
Journal of

Marine Science 
and Engineering

Article

Dynamic Stability and Protection Design of a Submarined
Floater Platform Avoiding Typhoon Wave Impact

Shueei-Muh Lin 1,* and Yang-Yih Chen 2

����������
�������

Citation: Lin, S.-M.; Chen, Y.-Y.

Dynamic Stability and Protection

Design of a Submarined Floater

Platform Avoiding Typhoon Wave

Impact. J. Mar. Sci. Eng. 2021, 9, 977.

https://doi.org/10.3390/jmse9090977

Academic Editor: Eugen Rusu

Received: 8 July 2021

Accepted: 31 August 2021

Published: 7 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Green Energy Technology Research Center (GETRC), Department of Mechanical Engineering,
Kun Shan University, Tainan 710, Taiwan

2 Department of Marine Environment and Engineering, National Sun Yat-Sen University,
Kaohsiung 80424, Taiwan; yichen@faculty.nsysu.edu.tw

* Correspondence: smlin45@gmail.com

Abstract: This research proposes the design of a mooring system that allows the floating platform
to stably dive deep enough to prevent damage induced by typhoon waves. The design principle
of the mechanism is that the submarined floating platform with negative buoyancy is connected
to a pontoon with positive buoyancy. The diving depth of the floating platform is determined
by the rope length. If the static equilibrium of the two forces is satisfied, the diving depth will
be kept. If the diving depth of the floating platform is enough, the platform will not be directly
damaged by the wave impact. In reality, the system will be greatly subjected to the typhoon wave
and the ocean current. The stability of the system and the dynamic tension of the rope must be
significantly concerned. In this study, the linear elastic model of the mooring system composed of a
floater platform, towed parachute, pontoon, traction rope, and mooring foundation is derived. The
theoretical solution of the static and dynamic stability analysis of the mooring system is proposed.
The dynamic behaviors of the floating platform and pontoon, and the tension of the rope under the
effects of waves and ocean currents, are investigated. It is discovered that the buffer spring helps
reduce the tension of the rope. The proposed protection procedure can avoid the damage of the
floating platform and the mooring line, due to Typhoon wave impact.

Keywords: stability; tension of rope; ocean current; submarine floating platform; towed parachute;
pontoon; buffer spring

1. Introduction

Green energy technology is a key factor affecting the sustainable development of the
Earth. The green energy resources, such as wind, sun, ocean current, wave, and tidal
current, are effectively utilized to aid the low carbon society scenarios. Ocean current is
one of the potential energies to be exploited. There are several different forms of ocean
energy that are being investigated as potential sources for power generation [1–4]. It is
well known that the Kuroshio strong current flowing through the east of Taiwan is an
excellent energy resource. The current has a mean velocity of about 1.2~1.53 m/s near the
surface. The potential electricity capacity that Taiwan can harvest from it is estimated at
about 4 GW. This ocean energy source is too rich and stable to be neglected. However, the
seabed beneath the Kuroshio current is almost over 1000 m in the area mentioned above.
In addition, it is predictable that a few typhoons will strike Taiwan every year. These two
disadvantages must be tackled prior to the current power generation system construction.

Flexible mooring devices are important tools for deep-water deployment and are often
used in wave energy converters (WEC), tidal current energy converters (TCEC), and ocean
current energy converters (OCEC). The mooring configuration for wave energy converters
can be divided into (1) catenary mooring, (2) multi-catenary mooring, (3) taut spread
mooring, (4) catenary anchor leg mooring (CALM), and (5) single anchor leg mooring
(SALM) [5]. The ocean current aforementioned power generation field has a flow velocity
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of about 0.7~2 m/s towards almost one direction. The ocean current turbine converts the
kinetic energy of the current into electrical energy. Because the seabed is about 1300 m
below the sea surface, the mooring rope is very long. The use of light and high-strength
PE mooring ropes is beneficial to construction, while chains and steel ropes are not easy
to construct. A lightweight and high-strength PE rope will be straightened under large
tension. Wave energy converters (WEC) are different from ocean current power generation
in the aspect of flow direction; the first one has a time-varying direction and the latter
one has almost one direction. To fix the mooring system, the weight of the chain is an
advantage, so chains are often used to secure the wave energy converter. In comparison
to the rope and chain, the deformation of a chain is often curvilinear. Obviously, the two
mooring systems are different.

The mooring system of the floating wave energy converter (WEC) has a great influence
on the efficiency of power generation, the cost of energy transmission, normal operation,
reliability, and survivability. The deformation of a mooring chain is often curved, due to
its weight, and the analysis of dynamic behaviors with regards to that often requires a
numerical method. Therefore, the relevant works of the literature are as follows: Muliawan
et al. [6] determined the extreme responses in the mooring lines of a two-body floating
wave energy converter mooring with four catenary cables. Angelelli et al. [7] investigated
the behavior of a wave energy convertor mooring with four spread cables, by using Ansys
AQWA software. Chen et al. [4] investigated the wave-induced motions of a floating
WEC with mooring lines, by using the smoothed particle hydrodynamics (SPH) method.
Davidson and Ringwood [5] reviewed the mathematical models for mooring systems for
the wave energy converters. Touzon et al. [8] investigated three different well-known
mooring design methods applied to a floating wave energy converter system moored by
four catenaries. The three research methods that have been used are linearized frequency
domain, based on the quasi-static model of mooring cables, time-domain methods for
analyzing catenary models combined with mooring systems, and fully coupled nonlinear
time-domain methods. In their study, it is found that the viscous force of the lines sig-
nificantly affects the performance of the structure with high prestress. The line will have
a sudden load, due to the fluctuation of the floating platform, so the tension is greatly
affected by the resistance and inertial force. Paduano et al. [9] proposed the following three
mooring line models: a quasi-static method and two dynamic lumped mass methods. The
case study is a prototype of a floating oscillating water column WEC, tested in a wave
pool with three mooring lines; each line includes a riser and a counterweight. Verification,
by applying fairlead displacement and comparing the resulting tensions, showed good
consistency. Xiang et al. [10] proposed a time-domain modeling method coupled with a
finite element cable model to study the coupled nonlinear mooring dynamics of a floating
buoy in shallow water. Cerveira et al. [11] investigated the mooring system effects on the
dynamics of an arbitrary floating wave energy converter (WEC) and the efficiency of the
device by the finite differences method.

In addition, the mooring line model also plays an important role in predicting the
dynamic response of floating offshore wind turbines (FOWT). Hoeg and Zhang [12] in-
vestigated the vibration of FOWT with three different mooring line models, which were
incorporated into the 16-degree-of-freedom model, namely, linear spring model, quasi-
static model, and concentrated mass model. A stochastic dynamic analysis of the coupled
FOWT mooring line system was performed, and three different mooring line models were
compared with.

Tidal current is one of the most advantageous resources, which can be extracted from
the rise and fall of sea levels, caused by the gravitational force exerted by the moon and
sun, and the rotation of the earth. The tidal current energy is more predictable compared
to wind and wave energies [13]. The majority of moored tidal current turbine developers
agree that by using a flexibly moored system, the device will be automatically self-aligned
to the direction of the current flow [14–18].
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In general, the depth of seabed that is suitable for WEC, FOWT, and TCEC is almost
under 30 m. However, the depth of the seabed in the east of Taiwan, for current power
generation, is over 800 m. Considering the conditions of ocean current and such a deep
seabed, the mooring method for OCEC is significantly different from those of WEC, FOWT,
and TCEC. A flexible mooring device is an important tool for deployment in deep water.
The traditional designs are gravity foundations or piles in deep water; they are complex and
expensive. The flexible mooring lines and anchors are allowed to deploy in the deep water,
where the other designs may be impractical [19]. It is important to develop a mathematical
model for the mooring system for ocean current energy systems.

Zwieten et al. [20] constructed the mathematical model of an ocean current turbine as a
rigid body that is moored with three linear elastic cable elements. Cribbs [14] proposed the
conceptual design of a flexible mooring current turbine to the seabed in 300 m depth. The
system included the mooring chain, mooring line, flounder plate, tow lines for the turbine
and the platform, the marine turbine, and the rotating turbine using blade-estimated airfoils.
There is no practical work conducted so far. Chen et al. [21] successfully moored the 50 kW
ocean current turbine supplied by the Wanchi company, to the 850 m deep seabed near the
offshore of Pingtung County, Taiwan. At the current speed of 1.0 m/s, the output power
of the system is 26 kW. IHI and NEDO [22] conducted a demonstration experiment of the
ocean current turbine located off the coast of Kuchinoshima Island, Kagoshima Prefecture,
and obtained data for commercialization. The demonstration experiment was conducted
for seven days. It comprised a combination of three cylindrical floats, called pods, having
a total length of approximately 20 m, a width of approximately 20 m, and a turbine rotor
diameter of approximately 11 m. The turbine system is moored from the anchor installed
on the seabed at around 100 m. Lin et al. [23] constructed the mathematical model of the
ocean current turbine system developed in Taiwan. The floating system was tethered to
the seafloor and used the Kuroshio current to produce electricity. The theoretical solution
of the dynamic stability for the system is presented. It was found that the effects of several
parameters of the system on the resonance are significant. So far, there is little literature to
investigate the stability of the ocean current turbine system.

In general, an ocean current power generation system consists of a turbine and a
mooring system. The mooring system includes a floating platform, a towing rope, and
a mooring foundation. Although the ocean currents in the east of Taiwan are rich in
kinetic energy, typhoons threaten the area every year and are an inevitable danger to the
generation system. Generally, for ease of operation, although the turbine is not mounted to
generate electricity, the anchorage system is still kept in the sea. Obviously, when a typhoon
wave hits the floating platform, the floating platform and ropes will be damaged without a
good safety design. In this study, the authors design the protection method to protect the
mooring system, to avoid damage due to typhoon wave current. The design principle of a
wave-avoiding platform is that the floater generates negative buoyancy to dive, by letting
water flow into its inner tank, and the small surfacing pontoon has positive buoyancy.
When the two elements are connected by rope, to achieve static equilibrium, the floating
platform can remain submerged at a fixed depth. The diving depth is determined by the
rope length. If the diving depth of the floating platform is enough, the platform will not be
directly damaged by wave impact, as shown in Figure 1. In this study, the mathematical
model is developed, and an analytical solution is derived, to study the dynamic stability of
the system and the dynamic tension of the rope. Finally, the effects of several parameters
on the stability of the system and the tension of the ropes are investigated.
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Figure 1. Coordinate of the current energy system composed of pontoon, submarined floater platform, traction rope and
mooring foundation.

2. Static Deformation Analysis of Rope
2.1. Static Governing Equation

In neglect of the wave effect, a submarined floater platform with a towed parachute is
tethered to the seafloor by a rope under uniform current velocity, as shown in Figure 1a. The
vertical force equilibrium for the infinitely small element of rope is expressed
as follows:

cos φ
dT
ds
− T sin φ

dφ

ds
= fb − fg − fL (1)
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where fb is the buoyancy force per unit length and fg is the gravity force per unit length.
The lift force per unit length of rope subjected to the current velocity is as follows:

fL = CL
1
2

ρDV2 (2)

in which CL is the lift coefficient [24], ρ the density of the seawater, D the diameter of the
rope, and V is the current velocity.

The horizontal force equilibrium for the infinitely small element of rope is expressed
as follows:

sin φ
dT
ds

+ T cos φ
dφ

ds
= fd (3)

where the drag force per unit length of rope subjected to the current velocity is as follows:

fD = CD
1
2

ρDV2 (4)

in which CD is the drag coefficient [24]. The effect of attack angle on the lift and drag
coefficients is listed in Table 1.

Table 1. Effect of attack angle on the lift and drag coefficients of rope [24].

Attack Angle
(◦) 0 10 20 30 40 50 60 70 80 90

CL 0 0.067 0.176 0.269 0.418 0.518 0.494 0.324 0.136 0
CD 0.055 0.067 0.112 0.248 0.418 0.651 0.910 1.013 1.084 1.128

2.2. Exact Solution of Static Deformation

Adding Equation (1), multiplied by cosφ, and Equation (2), multiplied by sinφ, one
obtains the following:

ds =
sin φdT{

fd − cos φ
[

fd cos φ−
(

fb − fg − fL
)

sin φ
]} (5)

Subtracting Equation (1), multiplied by sinφ, from Equation (2), multiplied by cosφ,
one obtains the following:

dφ[
fd cos φ−

(
fb − fg − fL

)
sin φ

] = 1
T

ds (6)

Substituting Equation (5) into Equation (6), one obtains the following:

dT
T

=

{
fd − cos φ

[
fd cos φ−

(
fb − fg − fL

)
sin φ

]}
dφ

sin φ
[

fd cos φ−
(

fb − fg − fL
)

sin φ
] (7)

Integrating Equation (7), one obtains the following:∫ T

T1S

dT
T

=
∫ u

u0

−1
u

du (8)

where u = a cos φ + b sin φ, a = fd, b = fg + fL − fb. Further, the tension variable T(φ) is
derived via Equation (8).

T = T1s
u(φ0)

u(φ)
(9)

Substituting Equation (9) back into Equation (6), one obtains the following:
1

T1su0
s =

∫ φ

φ0

dφ

[a cos φ + b sin φ]2
=

1
a2 + b2

[
a sin φ− b cos φ

a cos φ + b sin φ
− a sin φ0 − b cos φ0

a cos φ0 + b sin φ0

]
(10)
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Further, the relation between the angle φ and the coordinate s is discovered via
Equation (10).

tan φ =
(αs + β)a + b
−(αs + β)b + a

(11)

where α =
(a2+b2)

T1Su0
, β = a sin φ0−b cos φ0

a cos φ0+b sin φ0
. Substituting Equation (11) back into Equation (9),

the static tension variable T(s) is obtained. Further, one can derive the deformation of rope
at a distance s via Equation (11).

X′(s) =
∫ s

0
cos φ(s)ds, Y′(s) =

∫ s

0
sin φ(s)ds (12)

Considering the horizontal force equilibrium, the relation among the drag force FDS,
the tension T1s, and the angle φ0, at the submarined floater platform is, as shown in
Figure 1a, as follows:

T1s sin φ0 = FDS (13)

Figure 2 demonstrates the effect of the drag force FDS on the deformed configura-
tion of the rope made of some commercial high-strength PE dyneema {Young’s modulus
E = 100 GPa, fg = 16.22 kg/m, D = 154 mm, A = 0.0186 m2, fracture strength Tfracture = 759 tons}.
The angle is assumed to be φ0 = 65◦. It is discovered that if the drag force FDS = 15 tons, the
deformed configuration of PE rope is closely straight. Moreover, the higher the drag force
FDS is, the closer the PE rope is to a straight line. Due to the fact, because the motion of
the submarined floater platform system is too complicated to solve directly, the deformed
configuration of rope is assumed to be almost a straight line in the following dynamic
analysis. Only the longitudinal elongation deformation of ropes is considered when it is
subjected to enough tension.
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Figure 2. Effect of the drag force FDS on the deformed configuration of a high-strength PE rope
[φ0 = 65◦, fg = 16.22 kg/m, D = 154 mm, A = 0.0186 m2, fb = 182.28 N/m, CD = CL = 0.3, V = 1 m/s].

3. Mathematical Model of the Submarined Floater Platform

The role of the towed parachute is to use the ocean currents to generate drag, to
stabilize the floater platform about some designed depth under the water, to prevent wave
damage. Because the seabed is about 1300 m in depth, the mooring rope is very long. The
use of lightweight and high-strength PE mooring ropes is beneficial to construction, while
chains and steel ropes are not easy to construct. It is found, in Section 2, that under the
towed parachute, the deformed configuration of PE rope is nearly straight. If the elongation
strain of rope is small, the tension of the rope is considered uniform. For example, if the
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total elongation and the length of the rope are 10 m and 2000 m, respectively, the strain is
0.005 and small. Therefore, it is under the linear elastic behaviours.

Based on the above facts for OCEC, the following assumptions are made:

− Steady current flow.
− The floating platform and the pontoon are considered as concentrated masses because

the masses of the floating platform and the pontoon are large.
− Lightweight and high-strength PE mooring ropes are considered.
− Under the towed parachute, the deformed configuration of PE rope is nearly straight.
− Small elongation strain of rope is considered.
− The tension of the rope is considered uniform, due to the three assumptions above.

Based on the assumptions, the coupled linear ordinary differential equations of the
system are derived later. Due to the wave fluctuation, the buoyance forces on the pontoon
excites the system to vibrate. The coupled vibration motion of the system includes the
horizontal and vertical oscillations.

It should be noted that this study is different to the mooring line for WEC. For WEC, a
mooring chain with large self-weight is often considered, and the deformation of a mooring
chain is curved so that the tension of the chain will change along the mooring line. In
addition, if the elongation of mooring rope is very large, the tension of the rope also
changes along the mooring line. For example, if the total elongation and the length of chain
are 2 m and 100 m, respectively, the strain is 0.02 and large. This is under the nonlinear
behaviors. Due to this, the governing equation with the variation in tension is a nonlinear
partial differential equation. The nonlinear equation is very difficult to solve directly. In
general, numerical methods, such as FEM, FDM, and others, are used to conduct analysis
of the dynamic behaviors of the mooring chain [10].

The global displacements are composed of two parts, (1) the static one subjected to
the steady current, and (2) the dynamic one subjected to the wave, as follows:

xi = xis + xid, yi = yis + yid, i = 1, 2 (14)

where the subscript ‘1’ denotes the floater platform, and the subscript ‘2’ is the pontoon.
Further, x and y are the vertical and horizontal displacements, respectively. In addition, the
total tensions of the ropes {1, 2} are also composed of two parts, (1) the static one, and (2)
the dynamic one, as follows:

Ti = Tis + Tid, i = 1, 2 (15)

Considering the PE rope, the deformed configuration of the rope is close to straight
under enough tension. The relation among the depth of the seabed Hbed, the length L1
between the anchor and the floating platform, and the length L2 between the floating
platform and the pontoon is as follows:

L2 + L1 sin θ1s = Hbed (16)

The static displacements of the three elements {0, 1, 2} are as follows:

x0 = 0, y0 = 0x1s = L1 sin θ1s, y1s = L1 cos θ1s;x2s = x1s + L2, y2s = y1s (17)

Due to x1s � x1d, the global inclined angle θ1 can be expressed as follows:

sin θ1 =
x1

L1
=

x1s + x1d
L1

≈ x1s
L1

= sin θ1s (18)

Due to the effects of the pontoon buoyancy and the short length of rope between the
floating platform and the pontoon, the horizontal dynamic displacements of the floater
and the pontoon are almost the same, y2d ≈ y1d.
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3.1. Static Equilibrium under the Steady Current and without the Wave Effect

Under the effect of the steady current and without the wave effect, the static horizontal
and vertical equilibrium of the floater platform are expressed, respectively, as follows:

T1s cos θ1s = FDS (19)

FB = T1s sin θ1s − T2s + W1 (20)

where {T1s, T2s} are the static tensions of the ropes {1, 2}. W1 is the weight of the submarined
floater. FB is the buoyancy of the floater. The total drag FDS, including those {FDSF, FDSP}
applied to the floater and the parachute, is expressed as follows:

FDS = FDSF + FDSP (21a)

where the following applies:

FDSF =
1
2

CDyFρACYFV2, FDSP =
1
2

CDyPρACYPV2, (21b)

in which
{

CDyF, CDyP
}

are the drag coefficient of the floater and the drag parachute,
respectively, and are listed in Table 2 [25,26]. The drag coefficient of the floater is considered
close to that of a bullet. The {ACYF, ACYP} is the characteristic area of the floater and the
drag parachute, respectively. V is the current velocity, and ρ is the water density.

Table 2. Shape effects on drag [25].

Shape Flat Plate at 90 deg. Bullet Airfoil Sphere Prism Parachute [26]

CD ~1.28 ~0.295 ~0.045 0.07~0.5 ~1.14 >1.3

The static vertical equilibrium of the pontoon is expressed as follows:

FB2s = W2 + T2s (22)

where {FB2s, W2} are the static buoyancy and the weight of the pontoon, respectively.

3.2. Dynamic Equilibrium with the Effects of the Steady Current the Harmonic Surface Wave

The buoyance of the pontoon, depending on the real displacement, is expressed
as follows:

FB2 = FB2s + FB2d (23a)

where FB2s is the static buoyance and FB2d is the dynamic buoyance during the dynamic
motion, excluding the static one. In this study, the harmonic surface wave is considered.
The cross-sectional area ABB of the pontoon is constant, and the dynamic buoyance is
as follows:

FB2d(t) = −ABBρg(Hw0 sin Ωt− x2d) (23b)

where g is the gravity, Hw0 is the amplitude of the wave, and Ω is the wave frequency.
The dynamic equilibrium in the vertical direction for the pontoon is as follows:

M2
..
x2d − FB2 + W2 + T2 = 0 (24)

where M2 is the mass of the pontoon 2, and T2 is the tension of rope 2. Substituting
Equations (15), (22) and (23a) into Equation (24), one obtains the following:

M2
..
x2d + T2d − FB2d = 0 (25)
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where T2d is the dynamic tension of rope 2. Considering the linear elastic model, the
dynamic tension is expressed as follows:

T2d = K12d(x2d − x1d) (26)

in which K12d is the effective spring constant and independent of the pre-static tension
T2s. ‘(x2d − x1d)’ is the dynamic elongation between the elements {1, 2}. Considering the
safety of the rope, some buffer spring is designed to serially connect the rope between
the elements {1, 2}. The effective spring constant of the rope–buffer spring connection is
obtained as follows:

K12d =
K12spring

1 + K12spring/K2rope
(27)

where K12spring is the constant of the spring connecting with rope 2. The effective spring
constant of rope 2, K2rope = E2 A2/L2, in which {E2, A2, L2} are Young’s modulus, the
cross-sectional area and length of the rope 2, respectively.

Substituting Equations (22) and (26) into Equation (25), the equation of motion, in
terms of vertical displacements {x1d, x2d} for the pontoon, is obtained as follows:

M2
..
x2d + (K12d + ABBρg)x2d − K12dx1d = fBs sin Ωt (28)

where fBs = ABBρgHw0.
The dynamic equilibrium in the vertical direction for the platform is as follows:(

M1 + me f f ,x

) ..
x1d − FBNB + W1 − T2 + T1 sin θ1 = 0 (29)

where T1 is the tension of rope 1. M1 is the mass of the platform. The dynamic effective mass
of rope 1 in the x-direction, me f f ,x =

4 fg L1 sin θ1
π2 , which is derived in Appendix A [27,28].

Substituting Equations (15) and (20) into Equation (29), one obtains the following:(
M1 + me f f ,x

) ..
x1d − T2d + T1d sin θ1 = 0 (30)

where the dynamic tension of rope 1 is as follows:

T1d = K01dδ1d (31)

where the dynamic elongation δ1d = L1d − L1 and {L1, L1d} are the static and dynamic
length of rope 1. The effective spring constant of the rope–buffer spring connection is
as follows:

K01d =
K01spring

1 + K01spring/K1rope
(32)

where K01spring is the constant of the spring connecting with rope 1 and independent of
the pre-static tension T1s. The effective spring constant of rope 1, K1rope = E1 A1/L1, in
which {E1, A1} are Young’s modulus and the cross-sectional area of rope 1, respectively.
The static and dynamic lengths are as follows:

L1 =
√

x2
1s + y2

1s, L1d =

√
(x1s + x1d)

2 + (y1s + y1d)
2 (33)

Using the Tylor formula, one can obtain the approximated dynamic elongation
as follows:

δ1d = 2
(

x1s
L1

x1d +
y1s
L1

y1d

)
(34)
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Substituting Equations (26), (31) and (34) into Equation (30), the equation of motion,
in terms of the displacements {x1d, x2d, y1d} for the platform, is obtained as follows:(

M1 + me f f ,x

) ..
x1d + [2K01d sin θ1 + K12d]x1d − K12dx2d + 2K01d

y1s
L1

sin θ1y1d = 0 (35)

The dynamic equilibrium in the horizontal direction for the platform is as follows:(
M1 + me f f ,y

) ..
y1d − (FDYP + FDYF) + T1 cos θ1 = 0 (36)

where y1d is the dynamic horizontal displacement of the platform. The dynamic effective
mass of rope 1 in the y-direction, me f f ,y =

4 fg L1 cos θ1
π2 , which is derived in Appendix A. The

horizontal force on the platform, due to the current velocity V and the horizontal velocity
.
y1d of the platform, is expressed as follows [23]:

FDYF =
1
2

CDyFρACYF
(
V − .

y1d
)2

=
1
2

CDyFρACYF

(
V2 − 2V

.
y1d +

.
y2

1d

)
≈ FCSF − CDyFρACYFV

.
y1d

FDYP =
1
2

CDyPρACYP
(
V − .

y1d
)2

=
1
2

CDyPρACYP

(
V2 − 2V

.
y1d +

.
y2

1d

)
≈ FCSP − CDyPρACYPV

.
y1d (37)

This is because in considering
.
y1d � V, the term ‘

.
y2

1d’ is negligible.
An ocean current power generation system consists of a turbine and a mooring system.

The turbine is forward connected to a floating platform. If the floating platform interferes
with the ocean current and makes the current flow field to the turbine turbulent, the
efficiency of the turbine will be reduced. For this reason, the streamlined geometry of the
floating platform is designed to reduce its viscous resistance and the interference of the
flow field. Therefore, the damping resistance of the floating platform will be much smaller
than that of the towed parachute, FDYF � FDYP.

Substituting Equations (15), (19), (20), (34) and (37) into Equation (36), one obtains
the following:(

M1 + me f f ,y

) ..
y1d + ρV

(
CDyP ACYP + CDyF ACYF

) .
y1d +

(
2K01d

y1s
L1

cos θ1

)
y1d +

(
2K01d

x1s
L1

cos θ1

)
x1d = 0 (38)

It is discovered, from Equation (38), that the second term is the damping effect, due to
the floater and parachute for vibration of the system. The damping effect depends on the
following parameters: (1) the damping coefficient CDy, (2) the damping area ACY, and (3)
the current velocity V. Finally, the coupled equations of motion, in terms of the dynamic
displacements {x1d, x2d, y1d}, are discovered as Equations (14), (21a), (21b) and (24). It is
observed, from the dynamic equations of motion, Equations (28), (35) and (38), that in the
linear elastic model, the dynamic motion is independent of the pre-static tensions.

These equations can be rewritten in the matrix format as follows:

M
..
xd + C

.
xd + Kxd = Fd (39a)

where the following applies:

xd =

 x1d
x2d
y1d

, M =

 M1x 0 0
0 M2 0
0 0 M1y

, C =

 C1 0 0
0 C2 0
0 0 C3

,

K =

 K11 K12 K13
K21 K22 0
K31 0 K33

, Fd =

 0
fBs
0

 sin Ωt ≡ Fds sin Ωt

M1x = M1 + me f f ,x, M1y = M1 + me f f ,y
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K11 = 2K01d sin θ1 + K12d, K12 = −K12d, K13 = 2K01d
y1s
L1

sin θ1

K21 = −K12d, K22 = (K12d + ABBρg), K23 = 0
K31 = 2K01d

x1s
L1

cos θ1, K32= 0, K33 = 2K01d
y1s
L1

cos θ1

C1 = 0, C2 = 0, C3 = ρV
(
CDyP ACYP + CDyF ACYF

) (39b)

3.3. Solution Method

The solution of Equations (39a) and (39b) is assumed to be the following:

xd(t) =

 x1d
x2d
y1d

 = xdc cos Ωt + xds sin Ωt (40)

where xdc =
[

x1dc x2dc y1dc
]T , xds =

[
x1ds x2ds y1ds

]T . Substituting
Equation (40) into Equations (39a) and (39b), one obtains the following:

−Ω2I(xdc cos Ωt + xds sin Ωt) + M−1C(−Ωxdc sin Ωt + Ωxds cos Ωt)
+M−1K(xdc cos Ωt + xds sin Ωt) = Fds sin Ωt

(41)

Multiplying Equation (27) by cosΩt, and integrating it from zero to the period T, 2π/Ω,
Equation (41) becomes the following:

−Ω2Ixdc + ΩM−1Cxds + M−1Kxdc = 0 (42)

Based on Equation (42), the relation between {xdc, xds} is as follows:

xdc = −ΩA−1
(

M−1C
)

xds (43)

where A =
(
M−1K−Ω2I

)
.

Multiplying Equation (41) by sinΩt, and integrating it from zero to the period T, 2π/Ω,
Equation (41) becomes the following:

−Ω2Ixds −ΩM−1Cxdc + M−1Kxds = Fds (44)

Substituting Equation (43) into Equation (44), the solution is found to be the following:

xds = B−1Fds =
adjB
|B| Fds (45)

where B =
[
A + Ω2(M−1C

)
A−1(M−1C

)]
. The frequency equation of the system is

|B| = 0 (46)

One can determine the natural frequencies of the system via Equation (46).
Based on Equation (45), one can obtain the dynamic displacement xds. Further, sub-

stituting it into the Equation (43), the dynamic displacement xdc is obtained. Finally,
substituting the dynamic displacements {xdc, xds} back into the tension Formulas (31)
and (34), the tension of rope 1 is found as the following:

T1d = T1dc cos Ωt + T1ds sin Ωt (47)

where T1dc = 2K01d

(
x1s
L1

x1dc +
y1s
L1

y1dc

)
, T1ds = 2K01d

(
x1s
L1

x1ds +
y1s
L1

y1ds

)
.

Similarly, substituting the dynamic displacements {xdc, xds} back into the tension
Formula (26), the tension of rope 2 is found to the following:

T2d = T2dc cos Ωt + T2ds sin Ωt (48)
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where T2dc = K12d(x2dc − x1dc), T2ds = K12d(x2ds − x1ds).

4. Numerical Results

It is discovered, from Equation (38), that the second term is the damping effect for
the vibration of the system. The larger the cross-sectional area ACYP is, the greater the
damping effect is. Figure 3a demonstrates the effects of the cross-sectional area of the towed
parachute, ACYP, and the wave frequency f on the dynamic displacements of the system.
It is found that due to the damping effect, the larger the cross-sectional area ACYP is, the
greater the amplitude of resonant displacements are. Figure 3b,c demonstrate the mode
shapes of vibration at the wave frequencies {0.2, 0.5} (Hz), respectively. It is also found,
from Figure 3d,e, that the larger the cross-sectional area ACYP is, the greater the amplitude
of the resonant dynamic and total tensions of rope are. Moreover, the damping resistance of
the floating platform will be much smaller than that of the towed parachute, FDYF � FDYP.
Based on Equation (A13), the effective masses of rope 1 are calculated, me f f ,x = 6.038tons,
me f f ,y = 9.714tons, which are significantly smaller than that of the floater, M1 = 200 tons.
It is numerically found that for the cases of ACYP = 20 m2, the resonant dynamic and
total tensions without the effects of the effective mass and the damping resistance of the
floating platform are slightly larger than those with the effects. However, for the cases of
ACYP = 65 m2, the effects on the dynamic and total tensions are negligible.

Figure 4 demonstrates the effect of the mass of the pontoon M2 and the wave frequency
f on the vibration spectrum of the system under the current velocity V = 1 m/s. It is
observed, from Figure 4, that the larger the mass of the pontoon M2 is, the slightly smaller
the resonant frequency is. The amplitudes of the displacements of the platform and the
pontoon, and the dynamic and total tensions of the ropes at the lower resonant frequency
for the system with a larger mass are higher than those with a lower mass. Conversely, the
same responses at the higher resonant frequency, for the system with a lower mass, are
higher than those with a higher mass.

Although the depth of the seabed Hbed = 1300 m and the static diving depth of the
platform L2 = 60 m are the same in Figures 3 and 4, the values of the inclined angle of rope 1
(θ1) and the corresponding length of rope 1 (L1) are (θ1 = 40◦, L1 = 1929.1 m) in Figure 3
and (θ1 = 25◦, L1 = 2934 m) in Figure 4. The results indicate that the longer the length of
the rope is, the smaller the rigidity of the structure is. Further, the smaller the rigidity of
the structure is, the lower the resonant frequencies are. The phenomenon is verified by
Figures 3 and 4. Moreover, the longer the length of the rope is, the greater the buffering
effect for impact is. It is also verified, by Figures 3 and 4, that the longer the length of the
rope is, the lower the dynamic and total tensions of the ropes are.
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Figure 3. Effects of the cross-sectional area of the towed parachute, ACYP and the wave frequency
f on the dynamic response of the system including (a) dynamic displacements {x1d, x2d, y1d},
(b) mode shape 1, (c) mode shape 2, (d) dynamic tensions of rope {T1d, T2d}, (e) total tensions
of rope {T1, T2}. [ABB = 3 m2, ACYF = 15 m2, CDYF = 0.3, CDYP = 1.28, E1 = E2 = 100 GPa,
Hbed = 1300 m, H0 = 10 m, M1 = 200 tons, M2 = 5 tons, me f f ,x = 6.038 tons, me f f ,y = 9.714 tons,
L1 = 1929.1 m, L2 = 60 m, V = 1 m/s, θ1 = 40◦].
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Figure 4. Effects of the mass of the pontoon, M2, and the wave frequency f on the dynamic re-
sponse of the system including (a) dynamic displacements {x1d, x2d, y1d}, (b) dynamic tensions of
rope {T1d, T2d}, (c) total tensions of rope {T1, T2}. [ABB = 3 m2, ACYF = 15 m2, ACYP = 65 m2,
CDYF = 0.3, CDYP = 1.28, E1 = E2 = 100 GPa, Hbed = 1300 m, H0 = 10 m, M1 = 200 tons,
me f f ,x = 8.151 tons, me f f ,y = 17.480 tons, L1 = 2934 m, L2 = 60 m, V = 1 m/s, θ1 = 25◦].

Obviously, the larger the area ABB is, the greater the rebound capacity is. If the
deviation in the diving platform from the static stability occurs, there is a great restoring
force to make the platform quickly return to its original position, due to the larger area of
the pontoon. However, the larger the area ABB is, the greater the impact force, due to the
strong wave, is. It easily results in dynamic instability.

Figure 5 shows the effect of the cross-sectional area of the pontoon, ABB, on the
dynamic response of the system. It is found that the larger the area ABB is, the greater
the amplitudes of the displacements of the platform and pontoon, and dynamic and total
tensions of the ropes are.
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Figure 5. Effects of the cross-sectional area of the pontoon, ABB, and the wave frequency f on the
dynamic response of the system including (a) dynamic displacements {x1d, x2d, y1d}, (b) dynamic
tensions of rope, {T1d, T2d}, (c) total tensions of rope, {T1, T2}. [M2 = 5tons, other parameters are
the same as those in Figure 4].

To save the cost of the rope, the rope angle becomes larger, or the large cross-sectional
area of the pontoon is used for some reason. As discussed above, the dynamic tension
of the rope will be too large. Here, we will study the effect of the buffer spring on
reducing the dynamic response. Considering the parameters {θ1 = 40◦, ABB = 7 m2},
Figure 6 shows the dynamic displacements spectrum of the platform and the pontoon.
It is found, from Figure 6a, that the resonant frequencies of the system with two buffer
springs, K01spring = K12spring = 0.5K1rope, are lower than those without the buffer spring.
The dynamic displacements of the former are greater than those of the latter. This is because
the rigidity of the system with the buffer spring is smaller than that without the buffer
spring. Further, Figure 6b shows the dynamic displacements spectrum of two systems, (1)
with buffer spring 2 only,K12spring = 0.5K1rope, and (2) with buffer spring 1 only, K01spring =
0.5K1rope. Comparing Figure 6a,b, it is found that the dynamic displacements with the two
buffer springs, K01spring = K12spring = 0.5K1rope, are almost the same as those with buffer
spring 1 only, K01spring = 0.5K1rope. Moreover, the dynamic displacements without the
buffer springs are almost the same as those with buffer spring 2 only, K12spring = 0.5K1rope.
Based on this fact, it is implied that the effect of buffer spring 1 is significant. However, the
effect of buffer spring 2 is negligible. This fact is verified by Figures 7 and 8. With the same
parameters of Figure 6, Figure 7 demonstrates the dynamic tensions of ropes. The dynamic
tensions of the two systems, (1) without the buffer springs and (2) with buffer spring 2
only, K12spring = 0.5K1rope, are almost the same and are very large. However, the dynamic
tensions of the two systems, (1) with two buffer springs, K01spring = K12spring = 0.5K1rope,
and (2) with buffer spring 1 only, K01spring = 0.5K1rope, are almost the same and are very
small. The same phenomenon for the total tensions of ropes is presented in Figure 8.
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Figure 6. Effects of the buffer spring connecting to the ropes and the wave frequency f on the
dynamic displacements of the system, {x1d, x2d, y1d}. [ABB = 7 m2, θ1 = 40◦, me f f ,x = 6.038 tons,
me f f ,y = 9.714 tons, L1 = 1929.1 m, other parameters are the same as those in Figure 5].
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Figure 7. Effects of the buffer spring connecting to the ropes and the wave frequency f on the
dynamic tensions of rope, {T1d, T2d}. [ABB = 7 m2, θ1 = 40◦, me f f ,x = 6.038 tons, me f f ,y = 9.714 tons,
L1 = 1929.1 m, other parameters are the same as those in Figure 5].
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Figure 8. Effects of the buffer spring connecting to the ropes and the wave frequency f on the
total tensions of rope, {T1, T2}. [ABB = 7 m2, θ1 = 40◦, me f f ,x = 6.038 tons, me f f ,y = 9.714 tons,
L1 = 1929.1 m, other parameters are the same as those in Figure 5].
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According to the investigation report of the typhoon invading Taiwan from 1897 to
2019, in the Central Meteorological Bureau Library of Taiwan, the maximum offshore sea
wave height of Taiwan’s Green Island during the 50-year regression period is about 12.6 m,
the corresponding period is about 14.7 s. The wave spectrum is listed in Table 3 [29]. In
this study, the wave height and wave frequency are assumed to be 20 m and 0~1.2 Hz,
respectively, in all the cases for investigating the dynamic behaviors of the system. As a
result, it is found that the maximum tension of ropes is significantly lower than the fracture
strength of the high-strength PE Dyneema, which is 759 tons. It is theoretically proved that
the protection method can avoid the damage of the floater platform and the mooring line,
due to Typhoon wave impact.

Table 3. Typhoon wave spectrum off Green Island, Taiwan [29].

Regression
Period (Years) 200 100 50 25 20 10

Wave Direction Hs
(m)

Ts
(s)

Hs
(m)

Ts
(s)

Hs
(m)

Ts
(s)

Hs
(m)

Ts
(s)

Hs
(m)

Ts
(s)

Hs
(m)

Ts
(s)

N 14.8 21.3 3.7 20.5 12.5 19.6 11.2 18.5 10.8 18.2 9.3 16.9

NNW 12 20.1 10.6 18.5 9.1 16.8 7.7 14.9 7.2 14.3 5.7 12.3

NW 3.1 7.4 2.7 6.7 2.2. 6 1.8 5.3 1.7 5 1.3 4.3

WNW 2.9 6 2.5 5.6 2.1 5.2 1.8 4.7 1.7 4.6 1.3 4.1

W 1.9 4.7 1.8 4.5 1.6 4.3 1.5 4.1 1.4 4 1.2 3.7

WSW 3 7.5 2.7 7.1 2.5 6.7 2.2 6.2 2.1 6 1.8 5.5

SW 9.3 13.5 8.2 12.9 7.1 12.2 6 11.4 5.7 11.2 4.6 10.3

SSW 12.4 15.2 11.4 14.7 10.4 14.3 9.2 13.7 8.9 13.5 7.6 12.8

S 15.3 15.5 14 15.1 12.6 14.7 11.2 14.2 10.7 14 9.0 13.3

5. Conclusions

In this study, the proposed protection method can avoid the damage of the floating
platform and the mooring line caused by the Typhoon wave. The linear elastic model
of the system, composed of a submarined floating platform, towed parachute, pontoon,
traction rope, and mooring foundation, is derived. The theoretical solution of the static
and dynamic stability analysis of the system is proposed. The effects of several parameters
on the dynamic response spectrum, due to wave excitation, are discovered as follows:

(1) The larger the cross-sectional area ACY is, the greater the amplitudes of the resonant
dynamic and total tensions of the rope are.

(2) The longer the length of the rope L1 is, the lower the dynamic and total tensions of
the ropes are.

(3) The larger the area of pontoon ABB is, the greater the amplitudes of the displacements of
the submarined floater platform and pontoon, and dynamic tensions of the ropes are.

(4) The effect of buffer spring 1 on reducing the dynamic tension of ropes is significant.
However, the effect of buffer spring 2 is negligible.
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Appendix A Effective Masses {meff,x,meff,y}

For the longitudinal vibration of a rope, the governing equation is as follows:

EA
∂2us

∂s2 = ρA
∂2us

∂t2 , s ∈ (0, Ls), s = x, y (A1)

The boundary conditions are as follows:
At s = 0, the following:

us = 0 (A2)

At s =Ls, the following:
∂us

∂s
= 0 (A3)

The solution of Equation (A1) is assumed as the following:

us(s, t) = U(s) sin ωt (A4)

Substituting Equation (A4) into Equation (A1), one obtains the following:

E
d2U
ds2 + ρω2U = 0, s ∈ (0, Ls) (A5)

The transformed boundary conditions are as follows:
At s = 0, the following:

U = 0 (A6)

At s = Ls, the following:
dU
ds

= 0 (A7)

The solution of Equation (A5) is assumed to be the following:

U(s) = eλs (A8)

Substituting Equation (A8) into Equations (A5)–(A7), the mode shape and frequency
are obtained [27].

Un(s) = sin
(2n− 1)πs

2Ls
, n = 1, 2, 3, . . . (A9)

ωn =
(2n− 1)π

2Ls

√
E
ρ

, n = 1, 2, 3, . . . (A10)

For simplicity, the rope system is simulated by an effective mass–spring model. Its
equation of motion is as follows [28]:

me f f ,s
d2uLs

dt2 + ke f f ,suLs = 0 (A11)
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where uLs is the displacement at the free end. The effective spring constant ke f f ,s = EA
Ls

.
Further, meff,s is the effective mass. The natural frequency is as follows:

ω1 =

√
ke f f ,s

me f f ,s
(A12)

The first natural frequency in the effective mass–spring model is the same as that in
the distributed model. Equating Equations (A10)–(A12), the effective mass is obtained
as follows:

me f f ,s =
4 fgLs

π2 , s = x, y (A13)

where the mass per unit length of rope 1, fg = ρA, Lx = L1 sin θ1 and Ly = L1 cos θ1.
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