
 information

Article

Configurable Distributed Data Management for the
Internet of the Things †

Nikos Kefalakis, Aikaterini Roukounaki and John Soldatos *

Athens Information Technology, 15125 Athens, Greece; nkef@ait.gr (N.K.); arou@ait.edu.gr (A.R.)
* Correspondence: jsol@ait.gr; Tel.: +302106682700
† This is an extended and updated version of our paper presented in 2019 15th International Conference on

Distributed Computing in Sensor Systems (DCOSS), Santorini Island, Greece.

Received: 9 October 2019; Accepted: 16 November 2019; Published: 20 November 2019
����������
�������

Abstract: One of the main challenges in modern Internet of Things (IoT) systems is the efficient
collection, routing and management of data streams from heterogeneous sources, including sources
with high ingestion rates. Despite the existence of various IoT data streaming frameworks, there is still
no easy way for collecting and routing IoT streams in efficient and configurable ways that are easy to
be implemented and deployed in realistic environments. In this paper, we introduce a programmable
engine for Distributed Data Analytics (DDA), which eases the task of collecting IoT streams from
different sources and accordingly, routing them to appropriate consumers. The engine provides also
the means for preprocessing and analysis of data streams, which are two of the most important tasks
in Big Data analytics applications. At the heart of the engine lies a Domain Specific Language (DSL)
that enables the zero-programming definition of data routing and preprocessing tasks. This DSL is
outlined in the paper, along with the middleware that supports its runtime execution. As part of the
paper, we present the architecture of the engine, as well as the digital models that it uses for modelling
data streams in the digital world. We also discuss the validation of the DDA in several data intensive
IoT use cases in industrial environments, including use cases in pilot productions lines and in several
real-life manufacturing environments. The latter manifest the configurability, programmability and
flexibility of the DDA engine, as well as its ability to support practical applications.

Keywords: distributed data analytics; big data; industrial Internet of Things; industry 4.0

1. Introduction

We are currently witnessing the rise of the Internet of Things (IoT) paradigm as a result of
the proliferation of the number and type of internet-connected devices. IoT deployments with the
highest business value are in most cases found in the scope of industrial environments and are
conveniently called Industrial IoT (IIoT) deployments. IIoT is the cornerstone of the fourth industrial
revolution (Industry 4.0), which is characterized by the digitization of physical processes in industrial
environments such as manufacturing shop floors, energy plants and oil refineries. The latter digitization
is primarily based on the deployment of Cyber Physical Systems (CPS), such as sensors, automation
devices and smart objects like drones and automated guided vehicles.

The vast majority of IIoT use cases involve collection and processing of data from a variety of
distributed data sources, including processing and analytics over data streams with very high ingestion
rates. As a prominent example, predictive maintenance applications involve the application of machine
learning and artificial intelligence algorithms over multisensory data (e.g., vibration, temperature,
ultrasonic, thermal imaging) towards predicting the end of life of machines and equipment. Likewise,
Zero Defect Manufacturing (ZDM) applications analyze large amounts of digital data from various
automation devices in order to proactively identify the causes of defects. As another example, digital

Information 2019, 10, 360; doi:10.3390/info10120360 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
https://orcid.org/0000-0002-6668-3911
http://dx.doi.org/10.3390/info10120360
http://www.mdpi.com/journal/information
https://www.mdpi.com/2078-2489/10/12/360?type=check_update&version=2

Information 2019, 10, 360 2 of 21

twin applications apply advanced analytics over real and simulated data sources in order to experiment
with what-if scenarios and take optimal production planning and industrial automation decisions.
Therefore, Distributed Data Analytics (DDA) infrastructures are at the heart of IIoT systems and
applications, which must deal with BigData problems, notably problems that analyze very large
numbers of distributed and heterogeneous data streams that usually exhibit high velocity as well.

In this context, DDA infrastructures for IIoT applications must provide support for:

• High-performance and low-latency operations, i.e., low overhead, near real-time processing of
data streams.

• Scalability, i.e., ability to process an arbitrarily large number of streams, with only marginal
upgrades to the underlying hardware infrastructure.

• Dynamicity, i.e., ability to dynamically update the results of the analytics functions, upon changes
in their configuration, which is essential in cases of in volatile industrial environments where data
sources may join or leave dynamically.

• Stream handling, i.e., effective processing of streaming data in addition to transactional static or
semi-static data (i.e., data at rest).

• Configurability, i.e., flexible adaptation to different business and factory automation requirements,
such as the calculation of various KPIs (Key Performance Indicators) for production processes
involving various data sources on diverse industrial environments that may even leverage different
streaming middleware platforms and toolkits.

The importance of streaming analytics for IoT and BigData applications has given rise to several
research and industry efforts towards producing high performance stream processing engines. A first
generation of streaming analytics applications used centralized stream processing engines such
as Aurora [1] and TelegraphCQ [2]. These engines provided window-based query operators that
execute continuous queries over relational data streams. They supported the relational query model
(e.g., such as the CQL (Continuous Query Language) [3]) but lacked support for parallel data processing.
The increase of stream rates and query complexity drove another generation of stream processing
engines, which were distributed and could harness the processing power of a cluster of stream
processors. Typical examples of such systems are Borealis [4] and InfoSphere Streams [5], which permit
parallelism for continuous queries i.e., one query can be executed on multiple machines. Such systems
exploit task parallelism, i.e., they execute different operators on different machines and allow the
execution of many different continuous queries in parallel.

Systems like InfoSphere Streams support intraquery parallelism, which specifies stream
connections, but management and configuration is manual. This poses limitations for BigData
applications, where a single continuous query must in several cases process a large volume of
streaming data. To alleviate this limitation, stream processing engines that focus on intraquery
parallelism emerged. The latter parallelize the execution of individual query operations. Typical
examples include StreamCloud [6] and the popular Apache S4 and Apache Storm systems, which
express queries as directed acyclic graphs with parallel operators interconnect by data streams.
However, these systems cannot scale out the computation at runtime and therefore are not effective
in supporting unknown BigData analytics jobs when the computational resources needed are not
known ahead of time. To this end, systems like Spark Streaming [7] that parallelize streaming queries
by running them on the Spark-distributed dataflow framework using microbatching have emerged.
Microbatching permits the execution of streaming computations as a series of short-running Spark jobs
that output incremental results based on the most recent input data. Nevertheless, these execution
models have limitations when it comes to supporting sliding windows in the streaming process.
In recent years, the Apache Flink engine [8] incorporated a distributed dataflow framework that can
execute data-parallel batch and streaming processing jobs on the same platform. Computation is
described as dataflow graphs, which are optimized using existing database techniques. This is the
reason why Apache Flink and Apache Spark are currently two of the most popular streaming engines

Information 2019, 10, 360 3 of 21

for Big Data systems. However, these platforms assume that stream processing operators are stateless.
While this simplifies scalability and failure recovery, it is a setback to expressing complex analytic
tasks such as data mining and machine learning algorithms that need to refine a model incrementally.
To address this problem, some of the state-of-the-art stream processing engines adopt a stateful stream
processing model. This is for example the case with Apache Samza [9] and Naiad [10], which execute
streaming operators in a data-parallel fashion. More recent streaming engines implement the concept
of Stateful Dataflow Graphs (SDGs), which are graphs containing vertices that are data-parallel stream
processing operators with arbitrary amounts of mutable in-memory state, and edges that represent
the stream. SDGs can be executed in a pipelined fashion and have a low processing latency. When
processing SDGs, the machines take checkpoints of the in-memory state of processing operators in a
cluster, which are persisted to disk. Therefore, in case a machine in the cluster fails, the failed operator
instances can be restored on other machines, recovering their state from the most recent checkpoint,
and reprocessing buffered stream data in order to restore the operator’s state in a way that ensures it is
up to date.

Recently, IIoT vendors and solution integrators make also extensive use of the Kafka Streams
framework [11], which incorporates many of the previous listed functionalities and addresses many
of the stream processing challenges in IIoT environments. It supports event-at-a-time processing
with millisecond latency, which alleviates the limitations of microbatching, while at the same time,
providing the means for stateful processing including distributed joins and aggregations. Moreover,
it supports distributed processing and failover, while at the same time offering a convenient DSL
(Domain Specific Language) for defining queries.

The configurability functionalities of state-of-the-art streaming engines fall short when it comes to
routing data streams across the different data producers and data consumers of IIoT environments.
Indeed, most streaming engines are configured based on low-level APIs (Application Programming
Interfaces), which incur significant programming effort. Moreover, zero-programming options
functionalities like the Kafka Streams DSL are very versatile when there is a need to dynamically
select data sources from the shop floor and to define queries over them. Nevertheless, they are not
very effective when there is a need to define how data should be routed across many different data
consumers (e.g., predictive analytics algorithms, digital twins) in industrial environments. In other
words, they are very good for defining low-level tasks (e.g., configuration of window sizes and stateful
graphs), but do not make provisions for the preprocessing and routing of the data across different
producers and consumers. Likewise, they are also very much tailored to clustered environments, yet
they provide no ready to use facilities for configuring and deploying streaming applications in edge
computing environments, which are very common in the case of IIoT [12]. Specifically, the concepts
of edge/fog nodes and how to collect and analyze data across them are not directly supported in the
configuration capabilities of state-of-the-art streaming engines.

Most important, it is quite common for IIoT environments to deploy different streaming engines
and toolkits e.g., Spark, Kafka and Storm can be used for different applications running in different
parts of the plant. In such cases, the need for routing data streams from different streaming middleware
platforms to consumers and applications is likely to arise. Hence, there is a need for a meta-streaming
engine for streaming data routing and processing, which can make sure that data streams acquired by
different streaming engines are delivered in the target application. Consider for example a predictive
maintenance application, which should typically combine data streams from multiple sensor-based
applications, along with data streams and data at rest from business information systems (e.g., quality
data from an Enterprise Resource Planning (ERP) system). The concept of such a meta-level streaming
engine is perfectly in-line with edge computing systems, as the latter are likely to combine different
streaming middleware platforms in their edge nodes.

Meta-level streaming functionalities can be defined by means of a domain specific language [13],
which provides versatility in configuring domain-specific data operations in ways that ease
programming and lower development times [14]. There are various DSL languages for IoT systems,

Information 2019, 10, 360 4 of 21

which focus however on the needs of different types of systems and applications like RFID and
multisensory applications for supply chain management (e.g., [15,16]). Moreover, there are various
approaches to designing DSL, which vary in terms of efficiency [17,18]. Nevertheless, existing DSL
do not adequately cover the domain of routing and preprocessing of heterogeneous streams for IIoT
applications, which is one of the main motivations behind the work presented in this manuscript.
Note also that DSLs provide a foundation for almost zero-programming applications in the domains
that they target, since they can be coupled with programming environments and can be amenable by
visual tools [19]. In this context, the DSL that is presented in the paper lowers the effort required for
development of IIoT data analytics applications and aligns with model driven engineering concepts
and principles [20,21].

In the remaining of the paper we introduce a configurable infrastructure for distributed data
analytics environments, which caters for the flexible and almost zero-programming configuration of
data routing and preprocessing functions. The presented DDA (i.e., the FAR-EDGE DDA) is a meta-level
streaming engine that provides the means for routing and preprocessing data streams regardless of the
streaming middleware/engine used to capture them. The FAR-EDGE DDA is configurable in the scope
of edge computing environments, as it defines an Edge Analytics Engine (EAE) that handles analytics
within the scope of an edge node, while at the same time providing mechanisms for combining and
synchronizing analytics functionalities across multiple edge nodes. The latter functionalities are very
common in IIoT environments, where several processes (e.g., production scheduling, supply chain
management) are likely to involve multiple stations or entire plants i.e., multiple edge nodes using
different streaming middleware toolkits (e.g., Kafka or Spark). The configurability of the FAR-EDGE
DDA hinges on an abstract modelling of data sources and data processing functions, along with
their structuring against edge nodes, edge analytics functions and analytics spanning multiple edge
nodes. The management of the respective data models is what facilitates configurability. In principle,
the FAR-EDGE DDA offers its own DSL for managing routing and processing of data streams from any
streaming engine (e.g., Kafka, Spark, Storm) to any type of consuming application (e.g., rule engine,
machine learning, artificial intelligence). This paper is a significantly extended version of a conference
paper of the co-authors. It enhances the conference paper in three main directions:

• First, it introduces some of the foundational concepts of the DDA, such as the DSL for describing
analytics pipelines. The latter DSL is also illustrated through a practical example.

• Second, it also introduces the concept of the Common Interoperability Registry (CIR) for linking
data sources that are described based on other schemes, different that the project’s DSLs. The CIR
concept was not part of the conference paper.

• Third, it provides more details and richer information about the architecture of the DDA and its
use in the scope of cloud/edge deployments.

The rest of paper is structured as follows: Section 2 introduces the architecture, main elements
and principles of operation of the DDA. Section 3 present the underlying data models that enable
its configurability, including flexible ways for ensuring the interoperability of different data sources
and databases that contain data of interest to IIoT applications. Section 4 provides information on the
open source implementation of the DDA, along with its deployment in several applications. The latter
applications serve as a basis for the technical validation of the DDA. Finally, Section 5 is the concluding
section of the paper.

2. Architecture of the Configurable Data Analytics Engine

2.1. DDA Overview

The FAR-EDGE DDA is a configurable infrastructure for Distributed Data Analytics, which
enables the collection, aggregation, integration and preprocessing of diverse data streams. It is a
distributed middleware infrastructure, which is agnostic of the underlying data sources and streaming

Information 2019, 10, 360 5 of 21

analytics middleware toolkits. As such, it provides the means for configuring and deploying streaming
analytics applications over a variety of heterogeneous data sources, including streaming analytics
engines such as Apache Spark and Kafka.

As outlined in Figure 1, the FAR-EDGE DDA is structured in tiers in line with most reference
architectures for IoT applications, including an edge, a cloud and a ledger tier. The edge tier provides
the means for low-level, real-time analytics operations that are executed close to the field, typically in the
scope of a local area network. The FAR-EDGE DDA comprises an Edge Analytics Engine (EA-Engine),
which is instantiated and executed at the edge of the network. On the other hand, the cloud tier enables
the execution of analytics that span multiple edge nodes (and EA-Engine instances) by means of a
cloud-based Distributed Analytics Engine (DA-Engine). Hence, the DA-Engine executes analytics
functions over data streams that are aggregated in the cloud. It can handle larger amounts of data
than the EA-Engine, yet is not suitable for real-time, low overhead stream processing. The FAR-EDGE
DDA introduces also a ledger tier, which provides the means for decentralized configuration and
synchronization of edge analytics processes, using a distributed database based on blockchain
technology. The description of this novel blockchain-based configuration and synchronization is
beyond the scope of this paper. Instead, interested readers can consult [22,23].Information 2019, 10, 360 6 of 22

Figure 1. Anatomy of the Distributed Data Analytics Engine (see [16]).

The EA-Engine can execute analytics pipelines comprising combinations of these three
processors (as shown in Figure 2). The relevant pipelines (or workflows) are described through well-
defined configuration files, called Analytics Manifests (AMs), which essentially represent the
important part of the DSL of the EA-Engine. Specifically, an AM defines a set of analytics
functionalities as a graph of processing functions that comprises the above three types of processors
and which can be executed by the EA-Engine. AM instances are built based on the devices, data
sources, edge gateways and analytics processors that are available. All these devices and data sources
are models based on the digital modelling approach that is described in the following Section of the
paper and which specifies additional constructs of the DSL of the DDA.

Figure 1. Anatomy of the Distributed Data Analytics Engine (see [16]).

2.2. Edge Analytics Engine (EA-Engine)

The EA-Engine is deployed and executed close to the field i.e., within an edge gateway. Its operation
is based on a Data Routing and Preprocessing (DR&P) component, a data bus and a registry of
devices (i.e., Device Registry). Specifically, the DR&P component routes data from the data sources
(e.g., industrial platforms and devices that may include data streaming platforms) to the Edge Analytics

Information 2019, 10, 360 6 of 21

Engine (EA-Engine). The routing operations are based on information contained within the Device
Registry, which contains information (e.g., connectivity protocol, IP address and port) about how the
various devices and data sources can be accessed. The registry ensures the dynamism of the EA-Engine,
data sources can at any time register or deregister from the device registry. Moreover, the component
provides preprocessing capabilities, which allow for transformations to data streams prior to their
delivery to the EA-Engine.

In addition to interacting with the Device Registry, the DR&P component provides a Data Bus,
which is used to route streams from the various devices to appropriate consumers, i.e., processors of
the EA-Engine. The Data Bus is not restricted to routing data streams stemming directly from the
industrial devices and other shopfloor data sources. Rather it can also support the routing of any data
streams and events that are produced by the EA-Engine. Overall, the EA-Engine is a configurable
runtime environment hosted in an edge gateway, which executes data analytics close to the field in
order to meet stringent latency requirements.

Towards configuring the operation of the EA-Engine, DDA application developers and solution
providers can edit a specification of analytics tasks, which is provided as an XML (eXtensible Markup
Language) file and serves as a DSL for customizing EA-Engine’s operation. This DSL provides the
means for expressing streaming analytics functions based on the combination of several processing
functions that are conveniently called “processors”. The latter processing functions operate over
streaming data that are available in the Data Bus of the DDA.

The EA-Engine supports three different types of processors, namely:

• Preprocessors, which preprocess (e.g., filtering) data streams and prepare them for analysis
by other processors. Preprocessors acquire streaming data through the DR&P component and
produce new streams that are made accessible to other processors and applications through the
Data Bus of the infrastructure.

• Storage processors, which store streams to some repository such as a data bus, a data store
or a database. They provide the persistence functions, which is a key element of any data
analytics pipeline.

• Analytics processors, which execute analytics processing functions over data streams ranging
from simple statistical computations (e.g., average or a standard deviation) to more complex
machine learning tasks (e.g., execution of a classification function). Like preprocessors, analytics
processors can access and persist data to the Data Bus.

The EA-Engine can execute analytics pipelines comprising combinations of these three processors
(as shown in Figure 2). The relevant pipelines (or workflows) are described through well-defined
configuration files, called Analytics Manifests (AMs), which essentially represent the important part of
the DSL of the EA-Engine. Specifically, an AM defines a set of analytics functionalities as a graph of
processing functions that comprises the above three types of processors and which can be executed
by the EA-Engine. AM instances are built based on the devices, data sources, edge gateways and
analytics processors that are available. All these devices and data sources are models based on the
digital modelling approach that is described in the following Section of the paper and which specifies
additional constructs of the DSL of the DDA.

Information 2019, 10, 360 7 of 21
Information 2019, 10, 360 7 of 22

Figure 2. Configurable Data Preprocessing at the Edge.

An EA-Engine specifies and executes edge analytics pipelines that comprise combinations of the
above-described processing functions. Factory wide analytics comprising multiple edge analytics
workflows in a higher-level pipeline are then executed through the distributed analytics engine (DA-
Engine) that resides in the cloud layer of a DDA deployment.

2.3. Distributed Analytics Engine (DA-Engine)

The DA-Engine is destined to execute global analytics functions based on analytics
configurations that span and combine multiple edge analytics instances. It is also configurable and
programmable thanks to its support for a DSL that describes global analytics functions in terms of
edge nodes, edge gateways, data sources and the processing functions that are applied over them. In
particular, the DSL is specified as an Analytics Manifest (AM) for global analytics, which can
comprise multiple edge analytics instances specified as AMs as well. The DA-Engine leverages the
descriptions of all these artifacts within a digital models’ repository, which comprises the digital
representation of the devices, data sources and edge gateways that are part of the DDA. The structure
of these Digital Models is also described in the following section. Note that all the digital models are
kept up to date and synchronized with the status of the DDA’s elements. Hence, they are accessible
from the DR&P, the EA-Engine and the DA-Engine components and can be used in the specification
of both edge analytics and global analytics tasks. As already outlined, the DA-Engine stores data
within a cloud-based data storage repository, which persists the results of global analytics tasks.

2.4. Open API for Analytics

The FAR-EDGE DDA infrastructure defines, implements and exposes an Open API (Application
Programming Interface). This API enables external systems to access and integrate the functionalities
of the DDA infrastructure, including the configuration, execution and deployment of factory-wide
analytics tasks, that span multiple edge gateways. The Open API enables solution integrators to
configure the DDA and to execute data processing and analytics functions over data streams
stemming from all devices that registered in the registries of the DR&P components of the edge nodes
of the DDA. In this way the DDA infrastructure can be used by third-party applications. In practice
the Open API supports the following three types of operations:
• CRUD (Create Update and Delete) operations for AMs, which enable the management of AMs.

Figure 2. Configurable Data Preprocessing at the Edge.

An EA-Engine specifies and executes edge analytics pipelines that comprise combinations of the
above-described processing functions. Factory wide analytics comprising multiple edge analytics
workflows in a higher-level pipeline are then executed through the distributed analytics engine
(DA-Engine) that resides in the cloud layer of a DDA deployment.

2.3. Distributed Analytics Engine (DA-Engine)

The DA-Engine is destined to execute global analytics functions based on analytics configurations
that span and combine multiple edge analytics instances. It is also configurable and programmable
thanks to its support for a DSL that describes global analytics functions in terms of edge nodes, edge
gateways, data sources and the processing functions that are applied over them. In particular, the DSL
is specified as an Analytics Manifest (AM) for global analytics, which can comprise multiple edge
analytics instances specified as AMs as well. The DA-Engine leverages the descriptions of all these
artifacts within a digital models’ repository, which comprises the digital representation of the devices,
data sources and edge gateways that are part of the DDA. The structure of these Digital Models is also
described in the following section. Note that all the digital models are kept up to date and synchronized
with the status of the DDA’s elements. Hence, they are accessible from the DR&P, the EA-Engine and
the DA-Engine components and can be used in the specification of both edge analytics and global
analytics tasks. As already outlined, the DA-Engine stores data within a cloud-based data storage
repository, which persists the results of global analytics tasks.

2.4. Open API for Analytics

The FAR-EDGE DDA infrastructure defines, implements and exposes an Open API (Application
Programming Interface). This API enables external systems to access and integrate the functionalities
of the DDA infrastructure, including the configuration, execution and deployment of factory-wide
analytics tasks, that span multiple edge gateways. The Open API enables solution integrators to
configure the DDA and to execute data processing and analytics functions over data streams stemming
from all devices that registered in the registries of the DR&P components of the edge nodes of the DDA.
In this way the DDA infrastructure can be used by third-party applications. In practice the Open API
supports the following three types of operations:

• CRUD (Create Update and Delete) operations for AMs, which enable the management of AMs.

Information 2019, 10, 360 8 of 21

• Access to and management of information about deployed instances of analytics workflows,
including access to information about AMs and their status.

• Management of a specified AM, including starting, stopping, posing and resuming the execution
of an analytics instance expressed in the AM DSL.

The Open APIs have been specified and implemented as RESTful APIs, which facilitates their use
by application developers and solution integrators.

3. Digital Modelling and Common Interoperability Registry

3.1. Overview

The configuration and execution of global analytics workflows is based on the management of
appropriate digital models that specify the data sources, the data processing functions, as well as
the edge gateways entailed in these workflows. The digital models provide a representation of such
analytics workflows and enable the management of this representation (e.g., its execution of updates
and deletion of operations). To this end, the digital models that empower the configuration of the
DDA follow a hierarchical structure, which specifies the different relationships between the various
entities. This structure specifies that an edge gateway comprises multiple data sources, each of which
has its own definition and can be instantiated multiple times. Moreover, each instance produces
data associated with the data sources. As an example, Figure 3 illustrates a snapshot of the digital
models’ structure, which shows the association of APM (Analytics Processor Manifest) with various
data sources. The role of the APM is illustrated in the following paragraph.

Information 2019, 10, 360 8 of 22

• Access to and management of information about deployed instances of analytics workflows,
including access to information about AMs and their status.

• Management of a specified AM, including starting, stopping, posing and resuming the execution
of an analytics instance expressed in the AM DSL.
The Open APIs have been specified and implemented as RESTful APIs, which facilitates their

use by application developers and solution integrators.

3. Digital Modelling and Common Interoperability Registry

3.1. Overview

The configuration and execution of global analytics workflows is based on the management of
appropriate digital models that specify the data sources, the data processing functions, as well as the
edge gateways entailed in these workflows. The digital models provide a representation of such
analytics workflows and enable the management of this representation (e.g., its execution of updates
and deletion of operations). To this end, the digital models that empower the configuration of the
DDA follow a hierarchical structure, which specifies the different relationships between the various
entities. This structure specifies that an edge gateway comprises multiple data sources, each of which
has its own definition and can be instantiated multiple times. Moreover, each instance produces data
associated with the data sources. As an example, Figure 3 illustrates a snapshot of the digital models’
structure, which shows the association of APM (Analytics Processor Manifest) with various data
sources. The role of the APM is illustrated in the following paragraph.

Figure 3. Elements of an APM Schema.
Figure 3. Elements of an APM Schema.

Information 2019, 10, 360 9 of 21

The specification of data sources, processors, edge gateways and other entities outlined above
provides the means for configuring the DDA based on a basic set of metadata (e.g., location, types)
about edge nodes and data sources. Nevertheless, IIoT analytics applications are likely to involve
additional metadata residing in a variety of systems and databases. As a characteristic example,
predictive maintenance systems can benefit from a variety of metadata from non-IoT systems (e.g., ERP
and Quality Management systems) that are related to live data sources. To accommodate such metadata
as part of an analytics process, the data models’ infrastructure of the DDA engine provides the means
for linking data sources and their data with metadata from other databases in an interoperable way.
To this end, a Common Interoperability Registry (CIR) approach is implemented in order to enable the
linking and interoperability of datasets that refer to the same physical or logical entity (e.g., a piece
of equipment or an automation device). Following paragraphs illustrate the core digital models
of the engine, as well as their extensibility with additional information as part of a CIR approach.
Figure 4 illustrates the root of the Data Models and the subschemas that comprise them, which include
subschemas for data definitions, observations and CIRs. Further paragraphs provide more detailed
about the modelling of plant data and metadata (i.e., data definitions), as well as for the modelling
of analytics pipelines in the DDA. Nevertheless, the complete specification of the FAR-EDGE data
models is several hundreds of pages and beyond the scope of this manuscript. Interested readers
can refer to the open source implementation of the DDA, which includes the relevant schemas and
their documentation.

Information 2019, 10, 360 9 of 22

The specification of data sources, processors, edge gateways and other entities outlined above
provides the means for configuring the DDA based on a basic set of metadata (e.g., location, types)
about edge nodes and data sources. Nevertheless, IIoT analytics applications are likely to involve
additional metadata residing in a variety of systems and databases. As a characteristic example,
predictive maintenance systems can benefit from a variety of metadata from non-IoT systems (e.g.,
ERP and Quality Management systems) that are related to live data sources. To accommodate such
metadata as part of an analytics process, the data models’ infrastructure of the DDA engine provides
the means for linking data sources and their data with metadata from other databases in an
interoperable way. To this end, a Common Interoperability Registry (CIR) approach is implemented
in order to enable the linking and interoperability of datasets that refer to the same physical or logical
entity (e.g., a piece of equipment or an automation device). Following paragraphs illustrate the core
digital models of the engine, as well as their extensibility with additional information as part of a CIR
approach. Figure 4 illustrates the root of the Data Models and the subschemas that comprise them,
which include subschemas for data definitions, observations and CIRs. Further paragraphs provide
more detailed about the modelling of plant data and metadata (i.e., data definitions), as well as for
the modelling of analytics pipelines in the DDA. Nevertheless, the complete specification of the FAR-
EDGE data models is several hundreds of pages and beyond the scope of this manuscript. Interested
readers can refer to the open source implementation of the DDA, which includes the relevant schemas
and their documentation.

Figure 4. Root of the FAR-EDGE Data Models. Figure 4. Root of the FAR-EDGE Data Models.

Information 2019, 10, 360 10 of 21

3.2. Plant Data and Metadata

Factory data and metadata are modeled based on the following entities (see also Figure 5):

• Data Source Definition (DSD): Defines the properties of a data source in the shop floor, such as a
data stream from a sensor or an automation device.

• Data Interface Specification (DI): It is associated with a data source and provides the information
needed to connect to it and access its data (e.g., network protocol, port, network address).

• Data Kind (DK): This specifies the semantics of the data of the data source. It can be used to
define virtually any type of data in an extensible way.

• Data Source Manifest (DSM): Specifies a specific instance of a data source in line with its DSD,
DI and DK specifications. Multiple manifests are therefore used to represent the data sources that
are available in the factory.

• Data Consumer Manifest (DCM): Models an instance of a data consumer, i.e., any application
that accesses a data source.

• Data Channel Descriptor (DCD): Models the association between an instance of a consumer and
an instance of a data source. Keeps track of the established connections and associations between
data sources and data consumers.

• LiveDataSet: Models the actual dataset that stems from an instance of a data source that is
represented through a DSM. It is t is associated with a timestamp and keeps track of the location
of the data source in case it is associated with a mobile edge node. In principle, the data source
comprises a set of name–value pairs, which adhere to different data types in line with the DK of
the DSM.

• Edge Gateway: Models an edge gateway of an edge computing deployment. Data sources are
associated with an edge gateway, which usually implies not only a logical association, but also a
physical association as well.

Based on the above entities, it is possible to represent the different data sources of a digital
shopfloor in a modular, dynamic and extensible way. This is based on a repository (i.e., registry) of
data sources and their manifests, which keeps track of the various data sources that register to it.
The FAR-EDGE platform includes such a registry, which provides dynamicity in creating, registering
and using data sources in the industrial plant [24].

Information 2019, 10, 360 10 of 22

3.2. Plant Data and Metadata

Factory data and metadata are modeled based on the following entities (see also Figure 5):
• Data Source Definition (DSD): Defines the properties of a data source in the shop floor, such

as a data stream from a sensor or an automation device.
• Data Interface Specification (DI): It is associated with a data source and provides the

information needed to connect to it and access its data (e.g., network protocol, port, network
address).

• Data Kind (DK): This specifies the semantics of the data of the data source. It can be used to
define virtually any type of data in an extensible way.

• Data Source Manifest (DSM): Specifies a specific instance of a data source in line with its DSD,
DI and DK specifications. Multiple manifests are therefore used to represent the data sources
that are available in the factory.

• Data Consumer Manifest (DCM): Models an instance of a data consumer, i.e., any application
that accesses a data source.

• Data Channel Descriptor (DCD): Models the association between an instance of a consumer
and an instance of a data source. Keeps track of the established connections and associations
between data sources and data consumers.

• LiveDataSet: Models the actual dataset that stems from an instance of a data source that is
represented through a DSM. It is t is associated with a timestamp and keeps track of the location
of the data source in case it is associated with a mobile edge node. In principle, the data source
comprises a set of name–value pairs, which adhere to different data types in line with the DK of
the DSM.

• Edge Gateway: Models an edge gateway of an edge computing deployment. Data sources are
associated with an edge gateway, which usually implies not only a logical association, but also
a physical association as well.
Based on the above entities, it is possible to represent the different data sources of a digital

shopfloor in a modular, dynamic and extensible way. This is based on a repository (i.e., registry) of
data sources and their manifests, which keeps track of the various data sources that register to it. The
FAR-EDGE platform includes such a registry, which provides dynamicity in creating, registering and
using data sources in the industrial plant [24].

(a) (b)

Figure 5. Data Definitions and Manifests Subschemas.

3.3. Data Analytics Data and Metadata

Analytics workflows and pipelines are modelled based on the following entities:

Figure 5. Data Definitions and Manifests Subschemas. (a) Factory Data Definitions and Manifests
Subschemas (b) metadata Definitions and Manifests Subschemas.

Information 2019, 10, 360 11 of 21

3.3. Data Analytics Data and Metadata

Analytics workflows and pipelines are modelled based on the following entities:

• Analytics Processor Definition (APD): Specifies processing functions applied on one or more
data sources. As outlined, three types of processing functions are supported, including data
preprocessing, data storage, and data analytics functions. These three types of functions can be
combined in various configurations over the data sources in order to define analytics workflows.

• Analytics Processor Manifest (APM): Represents an instance of a processor that is defined
through an APD. Each instance specifies the type of processor and its actual logic through linking
to an implementation function (like a Java class).

• Analytics orchestrator Manifest (AM): Represents an analytics workflow as a combination of
analytics processor instances (i.e., APMs). It is likely to span multiple edge gateways and to
operate over their data sources.

3.4. Common Interoperability Registry

The above-listed digital models are sufficient for specifying and executing configurable distributed
streaming analytics tasks. However, they only provide a simple set of metadata to application
developers, such as the location of edge gateways and the timestamp of data sources. In IIoT
applications, it is likely that streaming analytics are performed over a variety of data sources, beyond
the ones that follow the format and semantics of the digital models as outlined above. In order to make
use of such analytics data sources, the introduced engine implements an object identification registry,
which aims at supporting both static and dynamic data sources in diverse IIoT analytics scenarios.
The registry facilitates storage of observed information for a great variety of different data sources,
through linking the observations with the objects that they concern in the data models. Hence, it also
supports the integration and use of third-party databases as a means of enriching data observations
with more semantics.

The implementation of the CIR is outlined in Figure 6 and was realized in the scope of the
H2020 PROPHESY (www.prophesy.eu) as an add-on extension to the FAR-EDGE DDA infrastructure.
It enables the linking of repositories that contain relevant information about the objects and data
sources. The overall enhanced engine solution comprises:

• A database of the digital models presented in the previous paragraphs i.e., models representing
diverse data sources such as sensors and automation devices deployed in the field.

• The CIR, which provides the infrastructure for linking objects’ data that resides in different
databases. In this way, the CIR enriches of the datasets of the core digital models with additional
data and metadata residing in “linked” databases.

Information 2019, 10, 360 12 of 22

Figure 6. Concept of CIR Approach as implemented in the PROPHESY Project.

In addition to enriching the available datasets for DDA, the CIR implementation boosts the
discoverability, extensibility and manageability of the DDA infrastructure. In particular:
• Discoverability: CIR enables the discoverability of all registered objects and helps third party

applications to combine the information provided from different systems and databases. To this
end, a global unique identifier (in a Universally Unique Identifier (UUID) format) is assigned to
each registered object.

• Extensibility: CIR facilitates the flexible extension of the digital models’ infrastructure with
information (data/metadata) stemming for additional repositories and databases. This requires
however that each new repository extends the data and metadata of the digital models and links
them to other models through the CIR at the time of their deployment.

• Manageability: Figure 4 depicts a “Data Management Console” as a core element of the
infrastructure. This console is aimed at enabling the configuration of the CIR and the databases
of the infrastructure through a single point access.
These attributes are in addition to the DDA engine’s configurability and can enable very versatile

deployments in different industrial environments.

4. Implementation and Validation

4.1. Open Source Implementation

The DDA engine has been implemented as open source software and it available at GitHub at:
https://github.com/far-edge/distributed-data-analytics. This open source version comes with distinct
modules for the EA-Engine, the DA-Engine and the Open API for analytics. Moreover, it provides
some utilities that simulate the operation of the DR&PR component in order to ease the development
of demonstrators based on simulation of data streams. The implementation comes with a dashboard
that enables management of the DDA deployment, including management of EA-Engine instances
and the processors that they comprise. Through the dashboard, application developers and deployer
can configure most of the parameters of the DDA, including the analytics functions of the analytics
processors, the parameters of the storage processors and of the preprocessors, the deployment of EA-
Engines in various edge gateways and more. Two snapshots of the dashboard are depicted in Figure
7. They correspond two different customizations of the dashboard for different projects (i.e., H2020
FAR-EDGE, H2020 PROPHSY) and use cases, in different plants that comprise distinct sets of data
sources. Note that the FAR-EDGE dashboard is also illustrated in [24].

Note that the implementation of the CIR registry is not provided within the repository of the
DDA’s open source software. It is released as a separate software/middleware module, as it can be
used to link databases and objects independently of the DDA.

Figure 6. Concept of CIR Approach as implemented in the PROPHESY Project.

www.prophesy.eu

Information 2019, 10, 360 12 of 21

By enhancing the core data models with the CIR, application developers are offered the means to
access consolidated datasets from all linked databases. They can access enhanced datasets along with
proper metadata that describe the context of the objects (e.g., machines, sensors, automation devices)
of the application.

Figure 4 illustrates how the CIR database links different databases for predictive maintenance,
including: (i) The PROPHESY project database where maintenance data sources are modelled based
on the constructs described in the previous paragraphs (e.g., constructs like DSD, DI and DK);
(ii) A database containing maintenance datasets compliant to the MIMOSA Open Standards for
Physical Asset Management [25] and more specifically to the MIMOSA CRIS (Common Relational
Information Schema (CRIS) schema; (iii) Various proprietary third party databases maintained by
different partners of the PROPHESY project consortium. The CIR infrastructure links the information
about objects and entities that are referenced by more than one database, which enables analytics over
enhanced datasets. Using the CIR, an application developer can access information about the full
context and observations that relate to an object, regardless of the repository where these observations
reside. Note also that the CIR implementation adheres to standards prescribed by the MIMOSA Open
Standard for Operations and Maintenance (Open O&M), which ensures neutrality, openness and
technological longevity. In practice, the CIR implements an XML schema and a relational database in
line with the specifications and the open source libraries of the Open O&M that can be found in the
MIMOSA organization’s GitHub.

In addition to enriching the available datasets for DDA, the CIR implementation boosts the
discoverability, extensibility and manageability of the DDA infrastructure. In particular:

• Discoverability: CIR enables the discoverability of all registered objects and helps third party
applications to combine the information provided from different systems and databases. To this
end, a global unique identifier (in a Universally Unique Identifier (UUID) format) is assigned to
each registered object.

• Extensibility: CIR facilitates the flexible extension of the digital models’ infrastructure with
information (data/metadata) stemming for additional repositories and databases. This requires
however that each new repository extends the data and metadata of the digital models and links
them to other models through the CIR at the time of their deployment.

• Manageability: Figure 4 depicts a “Data Management Console” as a core element of the
infrastructure. This console is aimed at enabling the configuration of the CIR and the databases of
the infrastructure through a single point access.

These attributes are in addition to the DDA engine’s configurability and can enable very versatile
deployments in different industrial environments.

4. Implementation and Validation

4.1. Open Source Implementation

The DDA engine has been implemented as open source software and it available at GitHub at:
https://github.com/far-edge/distributed-data-analytics. This open source version comes with distinct
modules for the EA-Engine, the DA-Engine and the Open API for analytics. Moreover, it provides
some utilities that simulate the operation of the DR&PR component in order to ease the development
of demonstrators based on simulation of data streams. The implementation comes with a dashboard
that enables management of the DDA deployment, including management of EA-Engine instances
and the processors that they comprise. Through the dashboard, application developers and deployer
can configure most of the parameters of the DDA, including the analytics functions of the analytics
processors, the parameters of the storage processors and of the preprocessors, the deployment of
EA-Engines in various edge gateways and more. Two snapshots of the dashboard are depicted
in Figure 7. They correspond two different customizations of the dashboard for different projects

https://github.com/far-edge/distributed-data-analytics

Information 2019, 10, 360 13 of 21

(i.e., H2020 FAR-EDGE, H2020 PROPHSY) and use cases, in different plants that comprise distinct sets
of data sources. Note that the FAR-EDGE dashboard is also illustrated in [24].Information 2019, 10, 360 13 of 22

Figure 7. Dashboard for managing the EA-Engine Implementation.

In order to validate the operation of the DDA and our claims about its configurability,
extensibility and versatility, we deploy it for three distinct analytics applications in a different
industrial environment. The applications concern some of the most common IIoT applications in
Industry 4.0.

4.2. Complete Analytics Modelling Scenarios in a Pilot Production Line: Validation in Power Consumption
Analytics

Figure 7. Dashboard for managing the EA-Engine Implementation.

Note that the implementation of the CIR registry is not provided within the repository of the
DDA’s open source software. It is released as a separate software/middleware module, as it can be
used to link databases and objects independently of the DDA.

In order to validate the operation of the DDA and our claims about its configurability, extensibility
and versatility, we deploy it for three distinct analytics applications in a different industrial environment.
The applications concern some of the most common IIoT applications in Industry 4.0.

Information 2019, 10, 360 14 of 21

4.2. Complete Analytics Modelling Scenarios in a Pilot Production Line: Validation in Power Consumption Analytics

The DDA has been deployed on a pilot line (testbed) in order to analyze and calculate power
consumption statistics about a set of distributed Infrastructure Boxes (IB). In particular, the DDA
was configured to handle data streams (i.e., processors) calculating the hourly average power and
the hourly average energy for: (i) Each IB based on an EA-Engine deployment for each one; and (ii)
Across multiple IBs based on a DA-Engine deployment. The calculation workflows included tests of
the calculated values against thresholds in order to identify anomalies during production, while at
the same time, enabling the pilot line operators to better understand the machine’s behavior and the
overall responsiveness of each production process.

Two different scenarios have been deployed over different Infrastructure Boxes (IB) (i.e., modules)
of the pilot line:

• The first scenario utilizes only one Edge Gateway with the Edge Analytics, and
• The second utilizes the full-fledged deployment and of the DDA infrastructure i.e., operates across

multiple edge gateways.

For the Edge Analytics, we provide the hourly daily consumption from an Infrastructure Box
for two parameters, namely the total power consumption (TotalRealPower) and the total energy
consumption (TotalRealEnergy). Likewise, for the Distributed Analytics, we also provide the hourly
daily consumption from all Infrastructure Boxes for the same parameters (TotalRealPower and
TotalRealEnergy).

Each of the two scenarios has been modelled and represented in the digital world based on the
FAR-EDGE Data Models (i.e., and their corresponding schemas), as illustrated in following paragraphs.

In order to set up the Edge Analytics infrastructure and to model the Edge Analytics functionalities
in the digital world, one must undertake the following steps:

• Step 1 (IB Modelling): One Edge Gateway is deployed/bind with each Infrastructure Box. The
Infrastructure Box is modelled using the following constructs of the data models infrastructure: (i)
The Data Interface (DI) (Table 1); (ii) The Data Source (DSD) (Table 2); (iii) The Data Kind (DK)
(Table 3). This information is stored in the Data Model repository of the DDA, which is deployed
in the cloud.

• Step 2 (IB Instantiation/Registration): The data models of the IB are used to generate the Data
Source Manifest (DSM) (Table 4) and register it to each Edge Gateway.

• Step 3 (Edge Analytics Modelling): The required processors are modelled with the help of an
Analytics Processor Definition (APD) object (Table 5). They include: (i) A processor for hourly
average calculation from a single data stream; (ii) A processor for persisting results in a nonSQL
repository (i.e., a MongoDB in our case). This information is also stored at the data model
repository of the DDA.

• Step 4 (Edge Analytics Installation/Registration): Based on the data models specified in the
previous steps, it is possible to generate the Analytics Processor Manifest (APM) for each required
processor which is registered to the Edge Gateway, in particular: (i) The processor for hourly
average calculation from the TotalRealPower data stream; (ii) The processor for hourly average
calculation from the TotalRealEnergy data stream; (iii) The processor for persisting results in a
database (i.e., MongoDB in our case) of the Edge Gateway, which is to be used by the edge analytics;
(iv) The processor for persisting results in the cloud, which is to based used for distributed analytics.
Furthermore, a, Analytics Manifest (AM) (Table 6) is generated for orchestrating the instantiated
processors. The AM is registered and started through the Edge Gateway Analytics Engine API.

Information 2019, 10, 360 15 of 21

Table 1. Data Interface (DI) Modelling.

{
"_id": "c64709bb-6565-41fe-8256-f6802ad9a538",
"name": "MQTT topic",
"communicationProtocol": "MQTT",
"parameters": {

"parameter": [
{

"name": "host",
"description": "The host where the MQTT broker runs.",
"dataType": "string",
"defaultValue": "localhost"

},
{

"name": "port",
"description": "The port where the MQTT broker listens.",
"dataType": "int",
"defaultValue": 1883

},
{

"name": "username",
"description": "The username to use to connect to the MQTT broker.",
"dataType": "string"

},
{

"name": "password",
"description": "The password to use to connect to the MQTT broker.",
"dataType": "string"

},
{

"name": "topic",
"description": "The MQTT topic.",
"dataType": "string"

}
]

}
}

Table 2. Data Source Definition (DSD) Modelling.

{
"_id": "e810e6cb-f93e-4c1d-8365-2dda74b63bb8",
"name": "Total real energy in JSON format over MQTT",
"dataInterfaceReferenceID": "c64709bb-6565-41fe-8256-f6802ad9a538",
"dataKindReferenceIDs": {

"dataKindReferenceID": [
"5071a52f-be67-4d21-bddb-24de8b6144a7"

]
}

}

Table 3. Data Kind (DK) Modelling.

{
"_id": "5071a52f-be67-4d21-bddb-24de8b6144a7",
"name": "Total real energy in plain text",
"description": "Total real energy values (in KWh) in plain text.",
"format": "Plain text",
"quantityKind": "Energy"

}

Information 2019, 10, 360 16 of 21

Table 4. Data Source Manifest (DSM) Modelling.

{
"id": "7efa7286-f689-4f51-980c-8e270a1c6d7d",
"macAddress": "8c:85:90:96:40:cd",
"dataSourceDefinitionReferenceID": "e810e6cb-f93e-4c1d-8365-2dda74b63bb8",
"dataSourceDefinitionInterfaceParameters": {

"parameter": [
{

"key": "host",
"value": "192.168.253.240"

},
{

"key": "port",
"value": 1883

},
{

"key": "username",
"value": "faredge"

},
{

"key": "password",
"value": "*********"

},
{

"key": "topic",
"value": "PhoenixIB/TotalRealEnergy"

}
]

}
}

Table 5. Modelling of APD for Calculating an Average.

{
"_id": "d5dbd123-0cd4-42bf-aa4f-6c459b4f3060",
"name": "Average calculator",
"description": "Processors that read values and calculate their average.",
"processorType": "average",
"version": "1.0.0"

}

Information 2019, 10, 360 17 of 21

Table 6. Modelling of AM for Orchestrating Processors.

{
"edgeGatewayReferenceID": "da2282f0-4a13-4f68-a1a3-fe05da03c704",
"analyticsProcessors": {

"apm": [
{

"id": "950354ff-7ce7-4601-a7ea-11f5175d086c",
"analyticsProcessorDefinitionReferenceID":

"d5dbd123-0cd4-42bf-aa4f-6c459b4f3060",
"dataSources": {

"dataSource": [
{

"dataSourceManifestReferenceID":
"2fae2556-d516-464d-8b18-aeb2b473e759"

}
]

},
"dataSink": {

"dataSourceManifestReferenceID": "f006a60b-c40f-4489-a7f7-c73d10d7d0eb"
}

}
]

}
}

Likewise, in order to set up the distributed analytics, the following steps are followed, in addition
to those listed above:

• Step 5 (Distributed Analytics Modelling): In this step the required processors are modelled
with the help of an Analytics Processor Definition (APD) object. In particular, the following
processors are modelled: (i) A processor for hourly average calculation for values from a database;
(ii) A processor for persisting results in the database. The above models are stored in the data
model repository at the cloud.

• Step 6 (Distributed Analytics Installation/Registration): The previously specified data models
can be used to generate the Analytics Processor Manifest (APM) for each required Processor
which is registered to the cloud. These processors include: (i) A for Processor hourly average
calculation for TotalRealPower for all Infrastructure Boxes from the global database (i.e., MongoDB
in our implementation); (ii) A processor for hourly average calculation from TotalRealEnergy
for all Infrastructure Boxes from the global database (i.e., MongoDB in our implementation);
(iii) A processor for persisting results in the global database (i.e., MongoDB in our implementation).
Moreover, an Analytics Manifest (AM) is modelled and generated for orchestrating the instantiated
processors. The AM is registered and started through the Distributed Data Analytics Engine API.

Based on the above listed steps are setting up a configurable infrastructure without any
programming effort, given that most of the steps can be undertaken through the dashboard interface.
Note also that the various tables present the models in JSON (JavaScript Object Notation). Table 7
presents an instance of the outcome of the analytics operation, modelled in-line with the Digital Models
of the Analytics engine (i.e., according to the so-called LiveDataSet object).

Information 2019, 10, 360 18 of 21

Table 7. Sample LiveDataSet for total real Energy Calculation based on the DDA.

{
"observation": [{

"id": "84190868-8dbb-41ea-8b90-ea8f4699f43a",
"name": "PhoenixIB-TotalRealEnergy",
"dataKindReferenceID": "c4b0ecec-0086-46e8-9812-04bde8be2f08",
"timestamp": "2018-05-24 14:59:14.924",
"value": 210

}],
"id": "1aed50c9-d507-4e16-b7ca-a44321bc37ac",
"dataSourceManifestReferenceID": "2fae2556-d516-464d-8b18-aeb2b473e759",
"mobile": false,
"timestamp": "2018-05-24 14:59:14.924"

}{
"observation": [{

"id": "1dd0666c-b61e-494d-91bc-71ab4a4717c3",
"name": " PhoenixIB-TotalRealEnergy",
"dataKindReferenceID": "c4b0ecec-0086-46e8-9812-04bde8be2f08",
"timestamp": "2018-05-24 15:00:14.931",
"value": 215

}],
"id": "ba98ea74-646d-4519-bb9e-57a439acb82b",
"dataSourceManifestReferenceID": "2fae2556-d516-464d-8b18-aeb2b473e759",
"mobile": false,
"timestamp": "2018-05-24 15:00:14.931"

}{
"observation": [{

"id": "14358864-c768-4bc2-bdb3-19aa88d482e1",
"name": " PhoenixIB-TotalRealEnergy",
"dataKindReferenceID": "c4b0ecec-0086-46e8-9812-04bde8be2f08",
"timestamp": "2018-05-24 15:01:14.95",
"value": 205

}],
"id": "f2454dad-a6b9-43c1-a741-fbeeebf96b5b",
"dataSourceManifestReferenceID": "2fae2556-d516-464d-8b18-aeb2b473e759",
"mobile": false,
"timestamp": "2018-05-24 15:01:14.95"

}

In following paragraphs, we also discuss the deployment and use of the DDA in other use cases
in real plants. However, the discussion of these use cases is not accompanied by the JSON models of
the corresponding analytics processes, given that the deployments are proprietary and much more
complex that the one of the pilot plant which renders the detailed description of the data sources and
of the analytics manifests beyond the scope of this manuscript.

4.3. Validation in Real Production Lines

4.3.1. Validation in Mass Customization

Mass customization is one of the most prominent Industry 4.0 applications, which is based on the
use of IIoT for building flexible production lines that produce diversified products. Estimating the time
of production operations for very different products is essential for ensuring the effectiveness of mass
customization operations. Factual calculations based on statistical models that exploit digital data
from past production operations are therefore preferred over empirical estimations, as they improve
the accuracy of the production process and boost the organization and the efficiency of the mass
customization process. In this context, the DDA has been configured and deployed in order to calculate
assembly times of trucks in a mass customization production line. The DDA has been configured

Information 2019, 10, 360 19 of 21

to operate at the level of a station, in order to provide fast, automated and accurate calculations of
assembly times based on past data. Such calculations are also beneficial for the operators of the station,
as they enhance their knowledge about the complexity and timing of the assembly process.

The DDA has been provided with parameters of past assembly operations and their timing,
including a diverse set of parameters that are a direct results of the product variation (e.g., number of
axles of the truck, radars and cameras to be calibrated for a specific track, number and types of extra
protection plates to be mounted). EA-Engine instances have been configured and deployed to calculate:
(i) Planned process time for different truck types based on historic data about the assembly times of
similar variants; (ii) In Line Adjustment Probability per truck type, based on statistical processing over
known cases of adjustment and (iii) Estimated Adjustment Times for different types and variations of
the product based on previously known estimates about produced trucks.

4.3.2. Validation in Predictive Maintenance

A second deployment of the DDA has taken place in a predictive maintenance scenario. As part
of this deployment, a diverse number of data streams are configured and processed through the DDA,
including dynamic streaming data about the production line and the process (e.g., temperature, acoustic
data from vibration), information about failure modes and maintenance actions associated with the
machine and the process, as well as data associated with the quality of the product. The deployment
involves processing of data from a variety of different systems, sensors and databases, which were
modelled as data sources. Using the project’s DSL, an analytics pipeline was configured that comprised
preprocessors preparing the data for consumption by Machine Learning (ML) algorithms, as well as
analytics processors implementing these algorithms. The major outcome of the DDA deployment
concerns the calculation of the RUL (Remaining Useful Life) of the equipment.

Overall, the deployment of the DDA infrastructure in diverse industrial settings and use cases
is indicative of its configurability and versatility, beyond a baseline technical validation of the
DDA’s operation.

5. Conclusions and Future Work

Most IIoT use cases are that are data intensive and require tools and techniques for efficient
Distributed Data Analytics. The latter are already among the main pillars of Industry 4.0 deployments
in applications like flexible automation, predictive maintenance and digital simulations [26]. Effective
IIoT analytics are in most cases associated with the handling of heterogeneous streaming data i.e.,
data streams with very high ingestion rates. State of the art streaming analytics engines provide
exceptional performance and low latency, as they can be deployed in modern clusters in ways that
exploit parallelization of tasks. Less emphasis, however, has been paid in their configurability and their
integration in scenarios where multiple streaming systems must be combined in a single deployment.

In this paper, we have introduced a configurable streaming engine, as a meta-level engine that
can combine data streams from diverse streaming middleware platforms. The presented engine can
be flexibly configured to operate in modern cloud/edge environments. It offers a DSL that facilitates
the configuration of data sources, along with their integration, preprocessing and analysis based on
a variety of user defined analytical functions. The engine leverages the performance of state-of-the-
art streaming platforms like Kafka, while it can be flexibly configured in different IIoT environments.
The latter configurability has been validated in different deployment scenarios in applications like
predictive maintenance, production planning for mass customization and detection of anomalies in
the operation of machines. It is also important that the implementation of IIoT DDA infrastructure is
provided as open source software and is available for deployment, use and further extension by the
IIoT developers’ community.

The introduced DDA engine has already been used in three distinct deployments in pilot
production lines (i.e., testbeds), as well as in real life production lines (i.e., realistic manufacturing
environments). Furthermore, we will plan to use it for data analytics applications in two more factories

Information 2019, 10, 360 20 of 21

dealing with automotive and glass products. These deployments have already proven the generality
of the platform and its potential to accelerate IIoT data streaming deployments in real-life settings.
Moreover, they have provided us with the opportunity to improve the implementation in terms of
robustness and performance. Our future plans include the implementation of tools for managing the
data models and the DSL of the DDA in a visual and integrated way. We plan to evolve the dashboard
implementation to a more complete programming environment, which will be flexibly integrated with
other tools, such as open sources tools for data mining and data analytics. Likewise, based on the
experience of the practical deployments, we plan to create an initial pool of commonly used analytics
processors that could accelerate the development of analytics applications through reuse. In these ways,
the DDA will gradually evolve from a research prototype to a more robust platform for industrial use.

Author Contributions: Conceptualization, N.K., A.R. and J.S.; Methodology, N.K.; Software, N.K.; Validation,
A.R.; Resources, A.R.; Data curation, N.K.; Writing—original draft preparation, J.S.; Supervision, J.S.

Funding: This research was funded by the European Commission, grant number 720395 and grant number 766994.
Both grants are funded as part of the European Commission’s H2020 programme.

Acknowledgments: Part of this work (namely the distributed analytics engine design and implementation) has
been carried out in the scope of the H2020 FAR-EDGE project (contract number 723094), while another part
(namely the common interoperability registry design and implementation) has been carried out in the scope of
H2020 PROPHESY project (contract number 766994). Both projects are funded by the European Commission in
the scope of its H2020 programme. The authors acknowledge valuable help and contributions from all partners of
both projects, including the plants where the DDA infrastructure has been validated.

The present manuscript is a significantly extended and enhanced version of the three pages poster paper
that has been presented in the 2019 edition of IEEE International Conference on Distributed Computing in Sensor
Systems [26].

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Abadi, D.; Carney, D.; Çetintemel, U.; Cherniack, M.; Convey, C.; Lee, S.; Stonebraker, M.; Tatbul, N.;
Zdonik, S. Aurora: A new model and architecture for data stream management. VLDB J. 2003, 12, 120–139.
[CrossRef]

2. Chandrasekaran, S.; Cooper, O.; Deshpande, A.; Franklin, M.; Hellerstein, J.; Hong, W.; Krishnamurthy, S.;
Madden; Reiss, F.; Shah, M. TelegraphCQ: Continuous dataflow processing. In Proceedings of the 2003 ACM
SIGMOD International Conference on Management of Data (SIGMOD ′03), New York, NY, USA, 9–12 June
2003; p. 668.

3. Arasu, A.; Babu, S.; Widom, J. The CQL continuous query language: Semantic foundations and query
execution. VLDB J. 2006, 15, 121–142. [CrossRef]

4. Ahmad, Y.; Berg, B.; Cetintemrel, U.; Humphrey, M.; Hwang, J.; Jhingran, A.; Maskey, A.; Papaemmanouil, O.;
Rasin, A.; Tatbul, N.; et al. Distributed operation in the Borealis stream processing engine. In Proceedings of
the ACM SIGMOD International Conference on Management of Data (SIGMOD ′05), New York, NY, USA,
14–16 June 2005; pp. 882–884.

5. Biem, A.; Bouillet, E.; Feng, H.; Ranganathan, A.; Riabov, A.; Verscheure, O.; Koutsopoulos, H.; Moran, C.
IBM infosphere streams for scalable, real-time, intelligent transportation services. In Proceedings of the
ACM SIGMOD International Conference on Management of Data (SIGMOD ′10), New York, NY, USA, 6–10
June 2010; pp. 1093–1104.

6. Gulisano, V.; Jiménez-Peris, R.; Patiño-Martínez, M.; Soriente, C.; Valduriez, P. StreamCloud: An Elastic and
Scalable Data Streaming System. IEEE Trans. Parallel Distrib. Syst. 2012, 23, 2351–2365. [CrossRef]

7. Zaharia, M.; Xin, R.; Wendell, P.; Das, T.; Armbrust, M.; Dave, A.; Meng, X.; Rosen, J.; Venkataraman, S.;
Franklin, M.; et al. Apache Spark: A Unified Engine for Big Data Processing. Commun. ACM 2016, 59, 56–65.
[CrossRef]

8. Carbone, P.; Katsifodimos, A.; Ewen, S.; Markl, V.; Haridi, S.; Tzoumas, K.K. Apache Flink™: Stream and
Batch Processing in a Single Engine. IEEE Data Eng. Bull. 2015, 38, 28–38.

9. Noghabi, S.; Paramasivam, K.; Pan, Y.; Ramesh, N.; Bringhurst, J.; Gupta, I.; Campbell, R. Samza: Stateful
scalable stream processing at Linked. Proc. VLDB Endow. 2017, 10, 1634–1645. [CrossRef]

http://dx.doi.org/10.1007/s00778-003-0095-z
http://dx.doi.org/10.1007/s00778-004-0147-z
http://dx.doi.org/10.1109/TPDS.2012.24
http://dx.doi.org/10.1145/2934664
http://dx.doi.org/10.14778/3137765.3137770

Information 2019, 10, 360 21 of 21

10. Murray, D.; McSherry, F.; Isaacs, R.; Isard, M.; Barham, P.; Abadi, M. Naiad: A timely dataflow system. In
Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles (SOSP ′13), New York,
NY, USA, 3–6 November 2013; pp. 439–455.

11. Kreps, J.; Narkhede, N.; Rao, J. Kafka: A Distributed Messaging System for Log Processing. In Proceedings of
the 6th International Workshop on Networking Meets Databases (NetDB), Athens, Greece, 12–16 June 2011.

12. Isaja, M.; Soldatos, J.; Gezer, V. Combining Edge Computing and Blockchains for Flexibility and Performance
in Industrial Automation. In Proceedings of the Eleventh International Conference on Mobile Ubiquitous
Computing, Systems, Services and Technologies (UBICOMM), Barcelona, Spain, 12–16 November 2017;
pp. 159–164.

13. Kosar, T.; Bohrab, S.; Mernika, M. Domain-Specific Languages: A Systematic Mapping Study.
Inf. Softw. Technol. 2016, 71, 77–91. [CrossRef]

14. Mernik, M.; Heering, J.; Sloane, A. When and how to develop domain-specific languages. ACM Comput. Surv.
2005, 37, 316–344. [CrossRef]

15. Anagnostopoulos, A.; Soldatos, J.; Michalakos, S. REFiLL: A lightweight programmable middleware platform
for cost effective RFID application development. Pervasive Mob. Comput. 2009, 5, 49–63. [CrossRef]

16. Kefalakis, N.; Soldatos, J.; Konstantinou, N.; Prasad, N. APDL: A reference XML schema for process-centered
definition of RFID solutions. J. Syst. Softw. 2011, 84, 1244–1259. [CrossRef]

17. Kosar, T.; López, P.M.; Barrientos, P.; Mernik, M. A preliminary study on various implementation approaches
of domain-specific language. Inf. Softw. Technol. 2008, 50, 390–405. [CrossRef]

18. Johanson, A.N.; Hasselbring, W. Effectiveness and efficiency of a domain-specific language for
high-performance marine ecosystem simulation: A controlled experiment. Empir. Softw. Eng. 2017,
22, 2206–2236. [CrossRef]

19. Kosar, T.; Gaberc, S.; Carver, J.; Mernik, M. Program comprehension of domain-specific and general-purpose
languages: Replication of a family of experiments using integrated development environments. Empir. Softw.
Eng. 2018, 23, 2734–2763. [CrossRef]

20. Silva, A. Model-driven engineering: A survey supported by a unified conceptual model. Comput. Lang.
Syst. Struct. 2015, 43, 139–155.

21. Lelandais, B.; Oudot, M.; Combemale, B. Applying Model-Driven Engineering to High-Performance
Computing: Experience Report, Lessons Learned, and Remaining Challenges. J. Comput. Lang. 2019, 55,
1–19. [CrossRef]

22. Petrali, P.; Isaja, M.; Soldatos, J. Edge Computing and Distributed Ledger Technologies for Flexible Production Lines:
A White-Appliances Industry Case; In IFAC: Geneva, Switzerland, 2018; Volume 51, pp. 388–392.

23. Soldatos, J.; Lazaro, O.; Cavadini, F. (Eds.) The Digital Shopfloor: Industrial Automation in the Industry
4.0 Era Forthcoming Performance Analysis and Applications. River Publishers Series in Automation,
Control and Robotics, ISBN 9788770220415, e-ISBN 9788770220408. February 2019. Available online:
https://www.riverpublishers.com/book_details.php?book_id=676 (accessed on 18 November 2019).

24. Kefalakis, N.; Roukounaki, A.; Soldatos, J. A Configurable Distributed Data Analytics Infrastructure for
the Industrial Internet of things. In Proceedings of the DCOSS, Santorini Island, Greece, 29–31 May 2019;
pp. 179–181.

25. Mathew, A.; Zhang, L.; Zhang, S.; Ma, L. A Review of the MIMOSA OSA-EAI Database for Condition
Monitoring Systems. In Engineering Asset Management; Mathew, J., Kennedy, J., Ma, L., Tan, A., Anderson, D.,
Eds.; Springer: London, UK, 2006.

26. Soldatos, J. Introduction to Industry 4.0 and the Digital Shopfloor Vision. In The Digital Shopfloor: Industrial
Automation in the Industry 4.0 Era; River Publishers: Delft, The Netherlands, 2019; ISBN 108770220417.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.infsof.2015.11.001
http://dx.doi.org/10.1145/1118890.1118892
http://dx.doi.org/10.1016/j.pmcj.2008.08.004
http://dx.doi.org/10.1016/j.jss.2011.02.036
http://dx.doi.org/10.1016/j.infsof.2007.04.002
http://dx.doi.org/10.1007/s10664-016-9483-z
http://dx.doi.org/10.1007/s10664-017-9593-2
http://dx.doi.org/10.1016/j.cola.2019.100919
https://www.riverpublishers.com/book_details.php?book_id=676
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Architecture of the Configurable Data Analytics Engine
	DDA Overview
	Edge Analytics Engine (EA-Engine)
	Distributed Analytics Engine (DA-Engine)
	Open API for Analytics

	Digital Modelling and Common Interoperability Registry
	Overview
	Plant Data and Metadata
	Data Analytics Data and Metadata
	Common Interoperability Registry

	Implementation and Validation
	Open Source Implementation
	Complete Analytics Modelling Scenarios in a Pilot Production Line: Validation in Power Consumption Analytics
	Validation in Real Production Lines
	Validation in Mass Customization
	Validation in Predictive Maintenance

	Conclusions and Future Work
	References

