Automatic Speech Recognition (ASR)
system and, thus, contain no casing or punctuation information. Furthermore, the recognition was not
always correct. However, a concrete value for the Word Error Rate (WER) is not revealed.

In terms of dialog acts, the LEGO corpus is annotated with two distinct and domain-dependent
tag sets for system and user turns. The set for system turns contains 28 labels, while the set for user
turns contains 22 labels. Since the two sets are distinct and the system is aware of the dialog acts of
its own sentences, it makes no sense to predict them automatically. Thus, we focused on the user
segments and only relied on system segments to provide context information. The distribution of the
labels across user segments is shown in Table 2. The three most common labels are Place Information,
Unqualified/Unrecognized, and Reject, with the last two covering 29% of the segments. This reveals a
high number of communication problems between the user and the system.

Table 2. Label distribution in the user segments of the LEGO corpus.

Label Count % Label Count %

Place Information 879 17 Reject Departure 135 3
Unqualified/Unrecognized 783 15 New Query 98 2
Reject 746 14 Reject Time 95 2
Line Information 440 8 Request Previous Bus 75 1
Time Information 391 8 Reject Bus 69 1
Confirm Departure 291 6 Reject Destination 53 1
Confirm Destination 246 5 Request Help 52 1
Confirm Time 225 4 Goodbye 29 0.6
Confirm 214 4 Request Schedule 18 0.4
Confirm Bus 179 3 Polite 8 0.2
Request Next Bus 159 3 Inform 3 0.1
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Although the LEGO corpus has been used in many research tasks related to dialog and interaction
with Interactive Voice Response (IVR) systems, its dialog act annotations have been neglected. In fact,
to our knowledge, they have only been used in the context of the SpeDial project [31] (http://www.
spedial.eu). This is probably due to the domain dependence of the labels, which would not be useful
in any other domain. Furthermore, since the labels are so specific, even a system dealing with the same
domain would only be able to benefit from them if the dialog had the same characteristics as the ones
from the LEGO corpus. However, we decided to use this corpus in our experiments, since it allowed
us to explore the performance of character-based approaches when predicting domain-dependent
dialog acts.

4.1.3. DIHANA

The DIHANA corpus [12] consists of 900 dialogs between 225 human speakers and a Wizard of
Oz (WoZ) telephonic train information system. There are 6280 user turns and 9133 system turns, with
a vocabulary size of 823 words and a total of 48,243 words. The turns were manually transcribed,
segmented, and annotated with dialog acts [32]. The total number of annotated segments is 23,547,
with 9715 corresponding to user segments and 13,832 to system segments.

Contrarily to what happens in the LEGO corpus, the dialog act annotations are common to both
user and system segments. Furthermore, they are hierarchically decomposed in three levels [33]. Level 1
represents the generic intention of the segment, independently of task details, while the remaining
represent task-specific information. Level 1 has 11 labels, distributed according to Table 3. In that table,
we can see that two of the labels are exclusive to user segments—Acceptance and Rejection—and four to
system segments—Opening, Waiting, New Consult, and Confirmation. Furthermore, the most common
label, Question, covers 27% of the segments.

Table 3. Distribution of the domain-independent labels of Level 1 in the DIHANA corpus. The labels
shown in this table are translations of the original labels in Spanish.

Label User System Total % Label User System Total %

Question 5474 864 6338 27 Acceptance 990 0 990 4
Answer 1839 2446 4285 18 Opening 0 900 900 4
Confirmation 0 3629 3629 15 Not Understood 4 653 657 3
New Consult 0 2474 2474 11 Rejection 340 0 340 1
Waiting 0 1948 1948 8 Undefined 141 18 159 1
Closing 927 900 1827 8

Although they share most labels, the two task-specific levels of the hierarchy focus on different
information. While Level 2 is related to the kind of information that is implicitly focused in the segment,
Level 3 is related to the kind of information that is explicitly referred to in the segment. For instance,
consider the segment “I’m looking for trains departing from Bilbao to Corunna on Monday, February 16,
2004.” Since it reveals the intention of finding a train schedule, it has Departure Time as a Level 2 label.
However, since that departure time is not explicitly referred in the segment, that label is not part of its
Level 3 labels. On the other hand, the segment explicitly refers a departure place, a destination, and a
date. Thus, it has the corresponding Level 3 labels—Origin, Destination, and Day.

The distributions of the labels of both levels in the corpus are shown in Table 4. We can see that
there are 10 common labels and three additional ones on Level 3—Order Number, Number of Trains,
and Trip Type. Furthermore, both levels have the Nil label, which represents the absence of label in
that level. In this sense, we can see that only 63% of the segments have Level 2 labels, and that the
percentage is even lower, 52%, when considering Level 3 labels. This is mainly because the segments
labeled as Opening, Closing, Undefined, Not Understood, Waiting, and New Consult on the first level cannot
have labels on the remaining levels. This happens since those labels refer to discourse structuring or
problems in the dialog. Finally, it is important to note that, while each segment may only have one
Level 1 label, it may have multiple Level 2 and Level 3 labels.

http://www.spedial.eu
http://www.spedial.eu
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Table 4. Distribution of the domain-dependent labels of Levels 2 and 3 in the DIHANA corpus.
The labels shown in this table are translations of the original labels in Spanish.

Level 2 Level 3
Label User System Total % Label User System Total %

Nil 1923 6893 8816 37 Nil 2954 8317 11,271 48
Departure Time 3309 3523 7432 32 Destination 1631 2079 3710 16
Fare 2071 1267 3338 14 Day 1881 1778 3659 16
Day 1026 923 1949 8 Origin 896 2085 2981 13
Origin 477 480 957 4 Departure Time 692 1633 2325 10
Destination 452 400 852 4 Number of Trains 0 1863 1863 8
Train Type 317 226 543 2 Train Type 544 1253 1797 8
Arrival Time 90 88 178 1 Order Number 84 950 1034 4
Duration 14 15 29 0.1 Ticket Class 129 766 895 4
Ticket Class 15 12 27 0.1 Fare 47 731 778 3
Service 3 5 8 <0.1 Arrival Time 199 490 689 3

Trip Type 643 0 643 3
Service 15 4 19 0.1
Duration 0 14 14 0.1

We decided to use the DIHANA corpus in our experiments, since it allowed us to study the
identification of both domain-independent and domain-dependent dialog acts in a language other
than English. Furthermore, it poses multilabel classification problems at the lower levels, which are
not common and are interesting to explore.

4.1.4. VERBMOBIL

The VERBMOBIL project [14] aimed at developing a portable translation device that could be
used in meetings involving speakers of different languages. During its first phase, multiple dialogs in
an appointment scheduling scenario were recorded. The segments in those dialogs were annotated
with dialog act information using a taxonomy featuring 18 domain-independent labels, some of which
could then be further specified using domain information, leading to a set of 42 domain-dependent
labels [34]. The scenario was later extended in the second phase of the project to dialogs in the travel
planning domain, of which appointment scheduling is only a part. Thus, the dialog act annotations
had to be updated in order to use a common set of labels for dialogs of both phases of the project.
The updated label set consists of 33 domain-independent labels, which can be attributed to segments
using a decision tree, stopping when there is not enough information to go deeper in the tree [35].

Although the corpus also features dialogs in English and Japanese, most are in German. In this
sense, there are 735 dialogs in German, featuring 39,148 segments, annotated with the updated version
of the label set. This is the corpus we considered for our experiments. To avoid dealing with a
hierarchical problem, we collapsed the 33 labels into the 17 at the top level of the tree. Table 5 shows
the distribution of these labels in the corpus. We can see that the three most common labels—Feedback,
Inform, and Suggest—cover 66% of the corpus and are highly related to the planning/scheduling nature
of the dialogs.

We decided to include the VERBMOBIL corpus in our study since it provides dialogs in German,
which differs from English and Spanish in terms of morphology. More specifically, although it is a
fusional language, agglutinative aspects are much more predominant in German than in the other
two languages.
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Table 5. Label distribution in the VERBMOBIL corpus.

Label Count % Label Count %

Feedback 10,002 26 Not Classifiable 918 2
Inform 7819 20 Introduce 713 2
Suggest 7815 20 Thank 452 1
Request 3314 8 Close 420 1
Bye 1613 4 Politeness Formula 363 1
Init 1458 4 Commit 254 0.6
Greet 1408 4 Defer 176 0.4
Deliberate 1319 3 Offer 37 0.1
Backchannel 1067 3

4.2. Classification Approach

As a classification approach, we adapted the CNN-based word-level approach by Liu et al. [6] to
use characters instead of words as tokens. We opted for this approach since its multiple parallel CNNs
are able to capture information from sets of characters of different sizes, which is important to capture
the different morphological aspects referred to in Section 3.

The generic architecture of the network used in both the word-level baselines and our experiments
at the character-level is summarized in Figure 1. Its input is the sequence of embeddings of the
tokens in a segment. The embedding representation at the word level is part of the definition of the
word-level baselines. Thus, it is described in the next section. At the character level, instead of using a
one-hot encoding for each character, we use the number of dimensions required for a one-hot encoding,
but allow the embeddings to be adapted during the training phase. This way, the character embeddings
are themselves able to capture relations between characters that commonly appear together.

t0

t1 

tn-1 

tn 

... Dense 
(Dim. Reduction) 

CNN 
(w = 1) 

CNN 
(w = 2) 

CNN 
(w = 3) 

Max Pooling 

Max Pooling 

Max Pooling Dense 
(Softmax / Sigmoid) 

Additional Features

Dialog Act  Label

Figure 1. The generic architecture of the network used in our experiments. ti corresponds to the
embedding representation of the ith token. w corresponds to the context window size of the CNN.
The number of parallel CNNs and the respective window sizes vary between experiments. Those shown
in the figure correspond to the ones used by Liu et al. [6] in their experiments, which we adopt for the
word-level baselines.

To generate the representation of the segment, the token embeddings are passed through a set of
parallel temporal CNNs with different context window sizes followed by a max pooling operation.
Each of these CNNs focuses on groups of characters of a certain size and, thus, it is important to
use a set of context windows able to capture the different morphological aspects that are relevant
for the task. In our experiments we explored windows of up to ten characters independently before
selecting the best combination. The representation of the segment is then given by the concatenation
of the output of each max pooling operation. This way, it contains information concerning all the
captured patterns. Finally, to summarize and capture the most important information provided by
the multiple parallel CNNs, the segment representation is passed through a dimensionality reduction
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layer. Additionally, this layer applies dropout during the training phase to reduce the probability of
overfitting to the training data.

As shown in our previous study [17] and in that by Liu et al. [6], context information is highly
important for the task, especially that provided by the preceding segments. Such information can be
provided to the network by concatenating it to the representation of the segment before it is passed
through the dimensionality reduction layer. However, since our study focused on the difference
between using character- and word-level tokenization, we only included context information in a final
experiment to assess whether it affects the character- and word-level approaches in the same manner
and to compare our results on the SwDA corpus with those achieved by Liu et al. [6]. In that case,
we provided the same context information as they did to achieve the best results reported in their study,
that is, a flag stating whether the speaker changed and the concatenation of the one-hot encoding of
the dialog act classifications of the three preceding segments. Concerning the latter, we used the gold
standard annotations. Thus, the results we report for experiments that include context information
provide an upper bound for the approach and the performance is expected to be slightly lower in a
real scenario. However, as stated in Section 2, this approach for providing context information from
the preceding segments surpasses other approaches even when using automatic classifications [6,17].

Finally, the reduced segment representation is passed through a dense layer to obtain its
classification. In its original version, this dense layer performs the softmax activation function to
identify the class with highest probability. We used the same approach in most of our experiments.
The exception is when predicting the labels of the domain-dependent levels of the dialog act
annotations of the DIHANA corpus, since they pose a multilabel classification problem. In that
case, the dense layer performs the sigmoid activation function to obtain an estimation of the probability
of each class. Then, those with values above 0.5 are activated.

To assess whether the character- and word-level approaches capture complementary information,
we also performed experiments that combined both approaches. In that scenario, we used the
architecture shown in Figure 2. In this case, two segment representations are generated in parallel,
one based on the characters in the segment and other on its words. Those representations are then
concatenated to form the final representation of the segment. The following steps do not differ from
the architecture with a single branch. That is, context information can be added to the segment
representation before it is passed to the dimensionality reduction layer and, subsequently, to the
output layer.
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Figure 2. The architecture of the network that combines the character- and word-level approaches.
ci corresponds to the embedding representation of the ith character while wi corresponds to the
embedding representation of the ith word. The context window sizes of the CNNs in the character-level
branch refer to those that achieved best performance in our experiments. Those in the word-level
branch correspond to the ones used by Liu et al. [6] in their experiments.

Implementation Details

We implemented the networks used in our experiments using the Keras [36] interface to
TensorFlow [37]. For performance reasons, we used the Adam optimizer [38] when updating
the network weights. For the multilabel classification problems posed by the domain-dependent
levels of the dialog act annotations of the DIHANA corpus, we used the binary cross entropy loss
function. In every other case, we used the categorical cross entropy loss function. Each CNN applied
100 filters. The reduced segment representation generated by the dimensionality reduction layer was
200-dimensional.

To attenuate the influence of random initialization and the non-determinism of some operations
run on Graphics Processing Unit (GPU), we performed ten runs of each experiment. In each run,
the mini-batch size was 512 and the training phase stopped after ten epochs without improvement on
the validation set.

4.3. Evaluation

To evaluate the performance of our approach, we required at least one metric, a partition of the
dataset to evaluate on, and a baseline for comparison. All of these are presented below.

4.3.1. Evaluation Metric

In all the studies summarized in Section 2, the performance on dialog act recognition was
evaluated in terms of accuracy. Thus, accuracy is also the metric we used in this study. It is important
to note that accuracy is a highly penalizing metric for performance on the multilabel classification
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problems posed by the domain-dependent levels of the dialog act annotations of the DIHANA corpus,
since it does not account for partial correctness [39]. However, due to space constraints and for a
matter of consistency, we do not report results for specialized metrics. Since we performed ten runs of
each experiment, the results presented in the next section refer to the average and standard deviation
accuracy values in percentage form obtained over those runs.

4.3.2. Dataset Partition

There is a standard data partition of the SwDA corpus into a training set of 1115 conversations,
a test set of 19 conversations, and a future use set of 21 conversations [15]. In our experiments, we used
the latter as a validation set. However, it is important to note that not all previous studies on the SwDA
used this partition.

The DIHANA corpus is partitioned into five dialog-based folds to be used for cross-validation [40].
Furthermore, it is important to note that, when predicting the labels of the domain-dependent levels,
we did not consider the segments whose Level 1 label refers to discourse structuring functions or
reveals problems in the dialog. We opted for this approach because those segments never have labels
on the remaining levels and, thus, their correct classification is only dependent on the performance of
the Level 1 classifier.

There is no standard partition of the LEGO corpus. Thus, we also split it into five folds at the
dialog level and evaluated it using cross-validation.

The dialogs recorded during each phase of the VERBMOBIL project are organized into two
different training, validation, and test sets. Additionally, the attribution to a set is not dialog-based,
but rather speaker-based. Furthermore, there are some annotated segments that do not belong to
any of the sets. Given these constraints, we opted for also splitting the German dialogs used in our
experiments into five dialog-based folds and performing cross-validation.

4.3.3. Baselines

To assess the performance of the character-level approach in comparison to that of word-level
approaches, we defined two baselines. Both use the CNN-based approach shown in Figure 1
with context window sizes one, two, and three and without appending context information to the
representation of the segment. However, while one uses randomly initialized word embeddings that are
adapted during the training phase, the other uses fixed pre-trained word embeddings. The pre-trained
embeddings for English, Spanish, and German were obtained by applying Word2Vec [24] on the English
Wikipedia (https://dumps.wikimedia.org/enwiki/) [23], the Spanish Billion Word Corpus [41], and the
German Wikipedia (https://dumps.wikimedia.org/dewiki/) [42], respectively.

Additionally, we defined a third baseline that replicates the approach by Liu et al. [6]. It consists
of the baseline with pre-trained embeddings combined with context information from three preceding
segments in the form of their gold standard annotations and speaker change information in the form of
a flag. In another study [43], we showed that, when predicting the dialog acts in the lower levels of the
DIHANA corpus, context information from the upper levels is also important. Additionally, previous
experiments on the LEGO corpus show that in that case only the system segment that immediately
precedes each user segment is relevant to accurately predict its classification [31]. However, for a
matter of consistency, we used the same context information for every dataset.

5. Results and Discussion

In this section, we present and discuss the results achieved in each of our experiments.
In Tables 6–9, the columns labeled SwDA-V and SwDA-T refer to the results achieved on the
validation and test sets of the SwDA corpus, respectively. The columns labeled DIHANA1, DIHANA2,
and DIHANA3 refer to the results achieved when predicting the Level 1, 2, and 3 labels on the DIHANA
corpus, respectively. The column labeled VM refers to the results achieved on the VERBMOBIL corpus

https://dumps.wikimedia.org/enwiki/
https://dumps.wikimedia.org/dewiki/
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and the column labeled LEGO is self-explanatory. The meaning of each row is explained in the caption
of each table.

5.1. Baselines

Starting with the word-level baselines, in Table 6, we can see that using pre-trained embeddings
led to improvements on English data. However, the same was not true for data in other languages.
However, that is not due to language, but rather to the fact that both DIHANA and VERBMOBIL have
fixed domains, while SwDA does not. Thus, while the randomly initialized embeddings could adapt
for the first two, they could not do so for the latter and the performance on the validation and test sets
was impaired if the embeddings Were overfit to the training data. Although the LEGO corpus also
has a fixed domain, since the transcriptions of user segments were obtained automatically and have
multiple problems, fixed pre-trained embeddings were useful in this case.

Table 6. Accuracy (%) results of the word-level baselines. The first row refers to the baseline using
randomly initialized word embeddings. The second row refers to the baseline using pre-trained word
embeddings (PT). The last row refers to the baseline including context information (Ctx).

SwDA-V SwDA-T LEGO DIHANA1 DIHANA2 DIHANA3 VM

Random 76.17 ± 0.19 72.23 ± 0.20 55.93 ± 0.10 91.96 ± 0.13 70.53 ± 0.24 97.23 ± 0.05 75.38 ± 0.07
PT 76.81 ± 0.32 73.11 ± 0.26 56.60 ± 0.10 91.98 ± 0.12 70.71 ± 0.33 96.01 ± 0.08 75.42 ± 0.08
PT + Ctx 81.29 ± 0.30 78.35 ± 0.36 86.71 ± 0.11 98.26 ± 0.04 91.80 ± 0.06 97.47 ± 0.04 76.43 ± 0.08

Using context information improved the results in every case, but at different scales. On the
SwDA corpus, the improvement was in line with that reported by Liu et al. [6]. Our results differ
from those reported in their paper mainly because they did not use the standard validation and test
partitions of the dataset. The improvement on the Level 1 of the DIHANA corpus was higher than on
the SwDA corpus simply because there are fewer labels. However, the highest improvements were
achieved on the LEGO corpus and the Level 2 of the DIHANA corpus. The first case is explained by the
nature of the tag set, which contains multiple variations of the same label according to the context (e.g.,
Confirm Departure, Confirm Destination, Confirm Time, amd Confirm Bus). The second case is explained
by the nature of the dialogs, which feature multiple question–answer pairs. The segments in each
pair focus on the same kind of information and, thus, have the same Level 2 labels. The improvement
on the VERBMOBIL corpus was lower since we collapsed the labels into the top level of the tree,
removing most of the cases that were ambiguous. On the Level 3 of the DIHANA corpus, there was
only a slight improvement since that level focuses on the information that is explicitly referred to in
the segment. Thus, in that case, context information from the preceding segments at the same level
was typically irrelevant.

5.2. Character Windows

Regarding the character-level experiments, Table 7 shows the results achieved when considering
sets of characters of different sizes on segments stripped of capitalization and punctuation information.
As expected, considering each character individually led to the worst results, since the information
concerning relations between characters was lost. By considering pairs of characters, the performance
improved by at least 3% and up to 17%. Widening the window up to four or five characters kept
improving the performance, but at a lower scale. Considering wider windows beyond that was
typically harmful. However, similar to what Liu et al. [6] showed at the word level, different
context windows could capture complementary information. Thus, it was beneficial to combine
multiple windows. In our experiments, the best results were achieved using three context windows,
which considered groups of three, five, and seven characters, respectively. The sizes of these
windows were relevant, since the shortest window could capture most affixes in English and the
small affixes in Spanish and German, the middle window could capture larger affixes and most
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lemmas, and the widest window could capture larger words, some agglutinative aspects of German,
and inter-word information.

Table 7. Accuracy (%) results obtained using different character windows. The last row refers to the
combination of windows that led to the best results in our experiments. The remaining rows refer to
the performance of individual windows.

SwDA-V SwDA-T LEGO DIHANA1 DIHANA2 DIHANA3 VM

1 65.42 ± 0.17 60.81 ± 0.23 52.04 ± 0.34 85.71 ± 0.29 64.24 ± 0.25 76.16 ± 0.36 62.89 ± 0.19
2 72.21 ± 0.47 67.52 ± 0.54 55.28 ± 0.30 91.54 ± 0.14 70.09 ± 0.18 93.35 ± 0.24 74.34 ± 0.15
3 74.32 ± 0.55 70.00 ± 0.35 56.13 ± 0.24 92.17 ± 0.10 70.82 ± 0.35 95.29 ± 0.19 75.60 ± 0.08
4 74.56 ± 0.19 70.64 ± 0.49 56.17 ± 0.22 92.22 ± 0.14 71.16 ± 0.22 95.88 ± 0.07 76.31 ± 0.12
5 75.09 ± 0.52 70.91 ± 0.38 56.19 ± 0.19 92.28 ± 0.11 71.08 ± 0.29 96.05 ± 0.11 76.19 ± 0.10
7 75.35 ± 0.23 70.86 ± 0.34 55.92 ± 0.19 92.24 ± 0.13 71.18 ± 0.13 96.21 ± 0.11 76.03 ± 0.09
10 75.10 ± 0.36 70.97 ± 0.35 56.11 ± 0.15 92.16 ± 0.13 71.13 ± 0.16 96.12 ± 0.07 75.65 ± 0.10

(3, 5, 7) 76.08 ± 0.33 72.08 ± 0.42 56.92 ± 0.14 92.44 ± 0.12 71.42 ± 0.26 96.31 ± 0.17 77.22 ± 0.07

5.3. Segment Preprocessing

As mentioned in Section 3, we hypothesized that capitalization is not relevant for dialog act
recognition. In Table 8, we can can see that the hypothesis holds for every dataset except DIHANA,
as the results obtained when using capitalized segments did not significantly differ from those obtained
using stripped segments. However, on the DIHANA corpus, and more specifically on Level 1, using
capitalized segments led to an improvement of nearly 2%. Since this was not expected, we looked for
the source of the improvement. By inspecting the transcriptions, we noticed that, contrarily to user
segments, the system segments do not contain mid-segment capitalization. Thus, proper nouns, such
as city names, which are common in the dialogs, are capitalized differently. Since only 5 of the 11 Level
1 labels are common to user and system segments, identifying its source reduced the set of possible
dialog acts for the segment. Thus, the improvement observed when using capitalization information is
justified by the cues it provides to identify whether it is a user or system segment.

Table 8. Accuracy (%) results obtained using different segment preprocessing approaches. The first
row refers to segments stripped of punctuation and capitalization information. The second row refers
to segments containing capitalization information, while the third row refers to segments containing
punctuation. The fourth row combines both punctuation and capitalization information. The last row
refers to lemmatized segments stripped of punctuation and capitalization information.

SwDA-V SwDA-T LEGO DIHANA1 DIHANA2 DIHANA3 VM

Stripped 76.08 ± 0.33 72.08 ± 0.42 56.92 ± 0.14 92.44 ± 0.12 71.42 ± 0.26 96.31 ± 0.17 77.22 ± 0.07
Caps (C) 76.04 ± 0.28 71.94 ± 0.26 56.92 ± 0.14 94.25 ± 0.15 71.41 ± 0.24 96.42 ± 0.07 77.03 ± 0.06
Punct (P) 76.85 ± 0.21 73.17 ± 0.32 56.92 ± 0.14 93.71 ± 0.07 71.50 ± 0.18 96.46 ± 0.10 79.76 ± 0.08
P + C 76.73 ± 0.25 73.14 ± 0.40 56.92 ± 0.14 95.48 ± 0.04 71.52 ± 0.22 96.47 ± 0.07 79.73 ± 0.07
Lemma 75.21 ± 0.27 71.40 ± 0.12 56.63 ± 0.11 92.39 ± 0.06 71.41 ± 0.23 96.40 ± 0.13 77.09 ± 0.08

In Table 8, we can also see that, as expected, punctuation provided relevant information for
the task, especially when predicting domain-independent labels, leading to an improvement around
one percentage point on the SwDA and DIHANA corpora and above 2.5% on the VERBMOBIL
corpus. Punctuation was not as important to predict the labels of the domain-dependent levels of the
DIHANA corpus since they are more keyword oriented. On the LEGO corpus, we cannot draw any
conclusions concerning the influence of punctuation and capitalization information since the automatic
transcription of user segments provided by the ASR system does not provide that information.

With the exception of the Level 3 of the DIHANA corpus, by including punctuation information,
the character-level approaches could achieve results that are in line with or surpass the word-level
baselines without context information. Furthermore, it is important to note that, while the improvement
was negligible on the SwDA corpus, it was nearly 2% on the Level 1 of the DIHANA corpus and above



Information 2019, 10, 94 15 of 19

4% on the VERBMOBIL corpus. This suggests that the performance of the character-level approach in
comparison with the word-level improved with the level of inflection of the language.

Since Level 3 is focused on the presence of certain words in the segment, it makes sense that
the character-level approach did not perform as well, since considering the characters introduced
unnecessary entropy. This was partially confirmed by the fact that, by using lemmatized segments,
the results on Level 3 improved in comparison to the segments that consider multiple forms of
the same lexeme. On the remaining cases, as expected, we observed a decrease in performance
when using lemmatized segments. This proved that affixes were relevant for transmitting intention.
However, in most cases, the decrease was slight, which suggests that most information concerning
intention could be transmitted using a simplified language that does not consider variations of the
same lexeme and that those variations were only relevant for transmitting some specific intentions.

5.4. Combinations

Finally, Table 9 shows the results obtained by combining the word- and character-level approaches,
as well as when providing context information. We can see that, in every dataset except DIHANA,
the combination of the word- and character-level approaches led to the best results, meaning that
both approaches could capture complementary information. Furthermore, on the DIHANA corpus,
the only exception was when predicting Level 2 labels. In this case, the best results were achieved by
the character-level approach on its own. Overall, this suggests that information at the sub-word level
was relevant for the task, independently of the language and the domain of the dialog.

Table 9. Accuracy (%) results obtained using combined information from multiple sources. The first
two rows refer to the best results at the word and character levels, respectively. The third row refers to
the combination of both approaches. The last three rows include context information (Ctx).

SwDA-V SwDA-T LEGO DIHANA1 DIHANA2 DIHANA3 VM

Word (W) 76.81 ± 0.32 73.11 ± 0.26 56.60 ± 0.10 91.98 ± 0.12 70.71 ± 0.33 97.23 ± 0.05 75.42 ± 0.08
Char (C) 76.85 ± 0.21 73.17 ± 0.32 56.92 ± 0.14 95.48 ± 0.04 71.52 ± 0.22 96.47 ± 0.07 79.76 ± 0.08
C + W 78.00 ± 0.16 74.01 ± 0.35 57.86 ± 0.16 95.68 ± 0.03 71.07 ± 0.20 97.35 ± 0.05 80.03 ± 0.09
W + Ctx 81.29 ± 0.30 78.35 ± 0.36 86.71 ± 0.11 98.26 ± 0.04 91.80 ± 0.06 97.47 ± 0.04 76.43 ± 0.08
C + Ctx 81.82 ± 0.26 78.41 ± 0.30 86.98 ± 0.13 98.75 ± 0.15 92.96 ± 0.06 96.59 ± 0.09 80.25 ± 0.09
All 82.00 ± 0.27 79.01 ± 0.16 87.24 ± 0.14 99.10 ± 0.04 91.90 ± 0.06 97.48 ± 0.06 80.67 ± 0.06

When including context information, the combination of the word- and character-level approaches
still led to the best results, with the exception of the Level 2 of the DIHANA corpus. This means
that, on the SwDA corpus, our approach surpassed the one by Liu et al. [6], which was the
state-of-the-art approach at the time of our study. On the LEGO corpus, without considering
context information, the 57.86% achieved by our approach surpassed the 52.40% achieved using
SVMs [31]. When considering context information, the study using SVMs achieved 87.95% accuracy.
However, context information was provided in the form of the words of the preceding system
segment. On the DIHANA corpus, we improved the 97.92% achieved on Level 1 in our study
at the word level [43]. On the lower levels, the comparison is not as straightforward since we
used additional context information in that study. However, considering our results, we expect
that the 94.38% achieved on Level 2 in that study could be improved by introducing character-level
information. On Level 3, the 97.48% reported in this article surpassed the 96.34% achieved in that
study. However, the improvement was not due to the use of character-level information, but rather the
use of adaptable word embeddings. Our results on the VERBMOBIL corpus could not be compared
with those of previous studies, such as that by Reithinger and Klesen [44], since they used a different
label set.
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6. Conclusions

In this article, we have assessed the importance of information at a sub-word level, which
cannot be captured by word-level approaches, for automatic dialog act recognition in three different
languages—English, Spanish, and German—on dialogs covering multiple domains, and using both
domain-independent and domain-dependent tag sets.

We used character-level tokenization together with multiple character windows with different
sizes to capture relevant morphological elements, such as affixes and lemmas, as well as long words
and inter-word information. Furthermore, we have shown that, as expected, punctuation is important
for the task since it is able to provide both direct and indirect cues regarding intention. On the other
hand, capitalization is irrelevant under normal conditions.

Our character-level approach achieved results that are in line or surpass those achieved using
state-of-the-art word-based approaches. The only exception was when predicting the domain-specific
labels of Level 3 of the DIHANA corpus. However, this level refers to information that is explicitly
referred to in the segment. Thus, it is highly keyword oriented and using character information
introduces unnecessary entropy. In the remaining cases, the character-level approach was always able
to capture relevant information, independently of the domain of the dialog, the domain-dependence
of the dialog act labels, and the language. Concerning the latter, it was interesting to observe that the
highest performance gain in comparison with the word-level approaches occurred in German data,
while the lowest occurred in English data. This suggests that the amount of relevant information at the
sub-word level increases with the level of inflection of the language.

Furthermore, our experiments revealed that in most cases the character- and word-level
approaches capture complementary information and, consequently, their combination leads to
improved performance on the task. In this sense, by combining both approaches with context
information, we achieved state-of-the-art results on SwDA corpus, which is the most explored corpus
for dialog act recognition. Additionally, given appropriate context information, our approach also
achieved results that surpass the previous state-of-the-art on the DIHANA and LEGO corpora. On the
VERBMOBIL corpus, we were not able to compare our results with those of previous studies, since
they use different label sets.

In terms of morphological typology, although English has a more analytic structure than Spanish,
and German has some agglutinative aspects, the three are fusional languages. Thus, as future work,
it would be interesting to assess the performance of the character-level approach when dealing
with data in analytic languages, such as Chinese, and agglutinative languages, such as Turkish.
However, it is hard to obtain annotated corpora with such characteristics and it is hard to draw
conclusions without knowledge of those languages.
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Abbreviations

The following abbreviations are used in this manuscript:

ASR Automatic Speech Recognition
CMU Carnegie Mellon University
CNN Convolutional Neural Network
DNN Deep Neural Network
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DRLM Discourse Relation Language Model
DSTC4 Dialog State Tracking Challenge 4
FCT Fundação para a Ciência e a Tecnologia
GloVe Global Vectors for Word Representation
GPU Graphics Processing Unit
HMM Hidden Markov Model
IVR Interactive Voice Response
LSTM Long Short-Term Memory
MRDA ICSI Meeting Recorder Dialog Act Corpus
NLP Natural Language Processing
NN Neural Network
POS Part-of-Speech
RNN Recurrent Neural Network
RNNLM Recurrent Neural Network Language Model
SVM Support Vector Machine
SwDA Switchboard Dialog Act Corpus
WER Word Error Rate
WoZ Wizard of Oz
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