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Abstract: Village Tank Cascade Systems (VTCSs) in the Dry Zone of Sri Lanka have evolved as
sustainable ecosystems through human interventions to ensure water availability and other services
for people and their environs during the last few millennia. However, VTCSs are vulnerable to global
environmental changes resulting in continual deterioration of ecological health and hydro-socio-
ecological status, crucial for the food and livelihood security of rural farming communities in the
dry zone. This paper seeks to explore resource systems of the Mahakanumulla VTCS located in
Anuradhapura district of Sri Lanka to (i) identify the spatial metrics linked to the sustainability and
socio-ecological resilience of the VTCS, and (ii) determine interactions among system elements and
their impacts on productivity and restoration challenges. The spatial analysis was conducted using a
Digital Elevation Model (DEM), recent digital topographic map layers and Google Earth images to
understand the spatial distribution and ensemble of tank environs. Participatory field assessment
data were also used to determine socio-ecological nexus and factors that contribute to the reduction of
ecological productivity of VTCS. The study revealed that the ensemble of tank environs is significant
for providing regulatory and supporting ecosystem services (ES) and synergistic relationships with
provisional ES of the VTCS. Results also revealed that the complex land-water-biodiversity-climate
and food nexus that determines the productivity of the VTCS could be adopted in VTCS ecological
restoration planning. The study presents a comprehensive framework to analyse causal factors
and processes leading to reduction of overall productivity linked with variables of socio-ecological
properties, vulnerability and resilience of the VTCS landscape.

Keywords: village tank cascade system; socio-ecological nexus; cascade anatomy; cascade ensemble;
ecological productivity; ecological restoration; socio-ecological resilience

1. Introduction

Surface runoff water harvesting systems through small tanks in micro-watersheds
are found in several Mediterranean and Asian countries [1]. In order to achieve the
targets of the Sustainable Development Goals especially SDG-2 and SDG-6, it is vital to
restore these systems using community participation to enhance surface and groundwater
management, especially in developing countries [2–4]. The Village Tank Cascade System
(VTCS) is a complex socio-ecological system existing in the Dry and Intermediate Zones
of Sri Lanka. In the country, the VTCS bears unique features, not only hydrological and
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physiological aspects but also deeply interwoven elements with socio-hydro-ecological
characteristics of the landscape, ensuring their sustainability and socio-ecological resilience.
The VTCS was first defined as a ‘connected series of village tanks organized within a
meso-catchment of the dry zone landscape, storing, conveying and utilizing water from
an ephemeral rivulet’ [5]. However, it was found that the functionality and concept of the
VTCS go beyond its water-based ecosystem services. Considering its ecological functions
and socio-ecological production outcomes, a new interpretation has been provided by
Dharmasena [6] as ‘an ecosystem where water and land resources are organized within the
micro-catchments of the dry zone landscape, providing basic needs to human, floral and
faunal communities through water, soil, air and vegetation with human intervention on
sustainable basis’. VTCS is considered one of the oldest and most advanced agricultural
irrigation systems that has evolved in the world [7,8]. More than 14,000 small village tanks
are still in use in the Dry and Intermediate Zones of Sri Lanka, with an irrigation potential
of about 246,540 ha of paddy lands [6,9]. Revitalization of VTCSs is essential for achieving
climate resilience and food security in these peasant communities of Sri Lanka.

The resilient properties and adaptive capacity of these systems have been realized for
more than several millennia. The VTCS provides a classic example of how human well-
being can overcome the natural shocks of the past two millennia in harmony with nature
employing practices preserving biodiversity and ecosystem services [8]. Considering its
unique landscape and ecological features harmonized with the local culture and human
life, the VTCS was been declared as a Globally Important Agricultural Heritage Systems
(GIAHSs) by the United Nations Food and Agriculture Organization (FAO) in 2018 [10].
Global environmental initiatives, which have dealt with socio-ecologically sensitive pro-
duction landscapes (SESPLs), have shown keen interest in studying the multifaceted values
of these Village Tank Cascade Systems (VTCSs) [11,12]. Several international funding
agencies, such as the Green Climate Fund (GCF) and the Global Environment Facility (GEF)
have initiated projects with government and non-government stakeholders for restoration
of these systems, taking into consideration the capacity of the system to address climate
change impacts for sustainable rural livelihoods in the Dry Zone of Sri Lanka.

A VTCS cannot be simplified to its physical structures and practices. Besides pro-
viding irrigated water for paddy cultivation, these small tank systems play significant
socio-ecological, socio-cultural, and socio-economic roles in the livelihoods of rural farmers
and communities. The impairment of VTCS hydro-socio-ecology functioning, mainly due
to climate, land use and demographic changes, has significantly impacted the sustainability
of the system. Recent restoration efforts carried out by different agencies have not analysed
systematically the socio-ecological nexus and functions, ecologically important micro-land
uses and their spatial connections. This has caused unintended degradation to cascade
anatomy during various VTCS rehabilitation projects. Better understanding these character-
istics is important in determining causal factors of the reduction of ecological productivity
of the VTCS. However, little research has been undertaken to study the cascade ecology
of the VTCS landscape at different scales and to understand the capacity of providing
ES at the landscape level. In addition, while several studies of VTCSs have focused on
specific subject areas such as soil and water properties [13–15], hydrology [16–22], limnol-
ogy [7,23,24] and sedimentology [25,26], there have been hardly any systematic studies
undertaken to analyse socio-ecological system characteristics, functions, and interactions
based on a system thinking approach. Therefore, this study aims to address this research
gap by evaluating the spatial and socio-ecological nexus in the Mahakanumulla VTCS
located in Anuradhapura District of Sri Lanka. The specific objectives of this study were
to (i) explore the spatial distribution pattern and cascade anatomy of VTCS in Sri Lanka,
(ii) identify subsystems, variables, and interactions between system properties in terms of
the land-water-biodiversity-climate and food nexus, and (iii) identify causal factors and
nexus that contribute to the reduction of ecological and socio-economic productivity of the
system.
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2. Materials and Methods
2.1. Study Area

The Mahakanumulla VTCS, which is one of the VTCSs found in the Nachchaduwa
reservoir watershed in the Anuradhapura district, was selected to study the cascade
anatomy and socio-ecological nexus (Figure 1). The entire Dry Zone landscape of Sri Lanka
was selected to explore the spatial distribution patterns of the VTCSs.
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Figure 1. Mahakanumulla VTCS located in the Nachchaduwa reservoir watershed.

2.2. Data Collection Sources

The spatial data sources used to achieve the specific objective (i) in this study included
(a) Global Digital Elevation Model V003 (30 m), 2018, accessed 5 January 2021 from
https://doi.org/10.5067/ASTER/ASTGTM.003 and (b) digital map layers of different
spatial levels and scales obtained from Department of Agrarian Development of Sri Lanka,
Land Use Policy Planning Department of Sri Lanka and Survey Department of Sri Lanka.
Nonspatial data and information used for the specific objectives (ii) and (iii) in this study
were extracted from field assessment and survey reports of the study area [27,28] and past
studies and resource profiles of the Mahakanumulla VTCS. On-site spatial assessments
and field verification surveys were carried out in November and December 2020.

2.3. Exploration of Spatial Distribution Pattern and Spatial Relationships

In order to achieve the specific objective (i), this study assessed and mapped the
distribution of VTCSs at the country level, and identified the spatial setting of biophysical
components at the VTCS level. Under this task, spatial analysis was performed using
ArcGIS for different hierarchical levels from national to VTCS micro-catchment levels

https://doi.org/10.5067/ASTER/ASTGTM.003
https://doi.org/10.5067/ASTER/ASTGTM.003
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(Figure 2). Spatial analysis for mapping was carried out using Digital Elevation Model
and digital maps were prepared for land use and land cover (LULC), river basins, cascade
systems and village tanks. Further, fine-scale maps of LULC and tank components were
developed using a Google Earth image accessed on 23 January 2021 as base maps, and
on-screen digitizing was made by employing ArcMap (version 10.8.1) software from
Environmental Systems Research Institute, Redlands, California, USA. The results were
validated through on-site field verifications assessments and surveys, aerial drone images
and making references to resource profiles of the Mahakanumulla VTCS landscape. The on-
site spatial assessments and field verification surveys were done in collaboration with the
Ministry of Environment, Department of Agriculture and Wayamba University of Sri Lanka
under a GEF-funded project on ‘Managing Agricultural Landscapes in Socio-ecologically
Sensitive Areas to Promote Food Security, Well-being and Ecosystem Health–Healthy
Landscapes Project’ (HLP) (https://www.thegef.org/projects, accessed on 20 January
2021) [28].
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Figure 2. Flow diagram of methodology for spatial analysis and mapping.

2.4. Exploration of Interactions among System Properties

The interactions among the VTCS properties (specific objective ii) were identified
by studying socio-ecological subsystems and components of the VTCS and mapping the
interactions (nexus) between them in the Mahakanumulla VTCS. The process involved (a)
identifying subsystems and their components, (b) unveiling interactions and issues among
subsystems’ components and (c) obtaining feedback from key informants and experts
on the interactions and issues relevant to the ecological and socio-economic productivity
outcomes of the VTCS. The study used data and information from participatory field
assessments and surveys conducted by the HLP [27,28].

2.5. Identification of Productivity Issues, Linked with Socio-Ecological Properties and
Restoration Challenges

The specific objective (iii) of the study was achieved through the identification of
specific causal factors that contribute to the reduction of ecological and socio-economic
productivity and mapping the relationships among the identified causal factors. Specific
causal factors and interactive relationships were identified during the field assessments

https://www.thegef.org/projects
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and surveys of biodiversity, medicinal plants ecosystem services, land degradation and
food security conducted by the expert team of the HLP [27,28]. Identified causal factors
were prioritized through on-site participatory assessments in the study site. The impact
of drivers of change related to climate variability and land use and cover changes were
identified through past studies conducted in the study area. The data and information
extracted from the field assessments were analysed to determine the implications of direct
and indirect relationships among the identified causal factors and indicators based on
socio-ecological vulnerability, adaptive capacity and socio-ecological resilience framework
to determine ecological restoration strategies [29].

3. Study Findings and Discussion
3.1. Spatial Distribution Pattern and Spatial Relationships
3.1.1. Spatial Distribution of VTCSs in Sri Lanka

The evolutionary process of VTCSs is mainly inspired by three main factors of the dry
zone landscape: (i) geomorphology; (ii) hydrology and (iii) the nature of the substratum
(pedology, geology, lithology) [30]. The river basins associated with VTCSs experience a
rainwater deficit in one season and a surplus during the other season [30,31]. In this context,
VTCSs were built taking into consideration the natural geomorphology of the landscape
to ensure the availability of water resources throughout the year. There are 1,162 VTCSs
identified in Sri Lanka, of which more than 85% of the VTCSs are found at an elevation
range of 100–300 m amsl. The majority of VTCSs (90%) are clustered into three major zones,
namely North and North-central, North-western, and South and South-eastern [6]. The
zones are characterized by hills and valleys supported by water movement, shape and the
size of the micro-watersheds. The GIS spatial analysis found that the three VTCSs zones,
which represent 21.7% of the country, contribute to 23.3% of paddy lands in Sri Lanka.

Though there are 103 river and major stream basins recorded in Sri Lanka, many of
them do not originate from the Central Mountainous Land Massif (CMLM) [32]. The GIS
spatial analysis of this study indicated that river basins, which contain the majority of the
VTCSs do not have direct surface hydrological connectivity with the CMLM of the country
(Figure 3). The area of surface water origin of each river basin was divided into three levels
of administrative divisions: Grama Niladhari (GN) division, Divisional Secretariat (DS)
division and District Secretariat level (Table 1).

Rainfall regime and water budget are significant factors for determining the agricul-
tural and ecological productivity of the VTCS landscapes. The annual average rainfall in
the VTCS study area is 1445 mm, with a temporal variation from 875 to 1875 mm. The
distribution is characterized by a well-defined bi-modal rainfall pattern. The evaporation
from the free water surface ranges from 3.5 to 7.5 mm/day, and the average daily ambi-
ent temperature is 27 ◦C [15,33]. This indicates water is a limiting factor for agricultural
productivity in the VTCS area. The amount and distribution pattern of the rainfall cre-
ates four climatic seasons (with two major cultivation seasons) in a year. Highly distinct
rainfall regimes, seasonality and water stress have contributed to the evolution of diverse
agricultural land use and cropping patterns of the VTCS landscape. [30,34,35]. Substra-
tum features of the VTCSs zones favourably contribute to surface drainage patterns and
groundwater availability of the area. Major soil groups (Reddish Brown Earths (60%), Low
Humic Gley (30%) and alluvial (10%)) found in the VTCS with distinctly different drainage
conditions create the optimum environmental conditions for farmers to adopt a three-fold
farming system (lowland paddy, rainfed upland and homestead) in the VTCS. A highly
impervious shallow regolith aquifer found in the VTCS area is recharged by seasonal
precipitation and seepage from tanks, rivers, and streams continuously throughout the
year [30,34,35]. Thus, the above geomorphological. hydrological and substratum features
could contribute immensely to reducing the risk of natural disasters, especially climatic
stresses in the VTCS. The whole ecological and agricultural productivity in the VTCS is
governed by these features.
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Table 1. Distribution of VTCSs in river basins of Sri Lanka.

Main Cascade
Zone

River Basin River Basin
No

Number of
VTCSs *

Area of Origin **

GN Division DS Division District
Secretarit

North and
North-central

Malwathu
Oya 90 189 Demunnewa Palugaswewa Anuradhapura

Kala Oya 93 91 Palapathwala Galewela Matale

Yan Oya 67 80 Habarana Ritigala Anuradhapura

Ma Oya 69 45 Thurukkuragama Kahatagasdigiliya Anuradhapura

Modaragam
Aru 92 45 Kadurugaswewa Thalawa Anuradhapura

Paranki Aru 88 36 Madukanda Kebithigollewa Vavuniya

Mahaweli
Ganga 60 28 Ohiya Welimada Badulla

Kanakarayan
Aru 81 23 Kallikulam Vavuniya Vavuniya

Pali Aru 86 18 Puliyankulam
Noth Vavuniya North Vavuniya

Per Aru 75 17 Olumadu Vavuniya North Vavuniya

Pankulam
Aru 64 12 Galmetiyawa

North Horowpothana Trincomalee

Panna Oya 63 9 Morawewa South Morawewa Trincomalee

Kunchikumban
Aru 65 9 Galkadawala Gomarankadawela Trincomalee

Mannal Aru 73 8 Olumadu Vavuniya North Vavuniya

Nay Aru 89 7 Velankulam Vengalacheddiculam Vavuniya

North-western

Deduru Oya 99 164 Kirindiwelpola Thumpane Kandy

Mi Oya 95 67 Moragaswewa Hingurakgoda Kurunegala

Rathabala
Oya 98 24 Moragolla Kotavehera Kurunegala

South and
South-eastern

Walawe
Ganga 18 49 Pattipola NuwaraEliya NuwaraEliya

Menik Ganga 26 36 Pallegama Passara Badulla

Kirinda Oya 22 32 Ranakeliya Ella Hambantota

Mallala Oya 20 18 Balaharuwa Wellawaya Monaragala

Karanda Oya 37 12 Kotagoda Siyambalanduwa Monaragala

Kubukkan
Oya 31 9 Udakiruwa Lunugala Badulla

Kirama Oya 14 7 Radani Ara Walasmulla Hambantota

Urubokka
Oya 16 7 Urubokka Pasgoda Matara

Maduru Oya 54 7 Dehigama Rideemaliyadda Badulla

1049

* Data from [6], ** GIS spatial analysis.

3.1.2. Ensemble of the Cascade System and Its Anatomy

A village tank cascade system is an ensemble of various sizes of tanks interacting
hydrologically, ecologically, and socially to form the cascade anatomy, which creates
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dynamic relationships. A GIS spatial analysis of the study mapped the organization of
tanks and spatial setting of ecologically important components in the Mahakanumulla
VTCS, with their relative positions, is presented in Figures 4 and 5. In the Mahakanumulla
meso-catchment, hydro-ecologically interconnected tanks facilitate efficient re-use of water
from an upstream command area to the next lower tank. This contributes to an increase
in the water use efficiency for agricultural activities in the meso-catchment [36]. Further,
the tank systems perform together with socio-ecological components of the VTCS, while
providing basic needs to humans and enhancing the surrounding flora and fauna.

Macro and micro land-use components and their configuration are crucial for the
resilience and sustainability of the system. The functions of macro and micro land-use
components are interconnected, and their functions are important for the ecological stability
of the system. Ecologically important micro-land uses and their functions are discussed
in Table 2. Disruption of these ecological functions significantly interrupts the harmony
between micro and meso-catchment characteristics of VTCS landscapes. Therefore, the
sustainability and productivity of the VTCSs are dependent on a holistic understanding of
the micro-land uses and their associated functions.

Table 2. Ecologically important micro-land uses of the tank system and their functions.

Micro-Land Uses Ecological Function

Upstream immediate catchment
(Wew-ismaththa)

This is the area located just above the Gasgommana. It is an open area with few
bushes and trees. It is above the High Flood Level (HFL) around the upstream

portion of the tank bed. It raises the groundwater table through percolation and
gradually releases water to the tank through subsurface flow. Further, it filters

sediments and adsorps pollutants through phytometric trees.

Upstream shallow tank bed (Wew-thavula)

Uppermost part of the tank bed, where arrays of sedges and shrubs are grown. It
slows down the inflow to the tank, holds suspended sediment and absorbs

pollutants and reduces toxicity reaching the tank.
It provides habitat for birds and enhances biodiversity.

Upstream tree belt (Gasgommana) and
undergrowth meadow- water filter

(Perahana)

Gasgommana is a strip of trees found at the periphery of the tank bed functioning
as a wind barrier, which reduces the evaporation and temperature of the water

body.
The roots and rootlets of large trees make water cages creating a favourable

environment for fish breeding.
The meadow underneath Gasgommana (Perahana) filters the suspended silt

transported from upstream Chena lands and demarcates the territory between
humans and wild animals.

Creates habitat for birds and small wild animals.

Upstream water holes (Godawala) and forest
tank (Kuluwewa)

Traps sediment and allows clean water to enter the tank.
Provides water to wild animals and domestic cattle during dry periods.

Minimize the threats from wild animals.
Creates harmony for coexistence between elephants and village inhabitants.

Supports raising the groundwater table.

Upstream soil ridges (Iswetiya or potawetiya) Slows down and diverts inflow coming from relatively sloping lands (at present
tanks are heavily sedimented due to the absence of these soil ridges).

Downstream reservation- Interceptor
(Kattakaduwa)

Creates diverse vegetation, as this land strip has four micro-climatic phases.
Acts as a natural bio-filter absorbing salts and ferric ions in seepage water before it

moves into the paddy fields.

Common drainage (Kiul- ela and Flora along
the Kiul-ela)

Acts as the common drainage of the paddy field for removing salts and ferric ions
to improve the soil fertility of the paddy tract.

Backyard reservation around the hamlet
(Tis-bambe)

Used for sanitary purposes and as a resting place for buffaloes.
Buffaloes protect dwellers from wild animals and malaria.

Land strips across paddy fields
(Kurulu-paluwa)

A strip of paddy land left unharvested and dedicated for birds, cattle, and wild
herbivores as a ritual.

Attracts birds who ultimately control pests in paddy fields.

Source: Adapted from [37].
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The system components in Figure 5 include: 1 = tank bed; 2 = tank bund; 3 = down-
stream reservation (Kattakaduwa); 4 = upstream tree belt (Gasgommana); 5 = upstream
shallow tank bed (Wew-thaulla); 6 = upstream immediate catchment (Wew-ismaththa);
7 = shrubland (Landa); 8 = rainfed farmland (Hena); 9 = hamlet (Gangoda); 10 = up-
per catchment forest; 11 = command area paddy fields; 12 = upstream water-hole (Go-
dawala); 13 = soil ridge (Iswetiya); 14 = common drainage (Kiwul-ela); 15 = irrigation canal;
16 = stream (Ela); 17 = backyard reservation around hamlet (Tis-bambe).

3.1.3. Understanding the Spatial Metric of the VTCS

Different landscape components of the VTCS can have different levels of species
richness and functions [38,39]. Hence, proper assessment of landscape indices such as
spatial pattern and spatial configuration is important to understand how they affect the
landscape processes and relationships when certain changes occur in these indices [40–42].
Based on the spatial analysis of the study, socio-ecologically important mosaic of land
uses and hydro-ecologically integrated tanks in the Mahakanumulla VTCS create a specific
spatial pattern as shown in Figures 6 and 7. Landscape variability–multi-functionality
(number of land-use types per unit area) and landscape heterogeneity (number of land-use
patches with the same number of land use classes per unit area) are considered key features
of evaluating landscape mosaic patterns [43]. In addition, connectivity, shape, biotope
types, and eco-tone length per unit area can be taken as indicators of evaluating the VTCS
landscape variability and heterogeneity [40,43]. More diverse landscapes are generally
more resilient to climatic change than landscapes with lower diversity [44].

Land uses of the socio-ecological systems can be classified based on basic ecological
land cover units (e.g., community protected forests, pastures and natural grassland, forest,
wetlands, water, plantations), social and cultural units (e.g., local people, traditional knowl-
edge, culture), production systems (e.g., crop and livestock farming, agroforestry, urban
agriculture, peri-urban agricultural, home-gardens, inland water associated fisheries), and
relief, altitude and slope characteristic (e.g., mountain, highland, lowland, coastal river
systems) [45–47]. The land use map generated for this study revealed that the Mahakanu-
mulla VTCS comprises most of the above spatial features, providing an environment with
multiple livelihood opportunities to the people [6,37].
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3.2. Interactions among System Properties
3.2.1. Land-Water-Food Security Nexus

Water and land resources are the most critical elements in the VTCS processes as
they are multifunctional and multipurpose and directly linked to the system productivity
assuring the sustainability of food production [48]. The study analysed the on-site field
assessments data (biodiversity, land degradation), linked with information extracted from
the participatory assessments (ecosystem services and food security) of the HLP baseline
assessments [27,28], to generate a Land-Water-Food nexus map of the Mahakanumulla
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VTCS presented in Figure 8. Data and information presented in the map were validated
by referring to past studies carried out in the study area, the resource profile of the Ma-
hakanumulla VTCS, and aerial drone images used in the field assessments and GIS spatial
analysis. The nexus map revealed that many interactions between critical subsystems of
the VTCS are new and have not yet been adequately studied.
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The village tank is a seasonal small reservoir, and most of its storage is replenished
from surface inflow generated from the tank catchment area. Forest vegetation in the
tank catchment area absorbs rainfall and gradually releases water into the tank system. In
addition, a shallow regolith aquifer found in the dry zone landscape is replenished with
rainfall and maintained by the VTCSs, which brings an additional benefit. The subsurface
flow of groundwater feeds command areas situated in lower areas of the valley supporting
paddy cultivation [34]. Further, groundwater is utilized through agro-wells for irrigation
in the upland seasonal crops farming [50–52] and domestic purposes through shallow
domestic wells in homesteads [34,53].

The stored water is lost not only due to irrigation but also from evaporation, evapo-
transpiration, seepage, percolation and bund leakages. Water losses from the catchment,
tanks, canals, and fields are found to be more than that used for farming. Studies have
revealed that in an average year about 50–60% of the total tank water storage is lost without
any apparent use for downstream command area paddy cultivation [49,54]. About 20–30%
of wet seasonal (Maha) precipitation from the upstream catchment contributes to the tank
water storage. Considering factors of water loss and conveyance efficiency (80%), only
13% of the wet seasonal (Maha) precipitation is available for command area paddy culti-
vation [31]. A study found that the total tank water loss from the Mahakanumulla VTCS
during a dry month is about 12% of the total tank storage [55]. Tank characteristics (shape,
water spread area, water depth, tank bund condition, tank bed geometry, location of the
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tank, condition of the tank associated micro-land uses) and the catchment characteristics
(slope, size, shape, vegetation cover, soil condition) affect the tank water balance of the
VTCS [54]. Loss of land productivity by various forms of land degradation is a major cause
for reduction in crop and livestock production [56]. Diminishing surface and groundwater
quality due to human-induced activities, such as the excessive use of pesticides, fertilizer,
detergents, and waste dumping [7,24,25,57], can be considered major threats to human
health and sustainability of the system [13,55,58]. Surrounding vegetation in the micro-
land-use components of the tank significantly contributes to the ecological balance in land
and water resources of the VTCS.

3.2.2. Climate Change and Food Security Nexus

The climate change and the food production nexus of the system provide many challenges
and substantial trade-offs in terms of VTCSs sustainability [59,60]. Climate change increases
the likelihood of extreme climatic events and is identified as a major driver that impacts
food security and nutrition of the socio-ecological production landscapes [61–69]. The study
adopted the climate change impact chain approach (http://cigrasp.pik-potsdam.de/about/
impactchains, accessed on 6 March 2021) to map climate-related impacts on resource
subsystems of Mahakanumulla VTCS. The study analysed the participatory assessments
data and information of the HLP baseline assessment linked with the findings of past
studies carried out in the VTCSs landscapes to identify the climate-food nexus illustrated in
Figure 9. Data and information presented in the map were validated through online expert
and key informant opinion consultation. The climate-food nexus map clearly illustrates the
possible impact of climate change and changes of VTCS land uses that have taken place
recently on ecosystem health (agro-biodiversity and wild biodiversity) and human well-
being (human health, food and nutrition security, livelihood avenues, and human-wildlife
coexistence).
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The farming patterns of the VTCSs have been adopted to ensure biodiversity conser-
vation, food security, and adaptation to climatic changes. Links between agrobiodiversity
and wild biodiversity in the context of climate change and food production in the VTCSs
are important; thus, food production and biodiversity conservation may not necessarily
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be opposed to one another in the VTCS [70]. However, they should be better integrated
for achieving optimum outcomes to overcome climate change impacts. In this context,
a system-based analysis approach is essential to identify the climate-food-biodiversity
nexus [71].

The multifaceted nature of the VTCS provides diverse livelihood opportunities to the
local communities. In the Mahakanumulla VTCS, the three different farming systems that
have been practised to adapt to climate change variations are (i) irrigated paddy cultivation
in the tank command area, (ii) shifting cultivation (Chena) and other diverse seasonal field
crops farming in the upstream communal lands under rain-fed conditions and irrigation
through agro-wells, and (iii) perennial crops, mostly multipurpose trees in home gardens
that utilize mainly subsurface soil moisture [48]. Collectively, these farming systems have
maintained a high level of genetic diversity of traditional crop varieties and livestock
breeds that enhance the climate resilience of the farming systems. It is believed that a
majority of the genetic diversity of rice, including wild relatives, can be traced from these
VTCS farming landscapes [72]. Additionally, various agroecological practices adapted by
farmers are important to maintain agrobiodiversity and adapt to climate change impacts.

Home gardens in the VTCS landscape are well adapted to climate change shocks and
bear high food variety diversity, particularly neglected and underutilized fruit species,
edible medicinal plants, indigenous vegetable varieties, tuber crops and spices. The soil
moisture in these home gardens is retained for a long period, and horticulture is practised
successfully throughout the year [73]. Further, other livelihood options such as animal
husbandry, beekeeping, cottage industries, ornamental plant species, and agroforestry
are practised to meet nutritional and livelihood needs [74]. However, the full potential of
socio-ecological benefits of existing home gardens to sustain climate change impacts have
not been fully realized.

3.2.3. Biocultural Diversity, Ecosystem Services and Traditional Knowledge Nexus

VTCSs can be recognized as locally adapted traditional agricultural systems. These
systems are based on rich traditional knowledge and are known to have symbiotic re-
lationships between biodiversity and cultural elements, also referred to as bio-cultural
diversity [75]. Thus, the evidence of the relationships can be established between biological
diversity and cultural practices of the landscape. Traditional knowledge and biodiversity
are the key indicators for recognizing GIAHSs and SESPLs established by the FAO [76]
and the Satoyama initiative [77] in different regions of the world. The study used the
concept of biocultural diversity [78] integrating an ES approach [79], and blended data and
information generated from the field assessments and surveys of the HLP (biodiversity,
traditional knowledge, food security, ES and medicinal plants) [28] to unveil relationships
between biocultural elements in the Mahakanumulla VTCS as illustrated in Figure 10.

The traditional knowledge system (TKS) found in the VTCS, is a combination of the
traditional wisdom that has been pursued from long-term challenging experiences with an
assemblage of intergenerational effects and natural phenomena from cultural and spiritual
roots. Various biophysical components of the VTCS are demonstrated in traditional knowl-
edge, which is essential for the conservation and use of biodiversity and the continuous
flow of ES linked with these components. [80,81]. Traditional knowledge practised in the
VTCS is associated with agrobiodiversity and wild biodiversity for food production and
medicinal plant resources for the traditional medical system (Ayurveda). Although VTCS
landscapes have provided a broad range of variety of wild edible plants with medicinal
properties, the value of “hidden biodiversity,” which could be of potential value for human
health and nutrition is still poorly understood. Field assessments of the HLP revealed that
TKS is still used in the VTCS to enhance adaptability and resilience to climate variability,
integrating agrobiodiversity and traditional medical practices [27,28,82–84]. Around the time
of the Green Revolution (1960s), the traditional knowledge practised in these agricultural
systems was gradually eroded by the promotion of high-input intensive farming practices,
leading to the gradual disappearance of the TKS [30]. However, some of the elements of
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the TKS in VTCSs still exist and function to a certain degree, despite the forces of global
environmental change [6,83,85].
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The disappearance of such knowledge and practices within the system is considered
one of the major challenges for the sustainability of VTCSs. Identification of TKS values and
quantifying specific biocultural elements (i.e., the “social-ecological keystone” relationships
concept) [86] is an important aspect of the VTCS resilience that depends on the ability to
adapt in the face of climate change without sacrificing biological and cultural wealth and
its productive capacity [78].

3.3. Productivity Issues, Linked with Socio-Ecological Properties and Restoration Challenges

Proper understanding of social and ecological elements and their relationships to
climatic and non-climatic stresses due to changing climate and land use/cover (LULC)
is essential to ensure the sustainability of VTCS restoration projects. These stresses have
caused the ecological imbalance of the VTCS, challenging its sustainability and resilience
in the context of food production and socio-ecological values. During the past two decades,
the integrity and functions of VTCSs have been degraded significantly affecting the pro-
vision of ecosystem goods and services. For example, deterioration of micro-land use
components and upstream catchment forest has had a significant impact on biotic diversity
(species diversity, functional diversity and vegetation structure), abiotic heterogeneity (soil
erosion and land degradation) and imbalance of water budget (soil moisture, evaporation,
surface runoff), leading to a significant reduction in the capacity of supplying and regu-
lating ES in the VTCS [87–90]. Thus, the study examined the identified causal factors and
their interactive relationships [27,28] within the framework of resilience, adaptive capacity,
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and the vulnerability (RACV) concept [29], while incorporating exposure and sensitivity
indices specific to Mahakanumulla VTCS. The process is illustrated in Figure 11.
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Figure 11. Comprehensive illustration of causal factors and processes leading to reduction of overall productivity of the
VTCS landscape.

It was observed that climate, LULC and demographic changes increase the exposure
(E) and sensitivity (S) of the ecological system, disturbing the continuous supply of ES to
the social system. This creates ES supply and demand mismatches in food production in
the VTCS.

Recent studies have shown that various factors impact the ecological productivity of
the VTCSs. For instance, agricultural expansion into ecologically sensitive areas of the major
VTCS zones due to demographic changes and urbanization has led to a drastic reduction
in forest cover during the last two decades [8,89,90]. The degradation of the integrity and
functionality of the cascade ecology has resulted in the reduction of capacity to supply
ES and increased severity of droughts [6]. Further, likely increased infestation of aquatic
invasive alien plants in village tanks under climate variability can result in considerable
ecological and socio-economic productivity losses [91]. Over-reliance on agrochemicals and
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subsidized fertilizer have caused major impacts on the VTCS environment, particularly on
soil and aquatic biodiversity. The negative effect of agrochemicals and fertilizer on water
and soil properties and human health have been well documented [92–94].

Increasing incidences of extreme climate events will further aggravate the situation
challenging the system [95,96]. Climate change influences the amount, pattern and intensity
of rainfall, affecting the water availability and cropping pattern in the VTCS [97]. Heavy
rains due to extreme climate events generate very high runoff during shorter periods,
mainly due to poor management of catchment forests that increases soil erosion and tank
sedimentation. The traditional knowledge system is also a heavily influential element in
the VTCS [82] but has been neglected in the applications of climate change adaptation
and mitigation measures [96]. The combination of all these factors ultimately contributes
to lower the cropping intensity, causing farming systems to be less productive and less
resilient [6,90,98].

Though criteria have been developed to evaluate various landscape systems, such
as SESPLs and GIAHSs found in different parts of the world [76,77], there is a need to
develop more comprehensive elaborations of ensembles and anatomies of them in order
to make recommendations to prepare detailed dynamic conservation and productivity
improvement plans. Due to the high diversity and complexity of these landscapes, it would
be difficult to understand the whole process by examining a single resource system using a
specific dimension of landscape characteristics [99]. Based on the findings and discussions,
the present study provides a framework that could be used as a general guideline and to
develop indicators applicable to other landscape systems in the tropical earth zones of the
world.

4. Conclusions

Proper and systematic exploration of various landscape dimensions and properties
will enable opportunities for a better understanding of highly diverse socio-ecological
systems such as VTCSs from different perspectives of sustainability. Accordingly, the main
findings and recommendations of the study are as follows:

• The study provides a mix-approach framework to intersect and analyse resource
subsystems and a socio-ecological nexus that can help establish better sustainability
solutions to enhance the overall productivity of the VTCS.

• Increasing climate variability and changes in LULC are the key causal factors for the
reduction of ecological and socio-economic productivity of the VTCS.

• Climatic and LULC changes increase the exposure and vulnerability of the ecological
system disturbing the continuous supply of ES to the social system. This creates ES
supply and demand imbalance in food production of the VTCS.

• Ensemble of tank environs is significant for providing regulatory and supporting ES
and synergistic relationships with the provisional ES of the VTCS.

• Effect of functional diversity on the ensemble of tank environs is significant for main-
taining the ecological persistence that strongly determines the ecological productivity
of the VTCS.

• The study characterized an important socio-ecological nexus that contributes to sus-
tainable food production in the VTCS. The land-water-food nexus map revealed that
many interactions between critical subsystems of the VTCS are new and have not yet
been studied adequately.

• The climate-food nexus indicates the possible impact of climate change and changes
of VTCS land uses that have taken place recently on ecosystem health and human
well-being.

• Land-water-climate-food nexus revealed that the drought-related climatic parameters
affect the soil moisture content and reduce the upland farming systems productivity.
Thus, in-situ conservation of soil moisture in the upland farming lands is critical for
maintaining productivity in the VTCS.
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• The fact that the VTCS landscape provides habitat for a wide range of diversity of
wild edible and medicinal plants, which possess potential value for human health and
nutrition, their contribution as such is still poorly understood.

• Geospatial analysis indicated that the river basins, which contain the majority of the
cascade systems, do not have direct surface hydrological connectivity with the central
mountainous land massif of the country. Further studies are required to clarify what
is behind this phenomenon.

• The sustainability of the VTCS depends on the optimum function level of cascade
anatomy and socio-ecological nexus. Thus, future research on VTCSs needs to inte-
grate socio-economic and ecological variables from various biophysical components of
the VTCS with detailed multi-tier characterization and mapping, which can influence
optimum ecological restoration.
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