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Abstract

:

Diagnosability of a multiprocessor system is an important topic of study. A measure for fault diagnosis of the system restrains that every fault-free node has at least g fault-free neighbor vertices, which is called the g-good-neighbor diagnosability of the system. As a famous topology structure of interconnection networks, the n-dimensional bubble-sort graph Bn has many good properties. In this paper, we prove that (1) the 1-good-neighbor diagnosability of Bn is 2n−3 under Preparata, Metze, and Chien’s (PMC) model for n≥4 and Maeng and Malek’s (MM)∗ model for n≥5; (2) the 2-good-neighbor diagnosability of Bn is 4n−9 under the PMC model and the MM∗ model for n≥4; (3) the 3-good-neighbor diagnosability of Bn is 8n−25 under the PMC model and the MM∗ model for n≥7.
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1. Introduction


A multiprocessor system and interconnection network (networks for short) have an underlying topology, which is usually presented by a graph, where nodes represent processors and links represent communication links between processors. We use graphs and networks interchangeably. For the system, some processors may fail in the system, so processor fault identification plays an important role in reliable computing. The first step to deal with faults is to identify the faulty processors from the fault-free ones. The identification process is called the diagnosis of the system. A system is said to be t-diagnosable if all faulty processors can be identified without replacement, provided that the number of faulty processors presented does not exceed t. The diagnosability t(G) of a system G is the maximum value of t such that G is t-diagnosable. Several diagnosis models (e.g., Preparata, Metze, and Chien’s (PMC) model [1], Barsi, Grandoni, and Maestrini’s (BGM) model [2], and Maeng and Malek’s (MM) model [3]) have been proposed to investigate the diagnosability of multiprocessor systems. In particular, two of the proposed models, the PMC model and MM model, are well known and widely used. In the PMC model, the diagnosis of the system is achieved through two linked processors testing each other. In the MM model, to diagnose a system, a node sends the same task to two of its neighbor vertices, and then compares their responses. Sengupta and Dahbura [4] proposed a special case of the MM model, called the MM* model, in which each node must test all the pairs of its adjacent nodes. In 2012, Peng et al. [5] proposed a measure for fault diagnosis of the system, namely, the g-good-neighbor diagnosability of the system (which is also called g-good-neighbor conditional diagnosability), which requires that every fault-free node contains at least g fault-free neighbors. In [5], they studied the g-good-neighbor diagnosability of the n-dimensional hypercube under the PMC model. Numerous studies have been investigated under the PMC model and MM model or MM* model, see [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21].



In this paper, we prove that (1) the diagnosability of n-dimensional bubble-sort graph Bn is n−1 under the PMC model for n≥4; (2) the 1-good-neighbor diagnosability of Bn is 2n−3 under the PMC model for n≥4 and the MM∗ model for n≥5; (3) the 2-good-neighbor diagnosability of Bn is 4n−9 under the PMC model and the MM∗ model for n≥4; (4) the 3-good-neighbor diagnosability of Bn is 8n−25 under the PMC model and the MM∗ model for n≥7.




2. Preliminaries


In this section, some definitions and notations needed are introduced for our discussion, then bubble-sort graphs will be introduced.



2.1. Definitions and Notations


A multiprocessor system is modeled as an undirected simple graph G=(V,E), whose vertices (nodes) represent processors and edges (links) represent communication links. Given a nonempty vertex subset V′ of V, the induced subgraph by V′ in G, denoted by G[V′], is a graph, whose vertex set is V′ and the edge set is the set of all the edges of G with both endpoints in V′. The degree dG(v) of a vertex v is the number of edges incident with v. We denote by δ(G) the minimum degrees of vertices of G. For any vertex v, we define the neighborhood NG(v) of v in G to be the set of vertices adjacent to v. u is called a neighbor vertex or a neighbor of v for u∈NG(v). Let S⊆V. We use NG(S) to denote the set ∪v∈SNG(v)\S. For neighborhoods and degrees, we will usually omit the subscript for the graph when no confusion arises. A graph G is said to be k-regular if for any vertex v, dG(v)=k. A graph is bipartite if its vertex set can be partitioned into two subsets X and Y so that every edge has one end in X and one end in Y; such a partition (X,Y) is called a bipartition of the graph, and X and Y its parts. We denote a bipartite graph G with bipartition (X,Y) by G=(X,Y;E). If G=(X,Y;E) is simple and every vertex in X is joined to every vertex in Y, then G=(X,Y;E) is called a complete bipartite graph, denoted by Kn,m, where |X|=n and |Y|=m. Let G=(V,E) be a connected graph. The connectivity κ(G) of a graph G is the minimum number of vertices whose removal results in a disconnected graph or only one vertex left. A fault set F⊆V is called a g-good-neighbor faulty set if |N(v)∩(V\F)|≥g for every vertex v in V\F. A g-good-neighbor cut of a graph G is a g-good-neighbor faulty set F such that G−F is disconnected. The minimum cardinality of g-good-neighbor cuts is said to be the g-good-neighbor connectivity of G, denoted by κ(g)(G). For graph-theoretical terminology and notation not defined here we follow [22].




2.2. The Bubble-Sort Graph


The bubble-sort graph has been known as a famous topology structure of interconnection networks. In this section, its definition and some useful properties are introduced.



In the permutation 12…np1p2…pn, i⟶pi. For the convenience, we denote the permutation 12…np1p2…pn by p1p2…pn. Every permutation can be denoted by a product of cycles [23]. For example, 123312=(132). Specially, 12…n12…n=(1). The product στ of two permutations is the composition function τ followed by σ, for example, (12)(13)=(132). For terminology and notation not defined here we follow [23].



Let [n]={1,2,⋯,n}, and let Sn be the symmetric group on [n] containing all permutations p=p1p2⋯pn of [n]. It is well known that {(i,i+1):i=1,2,…,n−1} is a generating set for Sn. The n-dimensional bubble-sort graph Bn [24] is the graph with vertex set V(Bn) = Sn in which two vertices u, v are adjacent if and only if u=v(i,i+1), 1≤i≤n−1. It is easy to see from the definition that Bn is a (n−1)-regular graph on n! vertices. The graphs B2, B3 and B4 are depicted in Figure 1.



Note that Bn is a subclass of Cayley graphs. Bn has the following useful properties.



Proposition 1.

For any integer n≥2, Bn is (n−1)-regular and vertex transitive.





Proposition 2.

For any integer n≥2, Bn is bipartite.





Proposition 3.

For any integer n≥3, the girth of Bn is 4.





Theorem 1

([23]). Every nonidentity permutation in the symmetric group is uniquely (up to the order of the factors) a product of disjoint cycles, each of which has length of at least 2.





Proposition 4

([12]). Let Bn be a bubble-sort graph. If two vertices u,v are adjacent, there is no common neighbor vertex of these two vertices, i.e., |N(u)∩N(v)|=0. If two vertices u,v are not adjacent, there is at most two common neighbor vertices of these two vertices, i.e., |N(u)∩N(v)|≤2.





Theorem 2

([7,25,26]). κ(Bn)=κ(0)(Bn)=n−1 for n≥2.





Theorem 3

([7,25,26]). κ(1)(Bn)=2n−4 for n≥3.





Theorem 4

([7,25,26]). κ(2)(Bn)=4n−12 for n≥4.





Theorem 5

([27]). κ(3)(Bn)=12 for n=5 and κ(3)(Bn)=8n−32 for n≥6.







3. The Diagnosability of the Bubble-Sort Graph under the PMC Model


In this section, we shall show the g-good-neighbor diagnosability of the bubble-sort graph under the PMC model for g=0,1,2,3.



Let F1 and F2 be two distinct subsets of V for a system G=(V,E). Define the symmetric difference F1ΔF2=(F1\F2)∪(F2\F1). Yuan et al. [20] presented a sufficient and necessary condition for a system to be g-good-neighbor t-diagnosable under the PMC model.



Lemma 1

([20]). A system G=(V,E) is g-good-neighbor t-diagnosable under the PMC model if and only if there is an edge uv∈E with u∈V\(F1∪F2) and v∈F1ΔF2 for each distinct pair of g-good-neighbor faulty subsets F1 and F2 of V with |F1|≤t and |F2|≤t (See Figure 2). The g-good-neighbor diagnosability tg(G) of G is the maximum value of t such that G is g-good-neighbor t-diagnosable under the PMC model.





Theorem 6.

The diagnosability of the bubble-sort graph Bn is n−1 under the PMC model when n≥4.





Proof. 

Let A={(1)}. Then |N(A)|=n−1. Let F1=N(A) and F2=A∪N(A). Then |F1|=n−1 and |F2|=n. Since (1)=F1ΔF2 and NBn((1))=F1⊂F2, there is no edge of Bn between V(Bn)\(F1∪F2) and F1ΔF2. By Lemma 1, we show that Bn is not n-diagnosable under the PMC model. Hence, by the definition of the diagnosability, we have that the diagnosability of Bn is less than n-diagnosable, i.e., t(Bn)=t0(Bn)≤n−1.



By the definition of the diagnosability, it is sufficient to show that Bn is (n−1)-diagnosable under the PMC model. By Lemma 1, to prove that Bn is (n−1)-diagnosable, it is equivalent to prove that there is an edge uv∈E(Bn) with u∈V(Bn)\(F1∪F2) and v∈F1ΔF2 for each distinct pair of faulty subsets F1 and F2 of V(Bn) with |F1|≤n−1 and |F2|≤n−1. We prove this statement by contradiction. Suppose that there are two distinct faulty subsets F1 and F2 of V(Bn) with |F1|≤n−1 and |F2|≤n−1, but the vertex set pair (F1,F2) is not satisfied with the condition in Theorem 1, i.e., there are no edges between V(Bn)\(F1∪F2) and F1ΔF2. Without loss of generality, assume that F2\F1≠∅. Suppose V(Bn)=F1∪F2. By the definition of Bn, |F1∪F2|=|Sn|=n!. It is obvious that n!>2n−2 for n≥4. Since n≥4, we have that n!=|V(Bn)|=|F1∪F2|=|F1|+|F2|−|F1∩F2|≤|F1|+|F2|<2n−2, a contradiction. Therefore, V(Bn)≠F1∪F2. Since there are no edges between V(Bn)\(F1∪F2) and F1ΔF2, and |V(Bn)\(F1∪F2)|≠0 and |F1ΔF2|≠0, we have that F1∩F2 is a cut set. By Theorem 2, |F1∩F2|≥n−1. Therefore, |F2|=|F2\F1|+|F1∩F2|≥1+n−1=n, which contradicts with that |F2|≤n−1. So Bn is (n−1)-diagnosable. By the definition of t(Bn), the diagnosability t(Bn)≥n−1. □





Theorem 7.

The 1-good-neighbor diagnosability of Bn is 2n−3 under the PMC model when n≥4.





Proof. 

Let A={(1),(12)}. By Proposition 2, |N(A)|=2n−4. Let F1=N(A) and F2=A∪N(A). Then |F1|=2n−4 and |F2|=2n−2. Let v∈V(Bn)\(F1∪F2). By Proposition 4, |N(v)∩N((1))|≤2 and |N(v)∩N((12))|≤2. By Proposition 2, N(v)∩N((1))≠∅ and N(v)∩N((12))=∅ or N(v)∩N((12)≠∅ and N(v)∩N((1))=∅. Therefore, d(v)≥n−1−2≥1 (n≥4) in Bn−(F1∪F2) and F1 is a 1-good-neighbor cut of Bn. Since {(1),(12)}=F1ΔF2 and F1⊂F2, there is no edge of Bn between V(Bn)\(F1∪F2) and F1ΔF2. By Lemma 1, we show that Bn is not 1-good-neighbor (2n−2)-diagnosable under the PMC model. Hence, by the definition of the 1-good-neighbor diagnosability, we have that t1(Bn)≤2n−3.



By the definition of the 1-good-neighbor diagnosability, it is sufficient to show that Bn is 1-good-neighbor (2n−3)-diagnosable. By Lemma 1, to prove that Bn is 1-good-neighbor (2n−3)-diagnosable, it is equivalent to prove that there is an edge uv∈E(Bn) with u∈V(Bn)\(F1∪F2) and v∈F1ΔF2 for each distinct pair of 1-good-neighbor faulty subsets F1 and F2 of V(Bn) with |F1|≤2n−3 and |F2|≤2n−3.



We prove this statement by contradiction. Suppose that there are two distinct 1-good-neighbor faulty subsets F1 and F2 of V(Bn) with |F1|≤2n−3 and |F2|≤2n−3, but the vertex set pair (F1,F2) is not satisfied with the condition in Lemma 1, i.e., there are no edges between V(Bn)\(F1∪F2) and F1ΔF2. Without loss of generality, assume that F2\F1≠∅. Suppose V(Bn)=F1∪F2. Since n≥4, we have that n!=|V(Bn)|=|F1∪F2|=|F1|+|F2|−|F1∩F2|≤|F1|+|F2|≤2(2n−3)=4n−6, a contradiction. Therefore, V(Bn)≠F1∪F2.



Since there are no edges between V(Bn)\(F1∪F2) and F1ΔF2, and F1 is a 1-good-neighbor faulty set, Bn−F1 has two parts Bn−F1−F2 and Bn[F2\F1] (for convenience). Thus, δ(Bn−F1−F2)≥1 and δ(Bn[F2\F1])≥1. Similarly, δ(Bn[F1\F2])≥1 when F1\F2≠∅. Therefore, F1∩F2 is also a 1-good-neighbor faulty set. When F1\F2=∅, F1∩F2=F1 is also a 1-good-neighbor faulty set. Since there are no edges between V(Bn−F1−F2) and F1ΔF2, F1∩F2 is a 1-good-neighbor cut. By Theorem 3, |F1∩F2|≥2n−4. Note that |F2\F1|≥2. Therefore, |F2|=|F2\F1|+|F1∩F2|≥2+2n−4=2n−2, which contradicts with that |F2|≤2n−3. So Bn is 1-good-neighbor (2n−3)-diagnosable. By the definition of t1(Bn), t1(Bn)≥2n−3. □





Lemma 2.

Let A={(1),(12),(34),(12)(34)}. If n≥4, F1=NBn(A), F2=A∪NBn(A), then |F1|=4n−12, |F2|=4n−8, δ(Bn−F1)≥2, and δ(Bn−F2)≥2.





Proof. 

By A={(1),(12),(34),(12)(34)}, we have that Bn[A] is a 4-cycle. By Propositions 3 and 4, |NBn(A)|=4n−12. Thus from calculating, we have |F1|=4n−12, |F2|=|A|+|F1|=4n−8.



Let v∈V(Bn)\F2 and |N(v)∩N(A)|≠0 and w∈N(v)∩N(A). Let u∈A and uw∈E(Bn). By Proposition 1, let u=(1). Then w=(ab)∈{(i,i+1):i=1,2,3,…,n−1}\{(12),(34)}. By Proposition 2, there is no u′∈{(12),(34)} such that |N(u′)∩N(v)|≥1. Therefore, we consider only u′∈{(1),(12)(34)}. We discuss the following cases.



Case 1. v=(ab)(cd) and {a,b}∩{c,d}=∅, (cd)∈{(i,i+1):i=1,2,3,…,n−1}\{(ab)}.



If (cd)∈{(12),(34)}, then a contradiction to v∈V(Bn)\F2. Therefore, (cd)∈{(i,i+1):i=1,2,3,…,n−1}\{(ab),(12),(34)}. In this case, |N(v)∩N(u)|=2. Consider (12)(34)(xy) and (ab)(cd)(uv), (xy)∈{(i,i+1):i=1,2,3,…,n−1}\{(12),(34)}. Suppose {x,y}∩{1,2,3,4}=∅. Since (ab),(cd)∈{(i,i+1):i=1,2,3,…,n−1}\{(12),(34)}, (12)(34)(xy)≠(ab)(cd)(uv). If (xy)=(23), then (12)(34)(23)=(1243). If (uv)≠(12), then, 1→1 in (ab)(cd)(uv), (12)(34)(23)=(1243)≠(ab)(cd)(uv). If (uv)=(12), then, 2→1 in (ab)(cd)(uv), (12)(34)(23)=(1243)≠(ab)(cd)(uv). If (xy)=(45), then (12)(34)(45)=(12)(345). If (uv)≠(12), then, 1→1 in (ab)(cd)(uv), (12)(34)(45)=(12)(345)≠(ab)(cd)(uv). If (uv)=(12), then, 3→3 or 3→2 in (ab)(cd)(uv), (12)(34)(45)=(12)(345)≠(ab)(cd)(uv). Therefore, |N(v)∩N(A)|≤2.



Case 2. v=(ab)(cd) and {a,b}∩{c,d}≠∅, (cd)∈{(i,i+1):i=1,2,3,…,n−1}\{(ab)}.



Without loss of generality, let v=(ab)(bd)=(abd). Let w′∈N(v)\{w}. Then w′=(ab)(bd)(uv), (uv)∈{(i,i+1):i=1,2,3,…,n−1}\{(cd)}. If (uv)=(ab), then w′=(ab)(bd)(uv)=(ad). Note (ad)∉{(i,i+1):i=1,2,3,…,n−1}. Then |N(v)∩N(u)|=1. Suppose (uv)≠(ab). Consider (12)(34)(xy) and (ab)(cd)(uv), (xy)∈{(i,i+1):i=1,2,3,…,n−1}\{(12),(34)}. If {x,y}∩{1,2,3,4}=∅, then, by Theorem 1, (12)(34)(xy)≠w′=(ab)(bd)(uv). If (xy)=(23), then (12)(34)(23)=(1243). If (uv)=(12), then, 2→1 in (ab)(cd)(uv), (12)(34)(23)=(1243)≠(ab)(cd)(uv). If (uv)≠(12), then, 1→1 or 1→3 in (ab)(cd)(uv), (12)(34)(23)=(1243)≠(ab)(cd)(uv). If (xy)=(45), then (12)(34)(45)=(12)(345). If (uv)≠(12), then, 1→1 in (ab)(cd)(uv), (12)(34)(45)=(12)(345)≠(ab)(cd)(uv). If (uv)=(12), then, 3→3 or 3→2 in (ab)(cd)(uv), (12)(34)(45)=(12)(345)≠(ab)(cd)(uv). Therefore, |N(v)∩N(A)|≤2.



By Cases 1 and 2, d(v)≥n−1−2≥2 (n≥5) in Bn−(F1∪F2) and F1 is a 2-good-neighbor cut of Bn. When n=4, it is easy to verify that F1 is a 2-good-neighbor cut of Bn. □





Lemma 3.

Let n≥4. Then the 2-good-neighbor diagnosability t2(Bn)≤4n−9 under the PMC model.





Proof. 

Let A be defined in Lemma 2, and let F1=NBn(A), F2=A∪NBn(A). By Lemma 2, |F1|=4n−12, |F2|=4n−8, δ(Bn−F1)≥2 and δ(Bn−F2)≥2. Therefore, F1 and F2 are both 2-good-neighbor faulty sets of Bn with |F1|=4n−12 and |F2|=4n−8. Since A=F1ΔF2 and NBn(A)=F1⊂F2, there is no edge of Bn between V(Bn)\(F1∪F2) and F1ΔF2. By Lemma 1, we show that Bn is not 2-good-neighbor (4n−8)-diagnosable under the PMC model. Hence, by the definition of 2-good-neighbor diagnosability, we conclude that the 2-good-neighbor diagnosability of Bn is less than 4n−8, i.e., t2(Bn)≤4n−9. □





Lemma 4.

Let H be a subgraph of Bn such that δ(H)=2. Then |V(H)|≥4.





By the definition of Bn, we have Lemma 4.



Lemma 5.

Let n≥4. Then the 2-good-neighbor diagnosability t2(Bn)≥4n−9 under the PMC model.





Proof. 

By the definition of 2-good-neighbor diagnosability, it is sufficient to show that Bn is 2-good-neighbor (4n−9)-diagnosable. By Theorem 1, to prove Bn is 2-good-neighbor (4n−9)-diagnosable, it is equivalent to prove that there is an edge uv∈E(Bn) with u∈V(Bn)\(F1∪F2) and v∈F1ΔF2 for each distinct pair of 2-good-neighbor faulty subsets F1 and F2 of V(Bn) with |F1|≤4n−9 and |F2|≤4n−9.



We prove this statement by contradiction. Suppose that there are two distinct 2-good-neighbor faulty subsets F1 and F2 of V(Bn) with |F1|≤4n−9 and |F2|≤4n−9, but the vertex set pair (F1,F2) is not satisfied with the condition in Lemma 1, i.e., there are no edges between V(Bn)\(F1∪F2) and F1ΔF2. Without loss of generality, assume that F2\F1≠∅. Suppose V(Bn)=F1∪F2. By the definition of Bn, |F1∪F2|=|Sn|=n!. It is obvious that n!>8n−18 for n≥4. Since n≥4, we have that n!=|V(Bn)|=|F1∪F2|=|F1|+|F2|−|F1∩F2|≤|F1|+|F2|≤2(4n−9)=8n−18, a contradiction. Therefore, V(Bn)≠F1∪F2.



Since there are no edges between V(Bn)\(F1∪F2) and F1ΔF2, and F1 is a 2-good-neighbor faulty set, Bn−F1 has two parts Bn−F1−F2 and Bn[F2\F1]. Thus, δ(Bn−F1−F2)≥2 and δ(Bn[F2\F1])≥2. Similarly, δ(Bn[F1\F2])≥2 when F1\F2≠∅. Therefore, F1∩F2 is also a 2-good-neighbor faulty set. When F1\F2=∅, F1∩F2=F1 is also a 2-good-neighbor faulty set. Since there are no edges between V(Bn−F1−F2) and F1ΔF2, F1∩F2 is a 2-good-neighbor cut. Since n≥4, by Theorem 4, |F1∩F2|≥4n−12. By Lemma 4, |F2\F1|≥4. Therefore, |F2|=|F2\F1|+|F1∩F2|≥4+8n−22=8n−18, which contradicts with that |F2|≤4n−9. So Bn is 2-good-neighbor (8n−19)-diagnosable. By the definition of t2(Bn), t2(Bn)≥4n−9. □





Combining Lemmas 3 and 5, we have the following theorem.



Theorem 8.

Let n≥4. Then the 2-good-neighbor diagnosability of the bubble-sort graph Bn under the PMC model is 4n−9.





Lemma 6.

Let A={(1),(12),(34),(56),(12)(34),(12)(56),(34)(56),(12)(34)(56)}. If n≥7, F1=NBn(A), F2=A∪NBn(A), then |F1|=8n−32, |F2|=8n−24, δ(Bn−F1)≥3 and δ(Bn−F2)≥3.





Proof. 

By A={(1),(12),(34),(56),(12)(34),(12)(56),(34)(56),(12)(34)(56)}, we have that Bn[A] is 3-regular and |A|=8.



Claim 1. (N(u)∩N(v))\A=∅ for u,v∈A.



By Proposition 1, let u=(1). By Proposition 2, we consider only v∈{(12)(34),(12)(56),(34)(56)}. Since |N(u)∩N(v)|=2, by Proposition 4, we have (N(u)∩N(v))\A=∅. The proof of Claim 1 is complete.



By Claim 1, |NBn(A)|=8n−32. Thus from calculating, we have |F1|=8n−32, |F2|=|A|+|F1|=8n−24. Let v∈V(Bn)\F2 and |N(v)∩N(A)|≠0 and w∈N(v)∩N(A). Let u∈A and uw∈E(Bn). By Proposition 1, let u=(1). Then w=(ab)∈{(i,i+1):i=1,2,3,…,n−1}\{(12),(34),(56)}. By Proposition 2, there is no u′∈{(12),(34),(56),(12)(34)(56)} such that |N(u′)∩N(v)|≥1. Therefore, we consider only u′∈{(1),(12)(34),(12)(56),(34)(56)}.



Claim 2. |N(A)∩N(v)|≤2.



Let v∈V(Bn)\F2. We discuss the following cases.



Case 1.v=(ab)(cd) and {a,b}∩{c,d}=∅, (cd)∈{(i,i+1):i=1,2,3,…,n−1}\{(ab)}.



If (cd)∈{(12),(34),(56)}, then a contradiction to v∈V(Bn)\F2. Therefore, (cd)∈{(i,i+1):i=1,2,3,…,n−1}\{(ab),(12),(34),(56)}. Consider (ab)(cd)(uv). If (uv)=(ab), then |N(v)∩N(u)|=2. Let (uv)≠(ab).



Consider (12)(34)(xy) and (ab)(cd)(uv), (xy)∈{(i,i+1):i=1,2,3,…,n−1}\{(12),(34),(56)}. Suppose {x,y}∩{1,2,3,4}=∅. Since (ab),(cd)∈{(i,i+1):i=1,2,3,…,n−1}\{(12),(34),(56)}, (12)(34)(xy)≠(ab)(cd)(uv). If (xy)=(23), then (12)(34)(23)=(1243). If (uv)≠(12), then, 1→1 in (ab)(cd)(uv), (12)(34)(23)=(1243)≠(ab)(cd)(uv). If (uv)=(12), then, 2→1 in (ab)(cd)(uv), (12)(34)(23)=(1243)≠(ab)(cd)(uv). If (xy)=(45), then (12)(34)(45)=(12)(345). If (uv)≠(12), then, 1→1 in (ab)(cd)(uv), (12)(34)(45)=(12)(345)≠(ab)(cd)(uv). If (uv)=(12), then, 3→3 or 3→2 in (ab)(cd)(uv), (12)(34)(45)=(12)(345)≠(ab)(cd)(uv).



Consider (34)(56)(xy) and (ab)(cd)(uv), (xy)∈{(i,i+1):i=1,2,3,…,n−1}\{(12),(34),(56)}. Suppose {x,y}∩{3,4,5,6}=∅. Since (ab),(cd)∈{(i,i+1):i=1,2,3,…,n−1}\{(12),(34),(56)}, (34)(56)(xy)≠(ab)(cd)(uv). If (xy)=(23), then (34)(23)(56)=(243)(56). If (uv)=(23), then 2→3 or 2→2 in (ab)(cd)(uv), (34)(23)(56)=(243)(56)≠(ab)(cd)(uv). If (uv)≠(23), then (uv)=(12) or (34) or (uv) (u,v≥4). When (uv)=(12), 2→1 in (ab)(cd)(uv), (34)(23)(56)=(243)(56)≠(ab)(cd)(uv). When (uv)=(34), 2→2 or 2→3 in (ab)(cd)(uv), (34)(23)(56)=(243)(56)≠(ab)(cd)(uv). When u,v≥4, 2→2 or 2→3 in (ab)(cd)(uv), (34)(23)(56)=(243)(56)≠(ab)(cd)(uv).



Similarly, consider (12)(56)(xy) and (ab)(cd)(uv). We have (12)(56)(xy)≠(ab)(cd)(uv). Therefore, |N(v)∩N(A)|≤2.



Case 2.v=(ab)(cd) and {a,b}∩{c,d}≠∅, (cd)∈{(i,i+1):i=1,2,3,…,n−1}\{(ab)}.



Without loss of generality, let v=(ab)(bd)=(abd). Let w′∈N(v)\{w}. Then w′=(ab)(bd)(uv), (uv)∈{(i,i+1):i=1,2,3,…,n−1}\{(cd)}. If (uv)=(ab), then w′=(ab)(bd)(uv)=(ad). Note (ad)∉{(i,i+1):i=1,2,3,…,n−1}. Then |N(v)∩N(u)|=1. Suppose (uv)≠(ab). Consider (12)(34)(xy) and (ab)(cd)(uv), (xy)∈{(i,i+1):i=1,2,3,…,n−1}\{(12),(34),(56)}. If {x,y}∩{1,2,3,4}=∅, then, by Theorem 1, (12)(34)(xy)≠w′=(ab)(bd)(uv). If (xy)=(23), then (12)(34)(23)=(1243). If (uv)=(12), then, 2→1 in (ab)(cd)(uv), (12)(34)(23)=(1243)≠(ab)(cd)(uv). If (uv)≠(12), then, 1→1 or 1→3 in (ab)(cd)(uv), (12)(34)(23)=(1243)≠(ab)(cd)(uv). If (xy)=(45), then (12)(34)(45)=(12)(345). If (uv)≠(12), then, 1→1 or 1→3 in (ab)(cd)(uv), (12)(34)(45)=(12)(345)≠(ab)(cd)(uv). If (uv)=(12), then, 3→3 or 3→2 in (ab)(cd)(uv), (12)(34)(45)=(12)(345)≠(ab)(cd)(uv).



Consider (34)(56)(xy) and (ab)(cd)(uv), (xy)∈{(i,i+1):i=1,2,3,…,n−1}\{(12),(34),(56)}. If {x,y}∩{3,4,5,6}=∅, then, by Theorem 1, (34)(56)(xy)≠w′=(ab)(bd)(uv). If (xy)=(23), then (34)(56)(xy)=(243)(56). If (uv)=(12), then, 2→1 in (ab)(cd)(uv), (34)(56)(xy)≠(ab)(cd)(uv). If (uv)≠(12), then, 1→1 or 1→3 in (ab)(cd)(uv), (34)(56)(xy)≠(ab)(cd)(uv). If (xy)=(45), then (34)(56)(xy)=(3465). If (uv)≠(12), then, 1→1 or 1→3 in (ab)(cd)(uv), (34)(56)(xy)≠(ab)(cd)(uv). If (uv)=(12), then, 3→3 or 3→2 in (ab)(cd)(uv), (34)(56)(xy)≠(ab)(cd)(uv). If (xy)=(67), then (34)(56)(xy)=(34)(567). If (uv)≠(12), then, 1→1 or 1→3 in (ab)(cd)(uv), (34)(56)(xy)≠(ab)(cd)(uv). If (uv)=(12), then, 3→3 or 3→2 in (ab)(cd)(uv), (34)(56)(xy)≠(ab)(cd)(uv).



Similarly, consider (12)(56)(xy) and (ab)(cd)(uv). We have (12)(56)(xy)≠(ab)(cd)(uv). Therefore, |N(v)∩N(A)|≤2. The proof of Claim 2 is complete.



By Claim 2, d(v)≥n−1−3≥3 (n≥7) in Bn−(F1∪F2) and F1 is a 3-good-neighbor cut of Bn. □





Lemma 7.

Let n≥7. Then the 3-good-neighbor diagnosability t3(Bn)≤8n−25 under the PMC model.





Proof. 

Let A be defined in Lemma 6, and let F1=NBn(A), F2=A∪NBn(A). By Lemma 6, |F1|=8n−32, |F2|=8n−24, δ(Bn−F1)≥3 and δ(Bn−F2)≥3. Therefore, F1 and F2 are both 3-good-neighbor faulty sets of Bn with |F1|=8n−32 and |F2|=8n−24. Since A=F1ΔF2 and NBn(A)=F1⊂F2, there is no edge of Bn between V(Bn)\(F1∪F2) and F1ΔF2. By Lemma 1, we can deduce that Bn is not 3-good-neighbor (8n−24)-diagnosable under the PMC model. Hence, by the definition of 3-good-neighbor diagnosability, we conclude that the 2-good-neighbor diagnosability of Bn is less than 8n−24, i.e., t2(Bn)≤8n−25. □





Lemma 8.

Let H be a subgraph of Bn such that δ(H)=3. Then |V(H)|≥8.





Proof. 

Note that there is no subgraph K3,3 of Bn. Suppose, on the contrary, that there is a subgraph H′ of Bn such that δ(H′)≥3 and |V(H′)|=7. Since Bn is bipartite, let V(H′)=(U,W) and |U|=3, |W|=4. By Proposition 1, let W={(1),x,y,z} and U={a,b,c}. Since δ(H′)≥3, N(x)∩N(y)={a,b,c}, a contradiction to Proposition 4. Therefore, |V(H)|≥8. □





Lemma 9.

Let n≥7. Then the 3-good-neighbor diagnosability t3(Bn)≥8n−25 under the PMC model.





Proof. 

By the definition of 3-good-neighbor diagnosability, it is sufficient to show that Bn is 3-good-neighbor (8n−25)-diagnosable. By Lemma 1, to prove Bn is 3-good-neighbor (8n−25)-diagnosable, it is equivalent to prove that there is an edge uv∈E(Bn) with u∈V(Bn)\(F1∪F2) and v∈F1ΔF2 for each distinct pair of 3-good-neighbor faulty subsets F1 and F2 of V(Bn) with |F1|≤8n−25 and |F2|≤8n−25.



We prove this statement by contradiction. Suppose that there are two distinct 3-good-neighbor faulty subsets F1 and F2 of V(Bn) with |F1|≤8n−25 and |F2|≤8n−25, but the vertex set pair (F1,F2) is not satisfied with the condition in Lemma 1, i.e., there are no edges between V(Bn)\(F1∪F2) and F1ΔF2. Without loss of generality, assume that F2\F1≠∅. Suppose V(Bn)=F1∪F2. By the definition of Bn, |F1∪F2|=|Sn|=n!. It is obvious that n!>16n−50 for n≥7. Since n≥7, we have that n!=|V(Bn)|=|F1∪F2|=|F1|+|F2|−|F1∩F2|≤|F1|+|F2|≤2(8n−25)=16n−50, a contradiction. Therefore, V(Bn)≠F1∪F2.



Since there are no edges between V(Bn)\(F1∪F2) and F1ΔF2, and F1 is a 3-good-neighbor faulty set, Bn−F1 has two parts Bn−F1−F2 and Bn[F2\F1]. Thus, δ(Bn−F1−F2)≥3 and δ(Bn[F2\F1])≥3. Similarly, δ(Bn[F1\F2])≥3 when F1\F2≠∅. Therefore, F1∩F2 is also a 3-good-neighbor faulty set. When F1\F2=∅, F1∩F2=F1 is also a 3-good-neighbor faulty set. Since there are no edges between V(Bn−F1−F2) and F1ΔF2, F1∩F2 is a 3-good-neighbor cut. Since n≥7, by Theorem 5, |F1∩F2|≥8n−32. By Lemma 8, |F2\F1|≥8. Therefore, |F2|=|F2\F1|+|F1∩F2|≥8+8n−32=8n−24, which contradicts with that |F2|≤8n−25. So Bn is 3-good-neighbor (8n−25)-diagnosable. By the definition of t3(Bn), t3(Bn)≥8n−25. □





Combining Lemmas 7 and 9, we have the following theorem.



Theorem 9.

Let n≥7. Then the 3-good-neighbor diagnosability of the bubble-sort graph Bn under the PMC model is 8n−25.






4. The Diagnosability of the Bubble-Sort Graph Bn under the MM∗ Model


Before discussing the diagnosability of the bubble-sort graph Bn under the MM∗ model, we first give an existing result.



Lemma 10

([4,20]). A system G=(V,E) is g-good-neighbor t-diagnosable under the MM∗ model if and only if for each distinct pair of g-good-neighbor faulty subsets F1 and F2 of V with |F1|≤t and |F2|≤t satisfies one of the following conditions. (1) There are two vertices u,w∈V\(F1∪F2) and there is a vertex v∈F1ΔF2 such that uw∈E and vw∈E. (2) There are two vertices u,v∈F1\F2 and there is a vertex w∈V\(F1∪F2) such that uw∈E and vw∈E. (3) There are two vertices u,v∈F2\F1 and there is a vertex w∈V\(F1∪F2) such that uw∈E and vw∈E (See Figure 3). The g-good-neighbor diagnosability tg(G) of G is the maximum value of t such that G is g-good-neighbor t-diagnosable under the MM∗ model.





Theorem 10

([12]). The diagnosability t(G)=t0(G) of Bn is n−1 under the MM∗ model when n≥4.





A component of a graph G is odd according as it has an odd number of vertices. We denote by o(G) the number of odd component of G.



Lemma 11

([22]). A graph G=(V,E) has a perfect matching if and only if o(G−S)≤|S| for all S⊆V.





Lemma 12

([22]). Let k≥0 be an integer. Then every k-regular bipartite graph has k edge-disjoint perfect matchings.





Since the bubble-sort graph is a regular bipartite graph, we have the following corollary by Lemma 12.



Corollary 1.

The bubble-sort graph has a perfect matching.





Lemma 13.

Let n≥4. Then the 1-good-neighbor diagnosability of the bubble-sort graph Bn under the MM∗ model is less than or equal to 2n−3, i.e., t1(Bn)≤2n−3.





Proof. 

Let u=(1) and v=(12). Then u is adjacent to v. Let F1=N({u,v}) and F2=F1∪{u,v}. By Proposition 2, |F1|=2n−4, |F2|=2n−2. Let w∈V(Bn)\(F1∪F2). By Proposition 4, |N(w)∩N((1))|≤2 and |N(w)∩N((12))|≤2. By Proposition 2, if N(w)∩N((1))≠∅, then N(w)∩N((12))=∅ or if N(w)∩N((12)≠∅, then N(w)∩N((1))=∅. Therefore, d(v)≥n−1−2≥1 (n≥4) in Bn−(F1∪F2) and F1 is a 1-good-neighbor cut of Bn. Since {(1),(12)}=F1ΔF2 and F1⊂F2, there is no edge of Bn between V(Bn)\(F1∪F2) and F1ΔF2. By Lemma 10, we show that Bn is not 1-good-neighbor (2n−2)-diagnosable under the MM∗ model. Hence, by the definition of the 1-good-neighbor diagnosability, we have that t1(Bn)≤2n−3. □





Lemma 14.

Let n≥5. Then the 1-good-neighbor diagnosability of the bubble-sort graph Bn under the MM∗ model is more than or equal to 2n−3, i.e., t1(Bn)≥2n−3.





Proof. 

By the definition of 1-good-neighbor diagnosability, it is sufficient to show that Bn is 1-good-neighbor (2n−3)-diagnosable. By Lemma 10, suppose, on the contrary, that there are two distinct 1-good-neighbor faulty subsets F1 and F2 of Bn with |F1|≤2n−3 and |F2|≤2n−3, but the vertex set pair (F1,F2) is not satisfied with any one condition in Theorem 10. Without loss of generality, assume that F2\F1≠∅. Similarly to the discussion on V(Bn)≠F1∪F2 in Theorem 3, we have V(Bn)≠F1∪F2.



Claim 1.Bn−F1−F2 has no isolated vertex.



Suppose, on the contrary, that Bn−F1−F2 has at least one isolated vertex w. Since F1 is a 1-good-neighbor faulty set, there is a vertex u∈F2\F1 such that u is adjacent to w. Since the vertex set pair (F1,F2) is not satisfied with any one condition in Lemma 10, there is at most one vertex u∈F2\F1 such that u is adjacent to w. Thus, there is just a vertex u∈F2\F1 such that u is adjacent to w. Assume F1\F2=∅. Then F1⊆F2. Since F2 is a 1-good-neighbor faulty set, Bn−F2=Bn−F1−F2 has no isolated vertex, a contradiction. Therefore, let F1\F2≠∅ as follows. Similarly, we can show that there is just a vertex v∈F1\F2 such that v is adjacent to w. Let W⊆V(Bn)\(F1∪F2) be the set of isolated vertices in Bn[V(Bn)\(F1∪F2)], and let H be the subgraph induced by the vertex set V(Bn)\(F1∪F2∪W). Then for any w∈W, there are (n−3) neighbors in F1∩F2. By Corollary 1, Bn has a perfect matching. By Lemma 11, |W|≤o(G−(F1∪F2))≤|F1∪F2|≤|F1|+|F2|−|F1∩F2|≤2(2n−3)−(n−3)=3n−3. Assume V(H)=∅. Note that n!=|V(Bn)|=|F1∪F2|+|W|≤2(3n−3)=6n−6. This is a contradiction to n≥5. So V(H)≠∅. Since the vertex set pair (F1,F2) is not satisfied with the condition (1) of Theorem 10, and any vertex of V(H) is not isolated in H, we induce that there is no edge between V(H) and F1ΔF2. Thus, F1∩F2 is a vertex cut of Bn and δ(Bn−(F1∩F2))≥1, i.e., F1∩F2 is a 1-good-neighbor cut of Bn. By Theorem 3, |F1∩F2|≥2n−4. Because |F1|≤2n−3 and |F2|≤2n−3, and neither F1\F2 nor F2\F1 is empty, we have |F1\F2|=|F2\F1|=1. Let F1\F2={v1} and F2\F1={v2}. Then for any vertex w∈W, w is adjacent to v1 and v2. According to Proposition 4, there are at most three common neighbors for any pair of vertices in Bn, it follows that there are at most two isolated vertices in Bn−F1−F2, i.e., |W|≤2.



Suppose that there is exactly one isolated vertex v in Bn−F1−F2. Let v1 and v2 be adjacent to v. Then NBn(v)\{v1,v2}⊆F1∩F2. Note that Bn has no 3-cycle. Thus, NBn(v1)\{v}⊆F1∩F2, NBn(v2)\{v}⊆F1∩F2, |(NBn(v)\{v1,v2})∩(NBn(v1)\{v})|=0 and |(NBn(v)\{v1,v2})∩(NBn(v2)\{v})|=0 and |[NBn(v1)\{v}]∩[NBn(v2)\{v}]|≤1. Thus, |F1∩F2|≥|NBn(v)\{v1,v2}|+|NBn(v1)\{v}|+|NBn(v2)\{v}|≥(n−1−2)+(n−1−1)+(n−1−1)−1=3n−8. It follows that |F2|=|F2\F1|+|F1∩F2|≥1+3n−8=3n−7>2n−3(n≥5), which contradicts |F2|≤2n−3.



Suppose that there are exactly two isolated vertices v and w in Bn−F1−F2. Let v1 and v2 be adjacent to v and w, respectively. Then NBn(v)\{v1,v2}⊆F1∩F2, NBn(w)\{v1,v2}⊆F1∩F2, NBn(v1)\{v,w}⊆F1∩F2, NBn(v2)\{v,w}⊆F1∩F2, |(NBn(v)\{v1,v2})∩(NBn(v1)\{v,w})|=0 and |(NBn(v)\{v1,v2})∩(NBn(v2)\{v,w})|=0. |(NBn(w)\{v1,v2})∩(NBn(v1)\{v,w})|=0, |(NBn(w)\{v1,v2})∩(NBn(v2)\{v,w})|=0 and |[NBn(v1)\{v,w}]∩[NBn(v2)\{v,w}]|=0. By Proposition 4, there are at most two common neighbors for any pair of vertices in Bn. Thus, it follows that |(NBn(v)\{v1,v2})∩(NBn(w)\{v1,v2})|=0. Thus, |F1∩F2|≥|NBn(v)\{v1,v2}|+|NBn(w)\{v1,v2}|+|NBn(v1)\{v,w}|+|NBn(v2)\{v,w}|=(n−1−2)+(n−1−2)+(n−1−2)+(n−1−2)=4n−12. It follows that |F2|=|F2\F1|+|F1∩F2|≥1+4n−12=4n−11>2n−3(n≥5), which contradicts |F2|≤2n−3. The proof of Claim 1 is complete.



Let u∈V(Bn)\(F1∪F2). By Claim 1, u has at least one neighbor in Bn−F1−F2. Since the vertex set pair (F1,F2) is not satisfied with any one condition in Lemma 10, by the condition (1) of Lemma 10, for any pair of adjacent vertices u,w∈V(Bn)\(F1∪F2), there is no vertex v∈F1ΔF2 such that uw∈E(Bn) and vw∈E(Bn). It follows that u has no neighbor in F1ΔF2. By the arbitrariness of u, there is no edge between V(Bn)\(F1∪F2) and F1ΔF2. Since F2\F1≠∅ and F1 is a 1-good-neighbor faulty set, δBn([F2\F1])≥1 and hence |F2\F1|≥2. Since both F1 and F2 are 1-good-neighbor faulty sets, and there is no edge between V(Bn)\(F1∪F2) and F1ΔF2, F1∩F2 is a 1-good-neighbor cut of Bn. By Theorem 3, |F1∩F2|≥2n−4. Therefore, |F2|=|F2\F1|+|F1∩F2|≥2+2n−4=2n−2, which contradicts with that |F2|≤2n−3. So Bn is 1-good-neighbor (2n−3)-diagnosable. By the definition of t1(Bn), t1(Bn)≥3n−4. □





Combining Lemmas 13 and 14, we have the following theorem.



Theorem 11.

Let n≥5. Then the 1-good-neighbor diagnosability of the bubble-sort graph Bn under the MM∗ model is 2n−3.





Lemma 15.

Let n≥4. Then the 2-good-neighbor diagnosability t2(Bn)≤4n−9 under the MM∗ model.





Proof. 

Let A, F1 and F2 be defined in Lemma 2. By the Lemma 2, F1=NBn(A), F2=A∪NBn(A), then |F1|=4n−12, |F2|=4n−8, δ(Bn−F1)≥2, and δ(Bn−F2)≥2. So both F1 and F2 are 2-good-neighbor faulty sets. By the definitions of F1 and F2, F1ΔF2=A. Note F1\F2=∅, F2\F1=A and (V(Bn)\(F1∪F2))∩A=∅. Therefore, both F1 and F2 are not satisfied with any one condition in Lemma 10, and Bn is not 2-good-neighbor (4n−8)-diagnosable. Hence, t2(Bn)≤4n−9. The proof is complete. □





Lemma 16.

Let n≥4. Then the 2-good-neighbor diagnosability t2(Bn)≥4n−9 under the MM∗ model.





Proof. 

By the definition of 2-good-neighbor diagnosability, it is sufficient to show that Bn is 2-good-neighbor (4n−9)-diagnosable. By Lemma 10, suppose, on the contrary, that there are two distinct 2-good-neighbor faulty subsets F1 and F2 of Bn with |F1|≤4n−9 and |F2|≤4n−9, but the vertex set pair (F1,F2) is not satisfied with any one condition in Lemma 10. Without loss of generality, assume that F2\F1≠∅. Similarly to the discussion on V(Bn)≠F1∪F2 in Lemma 5, we have V(Bn)≠F1∪F2.



Claim 1.Bn−F1−F2 has no isolated vertex.



Suppose, on the contrary, that Bn−F1−F2 has at least one isolated vertex w. Since F1 is a 2-good neighbor faulty set, there are two vertices u,v∈F2\F1 such that u and v are adjacent to w. Since the vertex set pair (F1,F2) is not satisfied with any one condition in Lemma 10, this is a contradiction. Therefore, BSn−F1−F2 has no isolated vertex. The proof of Claim 1 is complete.



Let u∈V(Bn)\(F1∪F2). By Claim 1, u has at least one neighbor in Bn−F1−F2. Since the vertex set pair (F1,F2) is not satisfied with any one condition in Theorem 10, by the condition (1) of Lemma 10, for any pair of adjacent vertices u,w∈V(Bn)\(F1∪F2), there is no vertex v∈F1ΔF2 such that uw∈E(Bn) and vw∈E(Bn). It follows that u has no neighbor in F1ΔF2. By the arbitrariness of u, there is no edge between V(Bn)\(F1∪F2) and F1ΔF2. Since F2\F1≠∅ and F1 is a 2-good-neighbor faulty set, δBn([F2\F1])≥2. By Lemma 4, |F2\F1|≥4. Since both F1 and F2 are 2-good-neighbor faulty sets, and there is no edge between V(Bn)\(F1∪F2) and F1ΔF2, F1∩F2 is a 2-good-neighbor cut of Bn. By Theorem 4, we have |F1∩F2|≥4n−12. Therefore, |F2|=|F2\F1|+|F1∩F2|≥4+(4n−12)=4n−8, which contradicts |F2|≤4n−9. Therefore, Bn is 2-good-neighbor (4n−9)-diagnosable and t2(Bn)≥4n−9. The proof is complete. □





Combining Lemmas 15 and 16, we have the following theorem.



Theorem 12.

Let n≥4. Then the 2-good-neighbor diagnosability of the bubble-sort star graph Bn under the MM∗ model is 4n−9.





We point out that B4 is the least bubble-sort graph satisfying the three sufficient conditions in Lemma 10. Because B3 is a cycle with six vertices which is isomorphic to the 3-dimensional star graph, by [21] B3 is not 2-diagnosable.



Lemma 17.

Let n≥7. Then the 3-good-neighbor diagnosability t3(Bn)≤8n−25 under the MM∗ model.





Proof. 

Let A, F1 and F2 be defined in Lemma 6. By the Lemma 6, F1=NBn(A), F2=A∪NBn(A), then |F1|=8n−32, |F2|=8n−24, δ(Bn−F1)≥3, and δ(Bn−F2)≥3. So both F1 and F2 are 3-good-neighbor faulty sets. By the definitions of F1 and F2, F1ΔF2=A. Note F1\F2=∅, F2\F1=A and (V(Bn)\(F1∪F2))∩A=∅. Therefore, both F1 and F2 are not satisfied with any one condition in Lemma 10, and Bn is not 3-good-neighbor (8n−24)-diagnosable. Hence, t2(Bn)≤8n−25. The proof is complete. □





Lemma 18.

Let n≥7. Then the 3-good-neighbor diagnosability t3(Bn)≥8n−25 under the MM∗ model.





Proof. 

By the definition of 3-good-neighbor diagnosability, it is sufficient to show that Bn is 3-good-neighbor (8n−25)-diagnosable. By Lemma 10, suppose, on the contrary, that there are two distinct 3-good-neighbor faulty subsets F1 and F2 of Bn with |F1|≤8n−25 and |F2|≤8n−25, but the vertex set pair (F1,F2) is not satisfied with any one condition in Lemma 10. Without loss of generality, assume that F2\F1≠∅. Similarly to the discussion on V(Bn)≠F1∪F2 in Lemma 9, we have V(Bn)≠F1∪F2.



Claim 1.Bn−F1−F2 has no isolated vertex.



Suppose, on the contrary, that Bn−F1−F2 has at least one isolated vertex w. Since F1 is a 3-good neighbor faulty set, there are three vertices u,v∈F2\F1 such that u, v and x are adjacent to w. Since the vertex set pair (F1,F2) is not satisfied with any one condition in Lemma 10, this is a contradiction. Therefore, BSn−F1−F2 has no isolated vertex. The proof of Claim 1 is complete.



Let u∈V(Bn)\(F1∪F2). By Claim 1, u has at least one neighbor in Bn−F1−F2. Since the vertex set pair (F1,F2) is not satisfied with any one condition in Theorem 10, by the condition (1) of Lemma 10, for any pair of adjacent vertices u,w∈V(Bn)\(F1∪F2), there is no vertex v∈F1ΔF2 such that uw∈E(Bn) and vw∈E(Bn). It follows that u has no neighbor in F1ΔF2. By the arbitrariness of u, there is no edge between V(Bn)\(F1∪F2) and F1ΔF2. Since F2\F1≠∅ and F1 is a 3-good-neighbor faulty set, δBn([F2\F1])≥3. By Lemma 8, |F2\F1|≥8. Since both F1 and F2 are 3-good-neighbor faulty sets, and there is no edge between V(Bn)\(F1∪F2) and F1ΔF2, F1∩F2 is a 3-good-neighbor cut of Bn. By Theorem 5, we have |F1∩F2|≥8n−32. Therefore, |F2|=|F2\F1|+|F1∩F2|≥8+(8n−32)=8n−24, which contradicts |F2|≤8n−25. Therefore, Bn is 3-good-neighbor (8n−25)-diagnosable and t3(Bn)≥8n−25. The proof is complete. □





Combining Lemmas 17 and 18, we have the following theorem.



Theorem 13.

Let n≥7. Then the 3-good-neighbor diagnosability of the bubble-sort graph Bn under the MM∗ model is 8n−25.






5. Conclusions


In this paper, we investigate the problem of g-good-neighbor diagnosability of the n-dimensional bubble-sort graph Bn under the PMC model and MM∗ model and show g-good-neighbor diagnosability of Bn is 2g(n−g)−1 under the PMC model for g=0,1,2,3 and the MM∗ model for g=0,1,2,3, respectively.



The work will help engineers to develop more different networks.
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Figure 1. The bubble-sort graphs B2, B3 and B4. 
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Figure 2. Illustration of a distinguishable pair (F1,F2) under Preparata, Metze, and Chien’s (PMC) model. 
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Figure 3. Illustration of a distinguishable pair (F1,F2) under Maeng and Malek’s (MM)* model. 
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