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Abstract: The purpose of activity recognition is to identify activities through a series of observations of
the experimenter’s behavior and the environmental conditions. In this study, through feature selection
algorithms, we researched the effects of a large number of features on human activity recognition
(HAR) assisted by an inertial measurement unit (IMU), and applied them to smartphones of the
future. In the research process, we considered 585 features (calculated from tri-axial accelerometer
and tri-axial gyroscope data). We comprehensively analyzed the features of signals and classification
methods. Three feature selection algorithms were considered, and the combination effect between the
features was used to select a feature set with a significant effect on the classification of the activity,
which reduced the complexity of the classifier and improved the classification accuracy. We used
five classification methods (support vector machine [SVM], decision tree, linear regression, Gaussian
process, and threshold selection) to verify the classification accuracy. The activity recognition method
we proposed could recognize six basic activities (BAs) (standing, going upstairs, going downstairs,
walking, lying, and sitting) and postural transitions (PTs) (stand-to-sit, sit-to-stand, stand-to-lie,
lie-to-stand, sit-to-lie, and lie-to-sit), with an average accuracy of 96.4%.

Keywords: human activity recognition; inertial sensor; feature selection; combined effect

1. Introduction

With the rapid development of artificial intelligence, activity recognition has become an important
emerging field of research. Different technical means that recognize the human activities of users
employing different embedded sensors have been actively studied [1]. Early research focused on
recognizing activities with signals coming from one or more standalone motion sensors that were
attached to the human body, at locations chosen by the researcher. Because vision-based activity
recognition analyses include a high cost and environmental restrictions [2], human activity recognition
(HAR) systems have been used to receive the state of the user by wearable inertial sensors attached to
the user’s body to measure and evaluate their action patterns [3,4].

Raw data collected from sensors recognize human activities through machine learning
algorithms [5,6]. The main application areas of this research are low-complexity systems such
as single-chip microcomputers, which only use a small amount of data. Accurate signal processing
and feature selection are fast becoming key problems in the field of attitude recognition.
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Most wearable devices with sensors are still limited by hardware resources, preventing real-time
and fast access to activity recognition results that require a lot of computation [7]. Therefore, in order to
make HAR more applicable to wearable devices with limited hardware resources, traditional analysis
methods based on deep learning theory have mostly been abandoned by researchers [8].

The feature extraction methods of the HAR system can be divided into three categories, namely,
time features, frequency features, and a combination of both [9]. Jarraya et al. selected 280 features
from a total of 561 by means of a nonlinear Choquet integral feature selection approach, classified six
basic actions by using the random forest, and finally obtained a better classification effect. However,
the large number of selected features affected the performance of the classifier [10]. Doewes et al.
used the minimum redundancy and maximum correlation feature selection algorithms to analyze the
number of selected features and the classification accuracy under different proportions of training
sets and test sets, and considered the operation time of the classification process. However, only two
classifiers, the support vector machine (SVM) and multilayer perception (MLP), were analyzed, and
the MLP training easily dropped into a local optimum, which resulted in a training failure and an
affected accuracy evaluation [11]. Li et al. proposed a feature set selection algorithm based on adaptive
character activity and improved genetic algorithm, which could dynamically guide the process of
feature selection and obtain small-scale feature sets on the basis of a higher classification accuracy and
a faster running time. However, the proposed algorithm could not deal with a large search space,
including a large feature space and a large-scale mode [12]. Ridok et al. proposed a feature selection
method based on a fast correlation-based filter (FCBF) to achieve data preprocessing, and proved that
the accuracy of classification could reach 100%. However, only the Artificial Immune Recognition
System 2 (AIRS2) algorithm was used as the classification model, which could not determine if it was
applicable to other classifiers [13].

On the basis of fully studying the time-domain and frequency-domain features of acceleration and
angular velocity, this study used the feature selection method to find the optimal feature subset, and
further employed a variety of classification models to evaluate the classification accuracy. The selection
of classifiers for activity recognition was determined by many factors. In addition to accuracy, factors
such as ease of development, computational complexity, and speed of execution could also affect
the choice of classifiers [14]. Although the deep learning algorithm could achieve a high accuracy,
the paper applied a low complexity system with a small amount of data, and the classifier structure
was more complicated and had higher hardware requirements. Feature selection is the process of
selecting a subset of original features based on clearly defined evaluation criteria, which can eliminate
irrelevant and redundant features [15]. Feature selection does not change the original representation of
the feature set, compared to other dimensionality reduction techniques based on projection, such as
linear discriminate analysis or principal component analysis [16], and online classification with the
selected features is more flexible. The organization of this article is as follows: In the second section,
the system framework is introduced; in the third section, the signal processing and feature selection
method based on SVM are introduced; in the fourth section, the classification effects of the feature sets
are verified by multiple classification models, and the experimental results are analyzed and discussed;
and the fifth section presents the conclusions of this research.

2. System Frameworks

The HAR model proposed in this paper is composed of six parts—signal acquisition, signal
processing, feature extraction, feature selection, classification model training, and classification
prediction (as shown in Figure 1). In this study, the data were obtained from a tri-axial acceleration
sensor and a tri-axial angular velocity sensor for signal processing, feature calculation, and feature
selection. Finally, the selected features were trained for classification and prediction [17].
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A total of 50% of the data was used for feature selection, 35% of the data was used for classification
model training, and the other 15% was used for precision evaluation [18]. Signal acquisition is the
collection and processing of sensor data from available sources. In general, signal conditioning
(e.g., noise reduction, digitization amplification) is always required to adapt the sensing signal to the
application requirements [19]. The feature extraction process is responsible for obtaining meaningful
features that describe the data, and allows for a better representation and understanding of the
phenomena under study. The extracted features provide the most effective features through feature
selection and input them into the classifier in order to train the classification model [20]. Finally,
the classification model is verified.

Information 2019, 10, x FOR PEER REVIEW 3 of 22 

 

understanding of the phenomena under study. The extracted features provide the most effective 
features through feature selection and input them into the classifier in order to train the classification 
model [20]. Finally, the classification model is verified. 

 
Figure 1. Human activity recognition framework. 

3. Signal Processing, Feature Extraction, and Feature Selection 

3.1. Signal Processing and Feature Extraction 

Firstly, the tri-axial acceleration signal and tri-axial angular velocity signal of the inertial sensor 
corresponding to six basic motions (walking (WK), walking upstairs (WU), walking downstairs (WD), 
standing (SD), sitting (ST), and lying (LY)) were obtained in the experiment, as shown in Figures 2 and 3. 

 
Figure 2. Example of inertial signals from the accelerometer while performing six activities. 

Figure 1. Human activity recognition framework.

3. Signal Processing, Feature Extraction, and Feature Selection

3.1. Signal Processing and Feature Extraction

Firstly, the tri-axial acceleration signal and tri-axial angular velocity signal of the inertial sensor
corresponding to six basic motions (walking (WK), walking upstairs (WU), walking downstairs (WD),
standing (SD), sitting (ST), and lying (LY)) were obtained in the experiment, as shown in Figures 2 and 3.
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Since the energy spectrum of human body motion is mainly in the range of 0–15 Hz, a median
filter and a third-order low-pass Butterworth filter with a 20-Hz cutoff frequency were used to filter
the six-axis signal to remove noise. The angular velocity signal was high-pass filtered to remove
any DC offset that would affect the gyroscope. Similarly, a low-pass Butterworth filter with a cut-off

frequency of 0.3 Hz was used to separate gravity acceleration signals from tri-axial acceleration
signals, including tAcc-xyz, tGyro-xyz, and tGravityacc-xyz [21]. The resulting acceleration signals,
gravity acceleration signals, and angular velocity signals provide information about the user’s body
movements, the person’s orientation (for example, helping to distinguish between lying down and
standing up), and the movement patterns in which people perform certain activities [22].

Subsequently, the body acceleration signals and angular velocity signals were calculated with the
difference calculation to obtain Jerk signals (a certain amount of information was known about the
characteristics of related activities, and was successfully applied to the test of patients [23]), respectively
represented by taccjerk-xyz and tgyrojerk-xyz.

In addition, the formula
√

x2 + y2 + z2 was used to calculate the triaxial acceleration, triaxial
angular velocity, and gravity component, that is, tAccMag, tGyroMag, and tGravityAccMag,
respectively [24]. The processed signal allowed the reduction of data dimensions and meant that the
data were independent of the direction.

Furthermore, it was necessary to solve the angle between the tri-axial signal vector and the gravity
component, that is, tAccAng and tGyroAng, respectively. The angle between the earth’s gravity and
the sensor device had a good effect on the static action.

Finally, the real value Fast Fourier Transformation (FFT) algorithm was used to transform these
windows into the frequency domain, resulting in facc-xyz, fgyro-xyz, and faccjerk-xyz [25].

The commonly used features are statistical measures including the mean, variance, standard
deviation, root mean square [26], fast Fourier transform (FFT), coefficients [27], and discrete cosine
transform (DCT) coefficients [28].

After the signal processing was completed as described above, these signals were used as variables
for estimating the feature vector of each mode, and the behavior was modeled using a windowed
method (the average human walking rhythm is at least 1.5 steps/second); each window sample
preferably had at least a complete walking cycle. The rectangular sensor window of the overlapping
window factory was used to extract the acceleration sensor signal. After selecting the appropriate
window factory, various features were extracted from the acceleration signal of the single window
factory to obtain the feature vector.
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Table 1 shows 22 measures applied to the x-axis. Table 2 shows the correlation feature between
signal pairs of the x-axis and y-axis. All of the above signal-processing methods correspond to the time
domain and frequency domain, respectively, as shown in Tables 3 and 4.

Table 1. Time domain features of the x-axis.

Type Description Definitions

Arithmetic mean tAcc-X v = 1
N

N∑
i=1

vi

Sample Standard deviation tAcc-X s =
(

1
N−1

N∑
i=1

(vi − v)2
)1/2

Sample Variance tAcc-X s2 = 1
N−1

N∑
i=1

(vi − v)2

Median tAcc-X median(vi)

Median absolute deviation tAcc-X median
(∣∣∣vi −median(vi)

∣∣∣)
Largest values tAcc-X max(vi)

Smallest value tAcc-X min(vi)

Sample Range tAcc-X r = max(vi) −min(vi)

Inter-quartile range tAcc-X IQR = Q3(vi) −Q1(vi)

Mean crossing rate tAcc-X 1
N−1

∑N−1
i=1

∏{
(vi − v) ∗ (vi−1 − v) < 0

}
Skewness tAcc-X skew =

∑
(V−µ)3

Nσ3

Kurtosis tAcc-X Kurt =
∑
(V−µ)3

Nσ4 − 3

Curve Length tAcc-X CL = 1
N−1

∑N
i=2|vi−1 − vi|

Slope tAcc-X Slop = max|vi−1 − vi|

Power tAcc-X P(v) = 1
N
∑N

i=1(vi)
2

Root Mean Square tAcc-X RMS =
(

1
N
∑N

i=1 v2
i

)1/2

Mean Euclidean distance tAcc-X L2 = 1
N−1

√∑N
i=2(vi−1 − vi)

2

10th percentile tAcc-X percentile(v, 10)

25th Percentile tAcc-X percentile(v, 25)

50th Percentile tAcc-X percentile(v, 50)

75th Percentile tAcc-X percentile(v, 75)

90th Percentile tAcc-X percentile(v, 90)

Table 2. Correlation feature between signal pairs of the x-axis and y-axis.

Type Description Definitions

Covariance tAcc-XY Cov(v, u) = 1
N−1

∑N
i=1(vi − v)(ui − u)

Correlation coefficient tAcc-XY rvu =

∑N
i=1

(
vi−
→

v
)
(ui−u)√∑N

i=1(vi−v)2
√∑N

i=1(ui−u)2
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Table 3. Processing method corresponding to Arithmetic-mean.

Feature Feature Description Feature Feature Description Feature Feature Description

0 Mean tAcc-X 10 Mean tAccJerk-Y 20 Mean fAcc-X
1 Mean tAcc-Y 11 Mean tAccJerk-Z 21 Mean fAcc-Y
2 Mean tAcc-Z 12 Mean tGyroJerk-X 22 Mean fAcc-Z
3 Mean tGyro-X 13 Mean tGyroJerk-Y 23 Mean fGyro-X
4 Mean tGyro-Y 14 Mean tGyroJerk-Z 24 Mean fGyro-Y
5 Mean tGyro-Z 15 Mean tAccMag 25 Mean fGyro-Z
6 Mean tGravityAcc-X 16 Mean tGyroMag 26 Mean fAccJerk-X
7 Mean tGravityAcc-Y 17 Mean tGravityAccMag 27 Mean fAccJerk-Y
8 Mean tGravityAcc-Z 18 Mean tAccAng 28 Mean fAccJerk-Z
9 Mean tAccJerk-X 19 Mean tGyroAng

Table 4. Features derived from raw sensor data.

Feature Name

0–28
Arithmetic-mean (tAcc-X,Y,Z, tGyro-X,Y,Z, tGravityAcc-X,Y,Z, tAccJerk-X,Y,Z, tGyroJerk-X,Y,Z,
tAccMag, tGyroMag, tGravityAccMag, tAccAng, tGyroAng, fAcc-X,Y,Z, fGyro-X,Y,Z,
fAccJerk-X,Y,Z)

29–57 Median (tAcc-X,Y,Z, tGyro-X,Y,Z, tGravityAcc-X,Y,Z, tAccJerk-X,Y,Z, tGyroJerk-X,Y,Z, tAccMag,
tGyroMag, tGravityAccMag, tAccAng, tGyroAng, fAcc-X,Y,Z, fGyro-X,Y,Z, fAccJerk-X,Y,Z)

58–86
Largest-values (tAcc-X,Y,Z, tGyro-X,Y,Z, tGravityAcc-X,Y,Z, tAccJerk-X,Y,Z, tGyroJerk-X,Y,Z,
tAccMag, tGyroMag, tGravityAccMag, tAccAng, tGyroAng, fAcc-X,Y,Z, fGyro-X,Y,Z,
fAccJerk-X,Y,Z)

87–115
Smallest-value (tAcc-X,Y,Z, tGyro-X,Y,Z, tGravityAcc-X,Y,Z, tAccJerk-X,Y,Z, tGyroJerk-X,Y,Z,
tAccMag, tGyroMag, tGravityAccMag, tAccAng, tGyroAng, fAcc-X,Y,Z, fGyro-X,Y,Z,
fAccJerk-X,Y,Z)

116–144
Sample-Variance (tAcc-X,Y,Z, tGyro-X,Y,Z, tGravityAcc-X,Y,Z, tAccJerk-X,Y,Z, tGyroJerk-X,Y,Z,
tAccMag, tGyroMag, tGravityAccMag, tAccAng, tGyroAng, fAcc-X,Y,Z, fGyro-X,Y,Z,
fAccJerk-X,Y,Z)

145–173
Skewness (tAcc-X,Y,Z, tGyro-X,Y,Z, tGravityAcc-X,Y,Z, tAccJerk-X,Y,Z, tGyroJerk-X,Y,Z,
tAccMag, tGyroMag, tGravityAccMag, tAccAng, tGyroAng, fAcc-X,Y,Z, fGyro-X,Y,Z,
fAccJerk-X,Y,Z)

174–202 Kurtosis (tAcc-X,Y,Z, tGyro-X,Y,Z, tGravityAcc-X,Y,Z, tAccJerk-X,Y,Z, tGyroJerk-X,Y,Z, tAccMag,
tGyroMag, tGravityAccMag, tAccAng, tGyroAng, fAcc-X,Y,Z, fGyro-X,Y,Z, fAccJerk-X,Y,Z)

203–231
Sample-Range (tAcc-X,Y,Z, tGyro-X,Y,Z, tGravityAcc-X,Y,Z, tAccJerk-X,Y,Z, tGyroJerk-X,Y,Z,
tAccMag, tGyroMag, tGravityAccMag, tAccAng, tGyroAng, fAcc-X,Y,Z, fGyro-X,Y,Z,
fAccJerk-X,Y,Z)

232–260
Inter-quartile-range (tAcc-X,Y,Z, tGyro-X,Y,Z, tGravityAcc-X,Y,Z, tAccJerk-X,Y,Z,
tGyroJerk-X,Y,Z, tAccMag, tGyroMag, tGravityAccMag, tAccAng, tGyroAng, fAcc-X,Y,Z,
fGyro-X,Y,Z, fAccJerk-X,Y,Z)

261–289
10th-percentile (tAcc-X,Y,Z, tGyro-X,Y,Z, tGravityAcc-X,Y,Z, tAccJerk-X,Y,Z, tGyroJerk-X,Y,Z,
tAccMag, tGyroMag, tGravityAccMag, tAccAng, tGyroAng, fAcc-X,Y,Z, fGyro-X,Y,Z,
fAccJerk-X,Y,Z)

290–318
25th-Percentile (tAcc-X,Y,Z, tGyro-X,Y,Z, tGravityAcc-X,Y,Z, tAccJerk-X,Y,Z, tGyroJerk-X,Y,Z,
tAccMag, tGyroMag, tGravityAccMag, tAccAng, tGyroAng, fAcc-X,Y,Z, fGyro-X,Y,Z,
fAccJerk-X,Y,Z)

319–347
50th-Percentile (tAcc-X,Y,Z, tGyro-X,Y,Z, tGravityAcc-X,Y,Z, tAccJerk-X,Y,Z, tGyroJerk-X,Y,Z,
tAccMag, tGyroMag, tGravityAccMag, tAccAng, tGyroAng, fAcc-X,Y,Z, fGyro-X,Y,Z,
fAccJerk-X,Y,Z)

348–376
75th-Percentile (tAcc-X,Y,Z, tGyro-X,Y,Z, tGravityAcc-X,Y,Z, tAccJerk-X,Y,Z, tGyroJerk-X,Y,Z,
tAccMag, tGyroMag, tGravityAccMag, tAccAng, tGyroAng, fAcc-X,Y,Z, fGyro-X,Y,Z,
fAccJerk-X,Y,Z)

377–405
90th-Percentile (tAcc-X,Y,Z, tGyro-X,Y,Z, tGravityAcc-X,Y,Z, tAccJerk-X,Y,Z, tGyroJerk-X,Y,Z,
tAccMag, tGyroMag, tGravityAccMag, tAccAng, tGyroAng, fAcc-X,Y,Z, fGyro-X,Y,Z,
fAccJerk-X,Y,Z)

406–425 Mean-crossing-rate (tAcc-X,Y,Z, tGyro-X,Y,Z, tGravityAcc-X,Y,Z, tAccJerk-X,Y,Z,
tGyroJerk-X,Y,Z, tAccMag, tGyroMag, tGravityAccMag, tAccAng, tGyroAng)
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Table 4. Cont.

Feature Name

426–445 Root-Mean-Square (tAcc-X,Y,Z, tGyro-X,Y,Z, tGravityAcc-X,Y,Z, tAccJerk-X,Y,Z, tGyroJerk-X,Y,Z,
tAccMag, tGyroMag, tGravityAccMag, tAccAng, tGyroAng)

446–465 Power (tAcc-X,Y,Z, tGyro-X,Y,Z, tGravityAcc-X,Y,Z, tAccJerk-X,Y,Z, tGyroJerk-X,Y,Z, tAccMag,
tGyroMag, tGravityAccMag, tAccAng, tGyroAng)

466–485 Slope (tAcc-X,Y,Z, tGyro-X,Y,Z, tGravityAcc-X,Y,Z, tAccJerk-X,Y,Z, tGyroJerk-X,Y,Z, tAccMag,
tGyroMag, tGravityAccMag, tAccAng, tGyroAng)

486–505 Information-entropy (tAcc-X,Y,Z, tGyro-X,Y,Z, tGravityAcc-X,Y,Z, tAccJerk-X,Y,Z,
tGyroJerk-X,Y,Z, tAccMag, tGyroMag, tGravityAccMag, tAccAng, tGyroAng)

506–525 Mean-Euclidean-distance (tAcc-X,Y,Z, tGyro-X,Y,Z, tGravityAcc-X,Y,Z, tAccJerk-X,Y,Z,
tGyroJerk-X,Y,Z, tAccMag, tGyroMag, tGravityAccMag, tAccAng, tGyroAng)

526–545 Median-Absolute-deviation (tAcc-X,Y,Z, tGyro-X,Y,Z, tGravityAcc-X,Y,Z, tAccJerk-X,Y,Z,
tGyroJerk-X,Y,Z, tAccMag, tGyroMag, tGravityAccMag, tAccAng, tGyroAng)

546–551 Covariance (tAcc-XY,YZ,XZ, tGyro-XY,YZ,XZ)

552–557 Correlation coefficient (tAcc-XY,YZ,XZ, tGyro-XY,YZ,XZ)

558–566 f_maxInds (fAcc-X,Y,Z, fGyro-X,Y,Z, fAccJerk-X,Y,Z)

567–575 f_meanFreq (fAcc-X,Y,Z, fGyro-X,Y,Z, fAccJerk-X,Y,Z)

576–584 f_bandsEnergy (fAcc-X,Y,Z, fGyro-X,Y,Z, fAccJerk-X,Y,Z)

The signal amplitude region is helpful for identifying the active period of the tri-axial signals in
the time domain. It is defined as the sum of dividing the absolute values of all axes by the number of
samples in the signal window [29].

Information entropy is used to measure the uncertainty in information theory, so as to estimate
the information provided by signals. The normalized information entropy of the signal size is used to
estimate. The quartile range indicator is used to calculate the difference between the upper (Q3) and
lower quartile (Q1) of a set of sorted elements. These quartiles are the points that divide the data into
25% and 75% [30].

The autoregressive coefficient is the coefficient found by the Burg method, which conforms to
the autoregressive model of inputs. This operation is applied to the signals in the time domain, and
produces outputs corresponding to the four features of the algorithm sequence [31]. Considering that
each point is proportional to its amplitude, the weighted average of the signals gives the average
frequency of the signals. The spectral energy of the frequency band returns energy measurements in
a manner similar to the energy function, but only within the interval between the frequency signals.
Starting from scratch, we selected continuous intervals with three different bandwidths (8, 16, and
24 points) [32].

3.2. Feature Selection

This study focuses on three feature selection algorithms (Fisher_score, ReliefF, and Chi_square),
and filtering methods of feature selection, because these methods are independent of the selected
classifier. In order to reduce the computational complexity and improve the classification accuracy, this
study synthesized three feature selection methods (Fisher_score, ReliefF, and Chi_square) to perform
feature selection.

3.2.1. Fisher_score

The Fisher score algorithm is defined as the gradient of the logarithmic likelihood relative to the
model parameter, and describes how the parameter helps to generate a specific example [33]. If a
feature is discriminative, the variance between the feature and the same class of samples should be
as small as possible, and the variance between the samples should be as large as possible. This is
conducive to the subsequent operations of classification, prediction, etc. µ fi denotes the average of the
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i-th feature fi in the sample, and µk
fi

denotes the average of the i-th feature fi in the sample in the k-th
class. We can then give each feature a score. The Fisher score is defined as follows:

F( fi) =

c∑
i=1

nk(µ
k
fi
− µ fi)

2

c∑
k=1

∑
yi=k

( fµ − µk
fi
)

2
(1)

where nk represents the number of samples of the k-th class and fµ represents the value of the i-th
feature in the j-th sample.

3.2.2. ReliefF

A series of Relief algorithms (including the first proposed and later expanded ones, Relief and
ReliefF) are considered the best evaluation algorithms for filter types [34]. The ReliefF algorithm
randomly takes a sample R from the training sample set each time; finds k neighbor samples from the
same sample set of the sample point R each time, finds k neighbor samples from different sample sets;
and then randomly selects multiple sample points to update the feature weights, obtain the feature
weight ranking, and set the threshold to select the effective features.

3.2.3. Chi_square

Chi_square has been successfully used in facial image analysis applications [35]. The chi-square
test is a hypothesis test method for counting data. It is used for the correlation analysis of two categorical
variables or for comparing the ratio of two or more sample rates, that is, testing the theoretical frequency
and the actual frequency (the degree of fit between the actual frequency). The basic formula of the
chi-square test is as follows:

χ2 =
∑ (A− T)2

T
(2)

where A is the actual frequency, T is the theoretical frequency, and χ is the chi-square value.
Fisher_score and ReliefF are based on the correlation between the feature and category, and

each feature is weighted to obtain features with a high accuracy for different attitude classification.
Chi_square determines the influence of features on classification based on the degree of deviation
between observed values and theoretical inferred values.

Firstly, the six basic activities and six postural transitions (six postural transitions as one class)
were divided into six levels for feature selection, as shown in Table 5. Corresponding features were
then selected for each level.

Table 5. Six levels of classification.

Levels Category 1 Category 2

Level 1 ST, SD, LY, WK, GU, and GD SD-to-ST, ST-to-SD, SD-to-LY,
LY-to-SD, ST-to-LY, and LY-to-ST

Level 2 Immobile: ST, SD, and LY Mobile: WK, GU, and GD
Level 3 WK GU and GD
Level 4 GU GD
Level 5 SD ST and LY
Level 6 ST LY

3.3. Classification Methods

3.3.1. Support Vector Machine

The selection of classifiers for activity recognition is determined by many factors. In addition to
accuracy, factors such as the ease of development, computational complexity, and execution speed also
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affect the selection of classifiers [36]. The support vector machine classifier (SVM) is a popular machine
learning method, which is based on finding the optimal separation decision hyperplane between the
classes with the maximum margin in the pattern of each class [37]. The SVM actually constructs two
parallel hyperplanes as a separation boundary to discriminate the classification of the sample:

ωTXi + b− 1 ≥ +1, i f yi = +1 (3)

ωTXi + b + 1 ≤ −1, i f yi = −1 (4)

Each sample of the input data contains a plurality of features and thus constitutes a feature
space Xi = {x1, . . . . . . , xn} ∈ χ. Learning objectives are binary variables, and y ∈ {−1, 1} represents a
negative class and a positive class. The parameters ω, b are the normal vectors and the intercept of the
hyperplane, respectively. SVM can avoid the complexity of high-dimensional space and has a better
generalization and promotion ability. Finally, we chose SVM for predictive classification.

3.3.2. Threshold Classification

The threshold-based classification method divides human body posture by defining the threshold.
If the characteristic value in the current window is higher than the threshold value, it is determined
to be one kind of action, and another kind of action is determined when the value is lower than the
threshold value [38]. An appropriate threshold can reduce the classification error. This paper uses
the threshold selection method based on Bayesian decision theory [39], which selects the probability
distribution of features to minimize the total segmentation error and obtains the best tradeoff between
false positives and false negatives. For a simple activity set, which only includes the activities of
moving and not moving, thresholding the standard deviation (STDV) of the 3D acceleration magnitude
can result in an accuracy of 99.4% [40].

SD reflects the extent to which the signal fluctuates around its mean. The SD expression is as follows:

SD =
∑
k=1

3

√√
1

n− 1

n∑
i=1

(ski − sk)
2 (5)

where n is the length of the window (the number of samples in the current window), ski is the
acceleration of the i-th sample point on the k-th axis, and sk is the average of the sample points of
the k-th-axis.

The threshold can be computed by (4) and (5):

Th =
(µ1 + µ2)

2
, i f σ1 = σ2 (6)

Th = max


(
µ2σ2

1 − µ1σ2
2

)
±
√

∆(
σ2

1 − σ
2
2

)  else (7)

∆ = 4σ2
1σ

2
2

[
(µ1 − µ2)

2 + 2
(
σ2

1 − σ
2
2

)
ln
σ1

σ2

]
(8)

where µ1 and µ2 denote the average of SD, and σ1
2 and σ2

2 denote the variance of SD.

3.3.3. Other Classification Methods

The basic idea of linear regression classification (LRC) is to find the best class reconstruction
for test samples; that is, the class with the best class reconstruction is regarded as the class of test
samples [41]. The Gaussian process model is a new kernel method that has been developed in research
on the Bayesian artificial neural network in recent years. In addition to the advantages of the traditional
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kernel method, it has the advantages of complete Bayesian formulation, easy implementation, and
the adaptive acquisition of parameters [42]. A decision tree algorithm has the advantages of a low
complexity, a good stability, and being easy to understand. It is easy to evaluate the model by a static
test, and the model reliability can be measured; for a given observation model, it is easy to derive a
logical expression based on the resulting decision tree [43].

4. Experimental Results and Analysis

4.1. Selection of Data Sets

In many of these studies, the data set is small and homogeneous (e.g., consisting of subjects of the
same age group, such as college students) [44]. This study selected the public domain UCI HAR data
set (Smartphone-Based Recognition of Human Activities and Postural Transitions Data Set), which
includes 12 types of actions (it includes six actions: standing, sitting, lying down, walking, going
upstairs, and downstairs) for 30 different collectors (everyone, aged between 19 and 48, was instructed
to follow the activity protocol when wearing an SGSII Smartphone at the waist). The frequency of the
sensor was 100 Hz.

In order to ensure the accuracy of the calculated classification precision, the data of 30 experimenters
in the original data set were divided: the data of the first 15 people were used as the feature selection
set, the data from the 16th to the 26th person were used as the training set of the classifier, and the data
from the 27th to the 29th person were used as the test set of the classifier. Class distributions at each
level are shown in Table 6.

Table 6. Class distributions at each level.

Level Activities Number of Windows

1

BAs: ST, SD, LY, WK, GU and GD 345,441

PTs: SD-to-ST, ST-to-SD, SD-to-LY,
LY-to-SD, ST-to-LY and LY-to-ST 72,518

2
Immobile: ST, SD and LY 173,473

Mobile: WK, GU and GD 171,968

3
WK 62,017

GU and GD 109,951

4
GU 57,731

GD 52,220

5
SD 54,701

ST and LY 118,772

6
ST 59,438

LY 59,334

4.2. Experimental Results

4.2.1. Results of Feature Selection

In this experiment, the previously calculated complete feature set was classified into six levels by
three feature selection algorithms to obtain feature scores. The features were arranged in descending
order. Figure 4 shows the comparison of the classification accuracy and the number of selected features.
In Figure 4, the number X on the x-axis refers to the first X features with the selected descending order
using different feature selection algorithms, and the performance of the corresponding classifier is
represented on the y-axis. With the increase in the number of features, the classification accuracy
increases to a level close to 1 and then becomes stable.
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Figure 4. The comparison of the classification accuracy and the number of selected features in the six
layers. The first layer: basic activities and postural transitions (a); the second layer: static state and
dynamic state (b); the third layer: walking, going upstairs, and downstairs (c); the fourth layer: going
upstairs and downstairs (d); the fifth layer: standing, sitting, and lying (e); and the sixth layer: sitting
and lying (f).

We selected the top 40 features with the highest score in each level, as shown in Figure 4. The initial
selection of features in the five levels is shown in Table 7.
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Table 7. The feature numbers of classification for the five layers using three feature selection algorithms.

Level Fisher_score ReliefF Chi_square

1

402, 256, 286, 255, 257, 451, 242,
223, 78, 417, 281, 239, 397, 245,
372, 431, 238, 117, 313, 406, 128,
398, 457, 449, 233, 418, 271, 244,
422, 420, 408, 407, 129, 123, 421,

314, 424, 425, 473, 423

197, 199, 196, 136, 198, 194, 223,
78, 201, 195, 200, 224, 139, 137,
140, 108, 79, 225, 226, 80, 202,

138, 81, 227, 110, 141, 109, 168,
82, 107, 111, 228, 170, 166, 167,

112, 83, 171, 169, 192

499, 491, 498, 486, 487, 488, 490,
489, 492, 493, 494, 495, 496, 497,
199, 197, 196, 198, 136, 194, 202,
195, 223, 78, 201, 139, 137, 224,
140, 108, 225, 226, 138, 79, 80,

200, 141, 81, 227, 110

2

235, 363, 276, 301, 247, 86, 392,
362, 365, 249, 305, 272, 40, 330,
275, 307, 394, 231, 11, 246, 359,
278, 391, 241, 266, 237, 388, 364,
280, 309, 251, 248, 304, 396, 382,

367, 441, 507, 527, 353

199, 197, 196, 198, 194, 195, 139,
223, 78, 201, 200, 140, 137, 79,

224, 564, 136, 226, 80, 565, 566,
108, 225, 110, 227, 202, 141, 81,
109, 138, 168, 559, 82, 111, 228,

107, 563, 192, 167, 170

584, 491, 501, 486, 487, 488, 489,
490, 492, 500, 493, 494, 495, 496,
497, 498, 502, 503, 499, 578, 582,
583, 581, 504, 580, 579, 505, 576,
577, 199, 200, 202, 196, 201, 139,

140, 194, 136, 79, 137

3

114, 85, 160, 161, 230, 45, 335,
44, 334, 415, 125, 86, 429, 449,
406, 78, 116, 212, 223, 261, 239,
96, 226, 270, 81, 170, 182, 193,

190, 295, 451, 203, 278, 245, 231,
382, 324, 34, 149, 119

197, 196, 198, 195, 199, 201, 78,
223, 226, 194, 200, 140, 139, 110,
224, 108, 81, 227, 202, 111, 82,

141, 225, 109, 168, 107, 137, 228,
80, 112, 83, 167, 169, 138, 79,

170, 184, 172, 229, 230

499, 491, 498, 487, 488, 489, 490,
486, 492, 497, 494, 495, 496, 493,
197, 201, 198, 199, 168, 136, 140,
78, 194, 223, 226, 81, 196, 202,

109, 138, 110, 169, 195, 200, 111,
79, 80, 82, 230, 227

4

114, 275, 276, 392, 235, 391, 264,
441, 363, 278, 247, 40, 330, 11,

394, 246, 305, 365, 388, 249, 301,
293, 359, 304, 266, 295, 396, 307,
463, 237, 362, 443, 280, 130, 212,

241, 231, 382, 440, 467

199, 196, 197, 139, 195, 198, 200,
226, 136, 140, 110, 201, 194, 78,
223, 141, 80, 224, 81, 227, 108,

225, 192, 107, 109, 202, 170, 167,
82, 191, 228, 137, 111, 188, 142,

112, 193, 183, 229, 138

499, 498, 497, 496, 495, 494, 493,
492, 491, 490, 489, 488, 487, 486,
199, 198, 196, 139, 197, 200, 140,
226, 110, 170, 141, 202, 201, 192,

191, 107, 227, 81, 80, 82, 109,
142, 190, 188, 183, 229

5

166, 65, 384, 378, 349, 355, 59,
114, 7, 1, 320, 30, 326, 36, 83, 84,
108, 480, 78, 291, 297, 470, 484,

79, 85, 223, 466, 477, 483, 93,
230, 475, 113, 460, 444, 228, 440,

66, 267, 482

197, 199, 198, 194, 196, 201, 195,
137, 79, 78, 224, 223, 136, 225,
200, 80, 108, 170, 138, 202, 107,
191, 169, 192, 226, 228, 166, 139,
189, 112, 168, 109, 81, 110, 141,

188, 190, 83, 193, 165

499, 491, 498, 486, 487, 488, 489,
490, 492, 493, 494, 495, 496, 497,
197, 196, 201, 198, 199, 200, 136,
194, 137, 79, 78, 223, 202, 138,
224, 225, 80, 108, 192, 107, 191,

170, 169, 189, 171, 168

6

432, 426, 452, 446, 29, 319, 325,
35, 0, 6, 296, 290, 458, 459, 261,
354, 267, 348, 78, 223, 447, 453,

427, 433, 36, 326, 30, 320, 42,
332, 41, 331, 438, 439, 12, 13,

303, 7, 1, 302

199, 197, 198, 201, 194, 196, 136,
195, 223, 78, 137, 224, 200, 79,
225, 80, 202, 138, 108, 170, 169,
107, 228, 109, 168, 226, 189, 139,
188, 112, 83, 165, 81, 110, 141,

227, 172, 167, 140, 166

499, 491, 498, 486, 487, 488, 490,
489, 492, 493, 494, 495, 496, 497,
199, 197, 201, 200, 198, 194, 136,
137, 78, 223, 79, 224, 138, 196,
225, 80, 169, 172, 139, 170, 171,

202, 226, 165, 110, 109

In the process of the experiment, the operation time of the classification process and the operation
complexity of features should be taken into account. Since a large value of the input feature will
increase the classification operation time, the features with a value greater than 10 and the features
with a high operation time complexity were removed. Different feature calculations have different
time complexities [45].

Due to the high computational complexity of the information-entropy and frequency domain
feature, we did not use the features selected by Chi_square. In the first layer, we took the first five
selected features of Fisher_score and ReliefF as the subset of the selected features, and the feature
numbers selected were 78, 201, 286, 255, 257, 197, 199, 196, 223, and 198. We classified the selected feature
subsets into basic activity (BA) and postural transition (PT) input SVMs to achieve a cross-validation
accuracy of 0.99. For the selected features of the layer, pairwise combination was used to train the
SVM and obtain the classification accuracy, as shown in Table 8.

Among them, the feature combination (223, 78) had the maximum classification accuracy, as shown
in Table 8; that is, the optimal feature combination of the first layer is fAcc-X Sample Range and fAcc-X
Largest values.
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Similarly, in the classification of the other five layers, we took the first five of the selected features
of Fisher_score and ReliefF as the subset of selection features. In the second layer, the classification
accuracy of the feature subset (235, 363, 276, 301, 247, 199, 197, 196, 198, and 194) was 0.90, and
the feature combination (276, 247) had the maximum classification accuracy, as shown in Table 9.
The best combination of features for the second layer was the tAccMag 10th percentile and tAccMag
inter-quartile range. In the fourth layer, the feature subset (114, 275, 276, 392, 235, 199, 196, 278, 139, 195)
we selected had a cross-validation classification accuracy of 0.99. The feature combination (276, 278)
had the maximum classification accuracy, as shown in Table 10. The best combination of features for
the third layer was the tAccMag 10th percentile and tGravityAccMag 10th percentile. In the sixth layer,
the feature subset (432, 426, 452, 446, 319, 199, 197, 296, 201, 194) had a cross-validation classification
accuracy that achieved 0.90. The feature combination (319, 296) had the maximum classification
accuracy, as shown in Table 11. The best combination of features for the fourth layer was the tAcc-X
50th percentile and tGravityAcc-X 25th percentile. Since classification of the third layer and fifth layer
was difficult using only two features, we selected the first 18 features in Fisher_score and ReliefF
(130, 334, 322, 4, 293, 3, 32, 351, 264, 81, 380, 160, 33, 323, 114, 161, 125, 43, 333, 44, 116, 159, 148, 110, 460,
45, 335, 230, 85, 485, 193, 440, 212, 74, 462, and 465) for the third layer (these features were used to train
the SVM and obtain the classification accuracy of 0.99). For the fifth layer, we took the first five of the
selected features of Fisher_score and ReliefF (166, 65, 326, 78, 84, 108, 199, 83, 36, and 196). Finally, we
chose the feature subset (326, 36, 108, 78, 83, 84) for the fifth layer (the SVM classification accuracy
was 0.97). In the experiment, these feature sets obtained a higher classification accuracy than other
feature sets.

Table 8. Effect of selected features for level 1.

Feature 201 78 286 255 257 197 199 223 196 198

201 0.76
78 0.95 0.98
286 0.98 0.98 0.98
255 0.98 0.98 0.97 0.98
257 0.89 0.87 0.87 0.87 0.87
197 0.98 0.98 0.98 0.98 0.98 0.98
199 0.94 0.96 0.96 0.98 0.98 0.98 0.98
223 0.91 0.99 0.98 0.95 0.97 0.97 0.97 0.97
196 0.97 0.97 0.97 0.97 0.98 0.90 0.90 0.84 0.85
198 0.94 0.94 0.94 0.92 0.94 0.89 0.91 0.91 0.88 0.84

Table 9. Effect of selected features for level 2.

Feature 235 276 363 301 199 197 196 198 247 194

235 0.62
276 0.84 0.84
363 0.71 0.74 0.59
301 0.59 0.86 0.65 0.65
199 0.76 0.76 0.79 0.80 0.76
197 0.78 0.86 0.78 0.78 0.78 0.78
196 0.59 0.87 0.59 0.59 0.59 0.78 0.59
198 0.75 0.89 0.75 0.75 0.75 0.85 0.74 0.74
247 0.81 0.97 0.81 0.81 0.81 0.91 0.81 0.84 0.82
194 0.79 0.79 0.75 0.75 0.67 0.60 0.80 0.80 0.80 0.80
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Table 10. Effect of selected features for level 4.

Feature 114 275 392 235 199 196 276 278 139 195

114 0.69
275 0.56 0.78
392 0.67 0.35 0.67
235 0.94 0.89 0.94 0.93
199 0.95 0.97 0.97 0.98 0.97
196 0.69 0.68 0.78 0.93 0.98 0.78
276 0.96 0.97 0.97 0.99 0.97 0.96 0.97
278 0.88 0.90 0.89 0.96 0.97 0.89 0.98 0.89
139 0.83 0.85 0.76 0.94 0.98 0.49 0.89 0.89 0.62
195 0.56 0.56 0.56 0.61 0.69 0.60 0.60 0.65 0.59 0.60

Table 11. Effect of selected features for level 6.

Feature 432 319 452 426 446 199 197 296 201 194

432 0.86
319 0.80 0.87
452 0.86 0.79 0.70
426 0.59 0.87 0.79 0.62
446 0.89 0.89 0.79 0.80 0.84
199 0.89 0.89 0.83 0.83 0.85 0.86
197 0.89 0.89 0.83 0.83 0.85 0.86 0.85
296 0.89 0.90 0.78 0.79 0.86 0.87 0.85 0.76
201 0.82 0.82 0.68 0.68 0.77 0.83 0.84 0.74 0.68
194 0.80 0.80 0.79 0.75 0.81 0.81 0.85 0.75 0.70 0.78

4.2.2. Threshold Selection of Classification Results

Using the feature set selected in the previous step as the feature used in threshold classification,
the classification accuracy of the six levels was calculated, and the features with a better classification
effect were selected for classification. In this study, 50% of the database data was used for threshold
selection, and the rest of the data was used for precision verification. Firstly, the threshold value of
BAs and PTs was selected, and the feature with the best classification effect was fAcc-X Sample Range.
The probability distribution of static and dynamic actions is shown in Figure 5, where the calculated
threshold is 0.045 and the classification accuracy is 0.91. The threshold value of static and dynamic
actions was selected, and the feature with the best classification effect was the tAccMag 75th percentile.
The probability distribution of static and dynamic actions is shown in Figure 6, where the calculated
threshold is 0.024 and the classification accuracy is 0.99. Furthermore, the threshold value was selected
for walking, going upstairs, and going downstairs, and the corresponding probability distribution was
obtained by using the characteristic tAccJerk-X Mean crossing rate, as shown in Figure 7. The threshold
value was determined to be 0.604, and the corresponding classification accuracy was 0.77. Therefore,
it can be seen that the threshold classification is not ideal for walking, going upstairs, and going
downstairs. In terms of using the feature tGyro-X 10th percentile to carry out threshold selection for
going upstairs and going downstairs, the corresponding probability distribution diagram is shown in
Figure 8. The calculated threshold was −0.699, and the classification accuracy was 0.97, thus it can
be seen that the classification effect was relatively ideal. Using the tGravityAcc-Y 90th percentile to
carry out threshold selection for standing, sitting, and lying, the corresponding probability distribution
diagram was developed, as shown in Figure 9. The calculated threshold was 0.255 and the classification
accuracy was 0.97, so the classification effect was relatively ideal. In the last step, using the tAcc-X
50th percentile to carry out threshold selection for sitting and lying, the corresponding probability
distribution diagram was produced, as shown in Figure 10. The calculated threshold was 0.511 and the
classification accuracy was 0.99, so the classification effect was relatively ideal.
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5. Discussions

Multiple classification models (decision tree, linear regression, Gaussian process, and SVM) were
used to further evaluate the accuracy of the classification at six levels, as shown in Table 12. The selected
optimal feature set was input into the SVM classifier to train the classification model, and the 27th–29th
people in the database were used for cross-validation to calculate the average precision value. It can be
observed that the five classification levels can achieve a satisfactory classification effect. According to the
experiments presented in the literature [44], when the proportion of the training data set is 70%~90%, the
accuracy of the decision tree algorithm is relatively high, and the proportion of the training set selected in
this paper was 70%. This method verifies the proportion of the best training set and test set corresponding
to the SVM, linear regression, and the Gaussian process, and verifies that its classification accuracy can
reach a high level through cross-validation. Figure 11 shows the total accuracy of classification for six BAs
and PTs using SVM, a decision tree (DT), linear regression (LR), the Gaussian process (GP), and threshold
classification (TH) in six levels. In general analysis, the method of threshold classification has a better
effect. As shown in Figure 11, the classification accuracy of the five classifiers is higher in the fifth layer
(that is, to distinguish between sitting and lying).

Table 12. Accuracy of different levels of three classification models.

Level SVM DT LR GP TH

One 0.98 0.96 0.97 0.89 0.91
Two 0.97 0.98 0.97 0.85 0.99

Three 0.97 0.94 0.96 0.74 0.77
Four 0.94 0.99 0.94 0.61 0.97
Five 0.94 0.99 0.93 0.68 0.97
Six 0.98 0.94 0.94 0.99 0.99
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It can be seen from Table 12 that the feature selection method proposed in this paper, which uses
different feature sets for classification at different levels based on SVM, can achieve better classification
results when applied to the decision tree and linear regression classification model, but it is not applicable
to the Gaussian process. It uses all selected feature sets in six levels of classification to classify six BAs and
PTs. It can be seen from Table 13 that trained classifiers can obtain better classification results.

Table 13. Confusion matrix for the simultaneous classification of six actions.

Class WK GU GD ST SD LY PTs

WK 181 0 0 0 1 0 4
GU 5 174 7 0 0 0 1
GD 5 2 153 0 0 0 1
ST 5 0 0 186 3 0 5
SD 5 0 0 9 192 0 1
LY 6 0 0 0 0 207 1
PTs 6 1 5 4 1 0 38

Finally, the data of the 22nd person in the database were used to simulate online prediction
human activity recognition. According to Table 11 we decided to use SVM in the first level, TH in the
second level, SVM in the third level, DT in the fourth level and fifth level, and TH in the sixth level.
The experimental results are shown in Figure 12. The classification accuracy was 0.94. Nicole et al. [45]
also used a similar feature selection algorithm, but only considered 76 features and verified them
using different classification methods. In this work, 48 features were selected from 585 features, and
the frequency domain characteristics were taken into account. The results show that the frequency
domain characteristics apply to the first layer, the third layer, and the fifth layer classification. Since the
orientation angle of the portable sensor is prone to error, it is finally found that Mag (

√
x2 + y2 + z2) is

more suitable for activity classification.Information 2019, 10, x FOR PEER REVIEW 19 of 22 
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Figure 12. The actual label of the 22nd person (a), and the simulated online prediction of the 22nd
person (b). The label of walking (WK) is “1”, the label of walking upstairs (WU) is “2”, the label of
walking downstairs (WD) is “3”, the label of standing (SD) is “4”, the label of sitting (ST) is “5”, the label
of lying (LY) is “6”, and the label of PTs is “7”.
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6. Conclusions

This paper proposes a feature selection method that synthesizes multiple feature selection
algorithms and considers the combination effect among features. In order to verify this method, we
calculated 585 features, including time and frequency domains, and used various classifiers, such as
SVM, to evaluate the features selected by the introduced feature selection method, and the validity
of the introduced feature has been verified. This paper used the threshold classification method,
a decision tree, linear regression, and the Gaussian process to evaluate the classification accuracy of the
selected features. The results show that the human activity recognition system based on an inertial
sensor has a good classification effect on several human activities and can play a good auxiliary role
in a human activity recognition system. The feature selection method works for many classification
methods (SVM, TH, DT, LR, and GP). We finally classified the seven activities according to the method
presented in Table 14. Compared to other classification methods, the method proposed in this paper
can select a feature set with smaller dimensions and obtain higher classification accuracy. In the
future, more classification activities and methods are needed to test the algorithm proposed in this
paper. At the same time, we hope that IMU can better and more effectively assist the human activities
recognition system.

Table 14. Features selected and classifiers employed for each layer.

Level The Features Selected Classifier

1 fAcc-X-Sample Range, fAcc Largest Values SVM

2 tAccMag-75th-Percentile TH

3

tGyroJerk-Z-Sample-Variance, tAccMag-50th-Percentile, tGyro-X-50th-Percentile,
tGyro-Y-Mean, tGyro-X-25th-Percentile, tGyro-X-Mean, tGyro-X-Median,
tGyro-X-75th-Percentile, tGyro-X-10th-percentile, fGyro-X-Largest-values,
tGyro-X-90th-Percentile, tAccMag-Skewness, tGyro-Y-Median, tGyro-X-
50th-Percentile, fAccJerk-Y-Smallest-value, tGyroMag-Skewness,
tAccJerk-X-Samlpe-Variance, tGyroJerk-Z-Median, tGyroJerk-Z-50th-Percentile,
tAccMag-Median, tAcc-X-Samlpe-Variance, tGyroJerk-Z-Skewness,
tGyro-X-Skewness, fGyro-X-Smallest-value, tGyroJerk-Z-Power,
Median-tGyroMag, tGyroMag-50th-percentile, fAccJerk-Y-Sample-Range,
fAccJerk-Y-Largest-value, tGyroAng-Slope, tGyroAng-Kurtosis,
tGyroJerk-Z-Root-Mean-Square, tAccJerk-X-Sample-Range,
tGyroMag-Largest-values, tGyroMag-Power, tGyroAng-Power

SVM

4 tAccMag-10th-percentile, tGravityAccMag-10th-percentile DT

5 tGravityAccMag-50th-Percentile, tGravityAcc-Y-Median, fAcc-Y-Smallest-value,
fAcc-XLargest-values, fGyro-Z-Largest-values, fAccJerk-X-Largest-values DT

6 tAcc-50th-Percentile TH
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