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Abstract: The particle swarm optimisation (PSO) algorithm has been widely used in hull form
optimisation owing to its feasibility and fast convergence. However, similar to other intelligent
algorithms, PSO also has the disadvantages of local premature convergence and low convergence
performance. Moreover, optimization data are not used to analyse and reduce the range of values for
relevant design variables. Our study aimed to solve these existing problems in the PSO algorithm and
improve PSO from four aspects, namely data processing of particle swarm population initialisation,
data processing of iterative optimisation, particle velocity adjustment, and particle cross-boundary
configuration, in combination with space reduction technology. The improved PSO algorithm was
used to optimise the hull form of an engineering vessel at Fn = 0.24 to reduce the wave-making
resistance coefficient under static constraints. The results showed that the improved PSO algorithm
could effectively improve the optimisation efficiency and reliability of PSO and effectively overcome
the drawbacks of the PSO algorithm.

Keywords: particle swarm optimisation (PSO); space reduction; hull form optimisation; wave-
making resistance coefficient

1. Introduction

With the continuous improvement of computer processing power and the accuracy of
computational fluid dynamics (CFD), CFD-based hull form optimisation has been rapidly
developed. This directly applies hull surface parametric modification, CFD numerical simu-
lations, and optimisation technologies to the design of new ships and eventually obtains the
hull form with the best performance under given constraints. Many scholars have carried
out considerable research on hull form optimisation, including D. Peri [1,2] of Italian Ship
Model Basin, Rome; S. Harries [3] of the Technische Universität Berlin; Yang C [4–6] of
George Mason University, USA; and Feng Baiwei [7–9] and Chang Haichao et al. [10–12] of
Wuhan University of Technology.

At present, the research pertaining to hull form optimisation includes the follow-
ing. (1) Design space reduction. Harries and Abt [13] reported a massive reduction
of parameters that spanned the design space and utilized the gradient information as
derived from adjoint simulations. D’Agostino et al. [14] and Serani et al. [15] reduced
the dimensionality of the design space by providing a shape reparameterization using
Karhunen–Loeve expansion/principal component analysis (KLE/PCA) eigenvalues and
eigenmodes. Khan et al. [16] adopted a two-step learning methodology to identify a lower-
dimensional latent space based on the combination of geometry- and physics-informed
principal component analysis and active subspace method, which can be utilized for
efficient design exploration and the construction of improved surrogate models for physics-
based prediction of designs. Tezzele et al. [17] pioneered the application of a methodology
based on active subspace properties to the naval architecture field for parameter space
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reduction. (2) Metamodel. Serani et al. [18] reported a study on four adaptive sampling
methods of a multi-fidelity metamodel, based on stochastic radial basis functions (RBFs),
to achieve a global design optimisation using expensive CFD computer simulations and
adaptive grid refinement. Chunna et al. [19] proposed an effective global optimisation
method that integrates the adaptive filling algorithm based on fuzzy clustering into the
kriging model. Zhang et al. [20] proposed a data prediction method based on improved
particle swarm optimisation (IPSO)-Elman NN to improve the prediction accuracy of total
resistance. Coppedè et al. [21] proposed a Gaussian process-response surface method (GP-
RSM) based on an ordinary kriging model, which was developed to enhance the evaluation
speed of the quantity of interest in the design process and applied to improve the calm-
water performance of the KCS. (3) Efficient optimisation algorithm. Pellegrini et al. [22]
proposed a multi-objective derivative-free and deterministic global/local hybrid algorithm
as an efficient and effective solution to SBDO problems. Tezdogan et al. [23] proposed a
hybrid algorithm to solve the complicated nonlinear optimisation problem of fishing boat.
Serani et al. [24] presented study of DPSO, with application to simulation-based design in
ship hydrodynamics. Leotardi [25] describes a class of novel initializations in deterministic
particle swarm optimization (DPSO) for approximately solving costly unconstrained global
optimization problems.

Owing to the complex spatial characteristics of hull form design optimisation, a gen-
eral mathematical method cannot provide feasible solutions in the actual optimisation
process. Therefore, intelligent optimisation algorithms, such as a genetic algorithm (GA) or
particle swarm optimisation (PSO), are used in hull form optimisation to obtain approx-
imately optimal solutions. PSO is a population-based stochastic optimisation technique
introduced by Kennedy and Eberhart in 1995 [26,27]. The PSO algorithm is easier to
implement, has fewer parameters, and has proven to converge faster than conventional
optimisation methods such as GA [28,29]. Owing to its simplicity, ease of implementation,
and high convergence speed [30,31], the PSO algorithm has been widely used for hull
form optimisation.

Similar to other intelligent optimisation algorithms, the PSO algorithm also exhibits
the disadvantages of local premature convergence and low convergence performance.
To solve such problems, many scholars have improved PSO. Because the PSO algorithm
falls into local optimisation in high-dimensional problems, Cheng et al. [30] modified the
particle diversity in the optimisation process to improve the optimisation performance.
Mathew M. Noel [31] combined PSO with the gradient algorithm to increase the local
optimisation ability, thereby improving the algorithm optimisation efficiency and optimisa-
tion progress. Shi et al. [32] made a comprehensive improvement on the inertial weight
adjustment strategy, differential evolution, and local variable depth search of PSO, which
reasonably and efficiently balanced the global and local search abilities of the algorithm.
Reungsinkonkarn et al. [33] applied search space reduction (SSR) to PSO to eliminate the
optimal region that may not find the optimal solution through SSR and to improve the
algorithm optimisation efficiency. Zhang et al. [34] proposed a multi-objective discrete PSO
algorithm based on a fine perturbation strategy (EPSMODPSO), which performs well in
the diversity and convergence of the obtained Pareto optimal frontier. It can reconfigure
the ship power system and solve other multi-objective discrete optimisation problems.
To improve the premature convergence and low search accuracy of conventional PSO,
Wang et al. [35] proposed PSO with an enhanced global search and local search (EGLPSO)
to improve global and local search. This algorithm can greatly improve the performance of
conventional PSO in terms of search accuracy, search efficiency, and global optimality.

Our study achieved certain improvement of the PSO algorithm in terms of its existing
problems. In the process of particle initialisation and optimisation iteration, the space
reduction method was introduced to reduce the particle-changing space in the optimisation
process. The particle velocity and the cross-boundary particles after space reduction were
processed to improve the particle diversity in the optimisation process. The method
was verified by function examples. The results showed that the improved algorithm
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can improve the optimisation efficiency while ensuring the optimisation performance.
Finally, the improved PSO algorithm was applied to the hull form optimisation of an
engineering vessel.

This article has five sections. Section 2 introduces the space reduction technique.
Section 3 describes the improved PSO algorithm. Section 4 verifies the feasibility of the
improved optimisation algorithm by function examples. Section 5 applies this algorithm to
the optimisation of the bow shape of a certain engineering ship. Section 6 summarises the
research and describes the future directions.

2. Space Reduction Technique Based on Partial Correlation Analysis

Space reduction is a practical division and reduction of the design space through
exploration and analysis, including dimensional reduction and size reduction. Hull form
optimisation is a typical and complex engineering problem. It contains a large amount
of numerical simulation with complex spatial design performance, leading to low opti-
misation efficiency and difficulty in obtaining global optimal solutions. To improve its
efficiency and performance, many scholars have introduced space reduction into hull
form optimisation [8,36]. In our study, we used the partial correlation analysis for design
space reduction.

2.1. Partial Correlation Analysis

A correlation coefficient symmetry matrix composed of simple coefficients is required
to calculate the partial correlation coefficient [37,38]. There are n variables X1, X2, . . . , Xn,
the Pearson correlation coefficient between any two variables Xi, Xj is rij(i, j = 1, 2, . . . , n),
and the Pearson correlation coefficient is calculated as

ri j =
∑ (Xi − Xi)(Xj − X j)√
∑ (Xi − Xi)

2
(Xj − X j)

2
(1)

where X is the average. The following correlation coefficient symmetry matrix is composed
of simple correlation coefficients:

R =


r11 r12 . . . r1n
r21 r22 . . . r2n
. . . . . . . . . . . .
rn1 rn2 . . . rnn

 (2)

The partial correlation coefficient between any two variables Xi and Xj is Rij, and the
equation for calculating the partial correlation coefficient is

Rij =
−∆ij√
∆ii · ∆ii

(3)

where ∆ij, ∆ii, and ∆jj are algebraic cofactors corresponding to elements rij, rii, and rjj in in
the symmetric matrix of the correlation coefficient, respectively.

The correlation coefficient between variables and objectives can be obtained with ap-
propriate data samples using the above theory. A positive sign before the partial correlation
coefficient represents a positive linear relationship between the variable and the target;
the negative sign represents a negative linear relationship between the variable and the
target; the distribution range of the coefficient is between 0 and 1; and the numerical value
indicates the linear correlation between the design variable and the target. The feasibility
study of partial correlation analysis for space reduction is detailed in Wu’s article [36].



J. Mar. Sci. Eng. 2021, 9, 955 4 of 20

2.2. Partial Correlation Coefficient and Degree-of-Space Reduction

The relationship between the value of the partial correlation coefficient and the spatial
distribution of variables is investigated by using a single objective function. Equation (4) is
used in the first step.

y = |x| (4)

When x ∈ [0, 1], the relationship between the target and variable is as shown in
Figure 1. The figure shows that there is a positive linear relationship between the target
and the variable. When x = 0, the minimum value of the function y = 0 is obtained. The
distribution space of x is divided into two equal parts; (0, 0.5) is defined as the lower space,
(0.5, 1) is the upper space, and x = 0.5 is the median of the variable, which is the midpoint
of the x distribution space. Fifty random samplings are performed to calculate the function
values and perform partial correlation analysis. The obtained partial correlation coefficient
between y and x is 1. It is concluded that the smaller the value of x, the is smaller the value
of y. Therefore, the upper space of the x variable is irrelevant for obtaining the minimum
value of the function and can be discarded.
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Figure 1. Function relationship plot (x ∈ [0, 1]).

When x ∈ [−1, 1], the relationship between the target and the variable is as shown in
Figure 2. It is impossible to analyse the correlation between the variable and the function
value from the overall space of the variable. Similarly, the distribution space of x is divided
into two equal parts. When x is the variable median value x = 0, the function value
is smallest. One hundred samplings are randomly to calculate the function values and
perform partial correlation analysis. The obtained partial correlation coefficient between
y and x is 0.0055. Theoretically, the partial correlation coefficient obtained by uniform
sampling in the variable space should be 0. The resulting partial correlation coefficient
is a value close to 0 owing to random sampling. Therefore, it is impossible to determine
whether the upper and lower spaces are valuable for obtaining the minimum value of the
function, and these spaces cannot be discarded.
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The function with the local maximum value (Equation (5)) is selected for further study.
The relationship between the target and variable is as shown in Figure 3. The characteristic
of this function is that there are many local optimal solutions, and the minimum value
y = 0 is obtained when x = 0, which is closer to the actual optimisation than Equation (4).
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y = sin(x2) + |x| (5)
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The function is randomly sampled 1000 times in different variable ranges, and a partial
correlation analysis is performed. The results are shown in Table 1. By testing the ranges of
different x values, it can be found that when the optimal value is the median of the variable,
the partial correlation coefficient is close to 0; when the optimal value is farther from the
median of the variable and is closer to the boundary value of a side, the partial correlation
coefficient is close to 1. Similarly, it can be concluded that when the partial correlation
coefficient is 0, the space on both sides of the median value cannot be discarded; when the
partial correlation coefficient is 1, the space on one side can be discarded by determining
the sign of the partial correlation coefficient.

Table 1. Function analysis results.

Range of x [−5,5] [−4,5] [−3,5] [−2,5] [−1,5] [0,5]

Variable median x = 0 x = 0.5 x = 1 x = 1.5 x = 2 x = 2.5
Optimal value x = 0

Partial correlation
coefficient −0.021 0.260 0.524 0.736 0.872 0.894

Therefore, the relationship between the partial correlation coefficient and spatial
reduction is defined as follows: when the partial correlation coefficient is 0, the variable
space is not reduced, and the space reduction is 0% of the initial space; when the partial
correlation coefficient is 1, the upper (lower) space is abandoned, and the space reduction
is 50% of the initial space.

3. Improved Particle Swarm Optimisation
3.1. Particle Swarm Optimisation

In the PSO algorithm, each particle contains three pieces of information: velocity,
location, and fitness. Of these, the velocity information determines the direction change of
a particle; the location information contains the applicable values of parameters; the fitness
represents the performance of a particle. The updated equations of particle velocity and
particle position are shown in Equations (6) and (7), respectively.

vi
j = w · vi−1

j + c1r1(pbestj − pi−1
j ) + c2r2(gbest− pi−1

j ) (6)

pi
j = pi−1

j + vi
j (7)

where vi
j is the velocity of the i-th generation, j-th particle; pi

j is the position of the i-th
generation, j-th particle; w is the weighting factor, whose magnitude affects the inertia
of the particle flight; c1 and c2 are learning factors, affecting the local and global fusion
effect, respectively; r1 and r2 represent random numbers from 0 to 1; Pbest represents the
optimal position information of the particles and records the optimal position of individual
particles; and gbest represents the global optimal position information and records the
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optimal position of the particle group. In our PSO algorithm, the value of w was 0.8;
c1 = c2 = 2.

3.2. Improvement of Particle Swarm Optimisation

In this study, the PSO algorithm is improved with respect to data processing of particle
swarm population initialisation, data processing of iterative optimisation, particle velocity
adjustment, and particle cross-boundary configuration.

3.2.1. Data Processing of Particle Swarm Population Initialisation

The PSO algorithm generally uses Equation (8) for particle initialisation [26,39,40].{
p0

j = rand× (pmax − pmin) + pmin

v0
j = rand× (vmax − vmin) + vmin

(8)

where rand is a random number uniformly distributed between 0 and 1; pmax and pmin are
the upper and lower boundary values of the particle position component, respectively; and
vmax and vmin are the upper and lower boundary values of the particle velocity component,
respectively.

Figure 4 illustrates the examples of random sampling applied to the 6-dimensional
and 10-dimensional optimization problems, wherein two variables are selected for two-
dimensional (2D) projection. We observed that data clustering or data omission existed in
the sample space. Furthermore, uniform design (UD) was used to improve the initialization
of the PSO algorithm to ensure uniformity of the initial particles in the space.
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UD, proposed by Fang [41] in China, is an experimental design method developed
using the uniform distribution theory. In the uniform test, the level of each factor was
evenly distributed within the test range, and each level was tested only once. Figure 5
depicts the projection of the sample points generated by the UD on a two-dimensional
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plane. We observed that the distribution of sample points was uniform regardless of the
dimensionality of the design variables.
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3.2.2. Data Processing of Particle Iterative Optimisation

The optimisation data in the iterative optimisation process also contain many hidden
relationships that cannot be visually displayed. The optimisation process could generate a
large amount of data. The analysis of these data can provide guidance to the subsequent
particle optimisation, making the particles quickly cluster into a space worth exploring.
So, this study used partial correlation analysis to perform datamining on the particles and
the fitness values and thus obtain their relationships and complete the reduction of the
initial search space of the particles. The partial correlation coefficient was calculated by
Equations (1)–(3). According to the conclusions drawn in Section 2.2, when the partial
correlation coefficient is set to 0, the range of the relevant design variables is not reduced;
when the partial correlation coefficient is 1, the values of the relevant design variables are
50% of those in the initial range. In this article, two different methods are proposed to
establish the relationship between the partial correlation coefficient and the degree of space
reduction, which are the segmentation function reduction method as shown in Table 2 and
the linear function reduction method as shown in Equation (9), where, Rij represents the
partial correlation coefficient, and Coerp represents the degree-of-space reduction.

Coerp = 50% × Rij (9)

Table 2. Partial correlation coefficient and space reduction.

Rij
(Absolute

Value)
0.00–0.05 0.05–0.15 0.15–0.25 0.25–0.35 0.35–0.45 0.45–0.55 0.55–0.65 0.65–0.75 0.75–0.85 0.85–0.95 0.95–1.00

Coerp 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
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3.2.3. Particle Velocity Adjustment Strategy

As the particle search space changes, the speed of the particle swarm must be adjusted
accordingly.

In the PSO algorithm, the upper and lower boundaries of the velocity are calculated by
Equation (10), and the boundary values remain unchanged during the entire optimisation
process. In this study, the value of n is 5.{

vmax = (pmax − pmin)/n
vmin = −(pmax − pmin)/n

n is a positive integer (10)

The upper and lower boundaries of the velocity determine the accuracy of the area
between the current position and the optimal position. If the velocity is too high, it may
cause the particles to cross the optimal space. If it is too low, it may cause the particles to fall
into a local optimum. Therefore, as the search space continues to decrease, the upper and
lower boundaries of the particle velocity should change correspondingly with the search
space. The upper and lower boundary values of the particle velocity in the optimisation
process are modified as Equation (11).{

vi
max = (pi

max − pi
min)/n

vi
min = −(pi

max − pi
min)/n

n is a positive integer (11)

where vi
max and vi

min represent the optimisation velocity of the upper and lower boundaries
in the i-th generation, and pi

max and pi
min represent the upper and lower boundary values

of the particle position components in the i-th generation, respectively.

3.2.4. Particle Cross-Boundary Configuration

Because the search space of the particles is reduced during the optimisation process,
the position and velocity of the particles often cross the upper and lower boundaries. In
the PSO algorithm, these particles are set as the boundary values to resolve this problem.
To give the particles better ability to explore the optimal solution in the reduced search
space, our study configured the cross-boundary particles as shown in Equation (12).{

pi
over = rand× (pi

max − pi
min) + pi

min
vi

over = rand× (vi
max − vi

min) + vi
min

(12)

where pi
over and vi

over represent the position and velocity of the i-th generation cross-
boundary particle; vi

max and vi
min represent the optimisation speed of the upper and lower

boundaries of the i-th generation; pi
max and pi

min represent the upper and lower boundary
values of the particle position components in the i-th generation, respectively; and rand is a
random number between 0 and 1.

3.3. Optimisation Framework of Improved Particle Swarm Optimisation Algorithm

The flowchart of the improved PSO algorithm is shown in Figure 6. The dashed box
indicates improvement measures. The specific steps are as follows:

(1) input the parameters such as the number of particles and the number of iterations at
the start of the algorithm;

(2) perform the initialisation process by randomised sampling using the particle swarm
algorithm;

(3) perform data mining on the initialisation data and perform space reduction while
completing the particle velocity adjustment;

(4) configure the cross-boundary particles in the iterative optimisation process, and
perform data mining and space reduction after reaching a certain number of iterations;

(5) determine whether the optimisation is terminated by the maximum number of itera-
tions.
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The above improvement measures could improve the global and local optimisation
ability of the PSO algorithm, which stays away from the local optimal solution and can
quickly locate the optimisation space worthy of attention and improve the optimisation
performance.

4. Function Examples of the Improved Particle Swarm Optimisation Algorithm

Four commonly used numerical functions were selected to test the performance of
the algorithm. To facilitate the drafting of the optimised iteration convergence graph, the
numerical results of the four selected numerical functions were all added by 1 based on
the corresponding reference numerical functions. The expressions of the four numerical
functions are shown in Equations (13)–(16), and the function name, test dimension, variable
range, theoretical optimal scheme, and corresponding optimal solution are also given.

(1) Levy function (n = 5,−10 ≤ xi ≤ 10, i = 1, · · · , n)

H1(x) = 10 sin2(πx1) +
n−1

∑
i=1

100 xi(1 + 10 sin2(πxi+1)) + 100 (xn − 2)2 + 1 (13)

where x∗ = (0, · · · , 0, 1)T, H1(x∗) = 1.
(2) Trigonometric function (n = 5,−10 ≤ xi ≤ 10, i = 1, · · · , n)

H2(x) =
n

∑
i=1

[8 sin2(7(xi − 0.9)2) + 6 sin2(14(xi − 0.9)2) + (xi − 0.9)2] + 1 (14)

where x∗ = (0.9, · · · , 0.9)T, H2(x∗) = 1.
(3) Griewank function (n = 5,−10 ≤ xi ≤ 10, i = 1, · · · , n)

H3(x) =
1

4000

n

∑
i=1

x2
i −

n

∏
i=1

cos(
xi√

i
) + 2 (15)
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where x∗ = (0, · · · , 0)T, H3(x∗) = 1.
(4) Pinter function (n = 5,−10 ≤ xi ≤ 10, i = 1, · · · , n)

H4(x) =
n

∑
i=1

ix2
i +

n

∑
i=1

20 i sin2(xi−1 sin xi − xi + sin xi+1) +
n

∑
i=1

i log10(1 + i(x2
i−1 − 2xi + 3xi+1 − cos xi + 1)

2
) + 1 (16)

where x0 = xn, xn+1 = x1, x∗ = (0, · · · , 0)T, H4(x∗) = 1.
Figure 7 is a schematic diagram showing the spatial structure of the two-dimensional

performance of each function.
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each function.

In the function examples, both the PSO algorithm and improved PSO algorithm were
applied for optimisation, and the optimised particle number was set to 100. The number
of iterations was 50 generations. The space reduction methods used in the improved
PSO algorithm were the segmentation reduction method and the linear reduction method
mentioned in Section 3.2.2, respectively. Because the initial range of function variables was
large, space reduction was set to be conducted every other generation. The optimisation
iteration convergence graphs of the four functions are shown in Figure 6, and the optimi-
sation results are shown in Table 3. Convergent algebra denotes the rate of convergence.
In this paper, the algebra is used as a convergence standard. In Figure 8, the x-axis is
the number of iterations, and the y-axis is the optimal value of the current iteration. The
different line types represent different optimisation algorithms (where improved PSO
algorithm 1 is the segmentation reduction method, and improved PSO algorithm 2 is the
linear reduction method).



J. Mar. Sci. Eng. 2021, 9, 955 11 of 20

Table 3. Optimised results of function algorithms.

Function Name Optimisation
Method

Convergent
Algebra

Optimisation
Optimal Value

Theoretical
Optimal Value

Levy
PSO 12 1.296

1Improved PSO 1 11 1.250
Improved PSO 2 11 1.001

Trigonometric
PSO 39 2.332

1Improved PSO 1 21 1.000
Improved PSO 2 20 1.000

Griewank
PSO 28 1.026

1Improved PSO 1 16 1.000
Improved PSO 2 10 1.000

Pinter
PSO 35 1.423

1Improved PSO 1 18 1.050
Improved PSO 2 19 1.011
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Figure 8. Optimised iterative convergence plot.

As seen in Figure 8 and Table 3, for the Levy function with a simple space, both the
improved PSO algorithm and the PSO algorithm can find the optimal solution in a short
time; thus, the space reduction method did not significantly improve the efficiency. For
the Griewank function with a complex space, there are many local optimal solutions in
the function, making the PSO algorithm fall into local optima, whereas the improved PSO
algorithm can obtain the optimal solution. For the trigonometric function and the Pinter
function, the improved PSO algorithm can improve the overall efficiency and performance
of the optimisation. According to the specific optimisation results listed in Table 3, all
optimal values obtained by the improved PSO algorithm were better than those of the PSO
algorithm and were closer to the theoretical optimal value.

To demonstrate the robustness of algorithm, each function was optimized using both
the improved PSO algorithm and PSO algorithm 100 times.
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The obtained global optimum for each run is illustrated in Figure 9 using boxplots.
A smaller or shorter box implies that the standard deviation was small, and the symbol
(red points) denotes the abnormal value. The relatively smaller boxes of DSROF for most
test functions validate that its robustness was higher than that of PSO, particularly in the
case of complex functions. For the Levy function, both the improved PSO algorithm and
the PSO algorithm can find the optimal solution. However, the standard deviation and
average of the improved PSO are only a little bigger than PSO.
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5. Bow Shape Optimisation in Engineering Vessel

According to the research described in Section 3, the linear function was used to
establish the relationship between the partial correlation coefficient and the degree of space
reduction. In this study, an engineering vessel was used to optimise the bow shape to
reduce the wave-making resistance. A scale ratio of 1:20 was used to model the hull form.
The main parameters of the model are shown in Table 4. The front of the model has an
invisible bulbous bow. The model is shown in Figure 10.
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Table 4. Major parameters of an engineering vessel.

Length between
Perpendiculars

Lpp (m)

Waterline Width
Bwl (m)

Draft
T (m)

Block
Coefficient Cb

Drainage Volume
∇ (m3)

Wet Surface Area
Swet (m2)

Floating Centre
Longitudinal Position

Lcb (m)

4.995 0.770 0.255 0.674 0.646 4.764 2.518 m
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Figure 10. Hull model.

5.1. Definition of Optimisation
Optimisation Problem Definition

Three changeable control points were selected as the optimisation variables at the
bow waterline position and the bilge position of the hull, which were numbered X1–X6.
The distribution of these data in the hull is shown in Figure 11. The change direction of
all optimisation variables was in the ship width (y) direction. The range of variables and
initial values are shown in Table 5.
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Table 5. Range of the optimisation variables.

Optimisation Variable Lower Limit Upper Limit

Y1 0.01000 0.01300
Y2 0.04000 0.06000
Y3 0.07200 0.09700
Y4 0.08500 0.12500
Y5 0.20000 0.24000
Y6 0.17000 0.22000

The optimisation target is the wave-making resistance coefficient min Cw of the ship.
The Froude number during ship optimisation was Fn = 0.24. The optimisation considered
only the conditions of full restrictions, regardless of heave and pitch motions. To ensure that
the performance of the ship does not change too much under certain drainage conditions,
the drainage volume (∆), and the longitudinal position of the floating centre (Lcb) were
selected as the hydrostatic constraints. The specific settings are as follows.

0% ≤ ∆opt−∆initial
∆initial

≤ 1%∣∣∣ Lcbopt−Lcbinitial
Lcbinitial

∣∣∣ ≤ 1%

Because only the bow form was optimised, and the layout was at the middle section
of the ship, the tail form and the contour of the hull were constrained to keep the shape of
the rear hull and the hull profile stable during the optimisation process. The hull constraint
points are arranged as shown by the red line in Figure 12.
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5.3. Hull Form Optimisation Results

The optimised iterative convergence graph is shown in Figure 14. The comparison
shows that the improved PSO algorithm tended to converge after 11 generations, whereas
the PSO algorithm tended to converge after the 17th generation. The time for the two
algorithms to reach the maximum number of iterations was approximately 20 h. The time
for the improved PSO algorithm to reach convergence was 11 h 30 min. The time for the
PSO algorithm to reach convergence was 16 h. Therefore, the improved PSO algorithm can
improve the optimisation efficiency in the example of hull form optimisation.
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Table 6 lists the variable data comparison between the PSO algorithm (Opt1) and the
improved PSO algorithm (Opt2). It shows that the optimised hull form obtained by both
algorithms was basically the same. The optimised wave-making resistance coefficients
were also similar. The wave-making resistance coefficient of Opt1 was reduced by 10.24%,
and the wave-making resistance coefficient of Opt2 was reduced by 10.10%. These results
indicated that the improved PSO algorithm can ensure satisfactory performance in the
optimisation process.

Table 6. Comparison of optimisation results.

Parameter X1 X2 X3 X4 X5 X6 Cw × 103 Change

Initial hull 0.0116 0.0474 0.0859 0.1013 0.1938 0.2183 1.337 0%
Opt1 0.0107 0.0600 0.0720 0.0959 0.1941 0.2127 1.200 −10.24%
Opt2 0.0112 0.0600 0.0722 0.0939 0.1939 0.2157 1.202 −10.10%

Table 7 lists the changes in the major parameters of the optimised hull and the initial
hull using the two optimisation algorithms at Fn = 0.24. The comparison shows that the
drainage volume and the longitudinal position of the floating centre of Opt1 and Opt2
were essentially the same as those of the initial hull. The wet surface area was slightly
increased compared with the initial hull. The total drag coefficient of Opt1 decreased by
3.07%, and the total drag coefficient of Opt2 decreased by 2.96%. Considering the errors in
CFD calculations, the hull form results obtained by the two optimisation algorithms were
basically the same. The total drag coefficient was calculated by Shipflow.

Table 7. Comparison of optimisation results at Fn = 0.24.

Floating Centre
Longitudinal Position

(m)

Drainage Volume
(m3)

Wet Surface Area
(m2)

Total Drag Coefficient
Ct × 103 Change

Initial hull 2.518 0.646 4.764 4.909 0
Opt1 2.520 0.646 4.774 4.758 −3.07%
Opt2 2.519 0.646 4.773 4.764 −2.96%

The comparison between Tables 6 and 7 shows that the hull form obtained by both
the standard and improved PSO algorithms was consistent. Opt1, Opt2, and the initial hull
were subjected to profile analyses. Figures 15 and 16 provide a comparison of the cross-
sectional line and the vertical line of the initial hull and the optimised hull. A comparison
of the cross-sectional lines shows that the contour of the two optimised hulls close to the
invisible bullnose was slightly increased compared with the initial hull, making the bow
profile smooth, reducing the ridge vortex, and thus reducing the drag. The waterline
from the bow to the middle section was slightly contracted compared with the initial hull.
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The bow waterline was more pointed and thinner, which reduces the inflow angle and is
beneficial to reduce the wave-making resistance of the hull.
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Figures 17 and 18 provide a comparison of the wave profile along the hull and
waveform plots of Opt1, Opt2, and the initial hull. The amplitude of the optimised hull was
lower than that of the prototype hull, and the amplitude around the hull was significantly
lower. The wave system of the optimised hull has become simpler, leading to a decline
in the wave-making resistance. Figure 19 shows the hull pressure distribution before and
after optimisation. A comparison with the prototype shows that the optimised profile
reduces the positive and negative pressures at the bow and tail of the hull, thereby reducing
the drag.
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6. Conclusions

The PSO algorithm has the problems of local premature convergence and low conver-
gence performance. Our study combined the space reduction techniques and improved the
algorithm from different aspects, including data processing of particle swarm population
initialisation, data processing of iterative optimisation, particle velocity adjustment, and
particle cross-boundary configuration. Commonly used function examples were optimised
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to verify the feasibility of the improved PSO algorithm. Finally, our algorithm was applied
to the hull form optimisation of an engineering vessel, and the optimisation result was
compared with that of the PSO algorithm. The following conclusions can be drawn from
our study:

(1) For the optimisation of a simple space, the improved PSO algorithm did not signifi-
cantly enhance the optimisation efficiency and performance compared with the PSO
algorithm, and both algorithms can obtain fast convergence results. For more complex
optimisation problems, PSO more easily falls into the local optimal solution, whereas
the improved PSO algorithm can avoid the local optimum owing to datamining of
the optimised data in the optimisation process, which can provide guidance on the
optimisation of subsequent particles.

(2) The application of the algorithm in engineering practice is verified by hull form
optimisation. This algorithm can improve the optimisation efficiency to a certain
extent while ensuring high performance, thus reducing the overall time of hull form
optimisation. This has certain value in engineering applications.

(3) Our study used partial correlation analysis for datamining. Because the coefficient
obtained by a partial correlation analysis cannot directly perform space reduction, a
certain relationship must be established. For optimisation with too many iterations,
the segmentation reduction method and the linear reduction method may lose the
optimal solution. In the particle initialisation stage, the particle information obtained
cannot be evenly distributed in the optimisation space. As a result, the optimisation
information obtained by the previous datamining is not accurate, leading to reduced
optimisation efficiency. Further research is required to address these issues.

Author Contributions: Conceptualization: Q.Z., Z.-Y.L.; Data Curation: Q.Z.; Formal analysis: Q.Z.,
Z.-Y.L.; Validation: Q.Z., H.-C.C.; Methodology: Q.Z., B.-W.F. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China [grant
numbers 551720105011, 51979211], Research on the Intelligentized Design Technology for Hull
Form. Green Intelligent Inland Ship Innovation Programme. Research on the Design of Large-scale
Marine Tourism Floating Complex. The Fundamental Research Funds for the Central Universities
(2020-YB-016). High-tech ship research project (2019[357]).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in this article (Tables
and Figures).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Campana, E.F.; Peri, D.; Tahara, Y.; Stern, F. Shape optimisation in ship hydrodynamics using computational fluid dynamics.

Comput. Methods Appl. Mech. Eng. 2006, 196, 634–651. [CrossRef]
2. Peri, D. Design optimisation of ship hulls via CFD technologies. J. Ship Res. 2001, 45, 140–149. [CrossRef]
3. Harries, S. Systematic optimization—A key for improving ship hydrodynamics. Hansa 2005, 142, 36, 38, 40–42.
4. Kim, H.; Yang, C.; Jeong, S.; Noblesse, F. Hull form design exploration based on response surface method. In Proceedings of the

Twenty-first International Offshore and Polar Engineering Conference, Maui, HI, USA, 19–24 June 2011.
5. Kim, H.; Yang, C. A new surface modification approach for CFD-based hull form optimisation. J. Hydrodyn. Ser. B 2010, 22,

520–525. [CrossRef]
6. Kim, H.; Yang, C.; Noblesse, F. Hull form optimisation for reduced resistance and improved seakeeping via practical designed-

oriented CFD tools. In Proceedings of the Conference on Grand Challenges in Modeling & Simulation, Ottawa, ON, Canada, 11
July 2010; pp. 375–385.

7. Feng, B.; Hu, C.; Liu, Z.; Zhan, C.; Chang, H. Ship resistance performance optimisation design based on CAD/CFD. In Proceedings
of the International Conference on Advanced Computer Control, Harbin, China, 18–20 January 2011; pp. 251–255.

http://doi.org/10.1016/j.cma.2006.06.003
http://doi.org/10.5957/jsr.2001.45.2.140
http://doi.org/10.1016/S1001-6058(09)60246-8


J. Mar. Sci. Eng. 2021, 9, 955 19 of 20

8. Feng, B.; Dong, S.; Chang, H. The influence of experimental design method on design space exploration. In Proceedings
of the International Conference on Fuzzy Systems and Knowledge Discovery IEEE, Zhangjiajie, China, 15–17 August 2015;
pp. 1681–1687.

9. Shen, T.; Feng, B.; Liu, Z.; Chang, H. Research of hull form modification method based on interpolation of radial basis function.
Shipbuild. China 2013, 4, 45–54.

10. Chang, H.; Cheng, X.; Liu, Z.; Feng, B.; Zhan, C. Sample selection method for ship resistance performance optimisation based on
approximated model. J. Ship Res. 2016, 60, 1–13. [CrossRef]

11. Chang, H.; Feng, B.; Liu, Z.; Zhan, C.; Cheng, X. The application of approximate model for ship resistance performance
optimisation. Shipbuild. China 2012, 1, 88–98.

12. Chang, H.; Feng, B.; Liu, Z.; Zhan, C.; Cheng, X. Research on application of approximate model in hull form optimisation.
Shipbuild. China 2012, 53, 88–98.

13. Harries, S.; Abt, C. Faster turn-around times for the design and Optimization of functional surfaces. Ocean Eng. 2019, 193,
106470.1–106470.18. [CrossRef]

14. D’Agostino, D.; Serani, A.; Diez, M. Design-space assessment and dimensionality reduction: An off-line method for shape
reparameterization in simulation-based Optimization. Ocean Eng. 2020, 197, 106852. [CrossRef]

15. Serani, A.; Stern, F.; Campana, E.F.; Diez, M. Hull-form stochastic Optimization via computational-cost reduction methods. Eng.
Comput. 2021, 2, 1–25.

16. Khan, S.; Serani, A.; Diez, M.; Kaklis, P. Physics-Informed Feature-to-Feature Learning for Design-Space Dimensionality Reduction
in Shape Optimization. In Proceedings of the AIAA Scitech 2021 Forum, Music City Center Nashville, Nashville, TN, USA, 11–15
& 19–21 January 2021.

17. Tezzele, M.; Salmoiraghi, F.; Mola, A.; Rozza, G. Dimension reduction in heterogeneous parametric spaces with application to
naval engineering shape design problems. Adv. Modeling Simul. Eng. Sci. 2018, 5, 1–19. [CrossRef]

18. Serani, A.; Pellegrini, R.; Wackers, J.; Jeanson, C.E.; Diez, M. Adaptive multi-fidelity sampling for CFD-based Optimization via
radial basis function metamodels. Int. J. Comput. Fluid Dyn. 2019, 33, 237–255. [CrossRef]

19. Chunna, L.; Hai, F.; Chunlin, G. Development of an efficient global Optimization method based on adaptive infilling for structure
Optimization. Struct. Multidiplinary Optim. 2020, 7, 3383.

20. Zhang, S.; Zhang, B.; Tezdogan, T.; Xu, L.; Lai, Y. Computational fluid dynamics-based hull form Optimization using approxima-
tion method. Eng. Appl. Comput. Fluid Mech. 2018, 12, 74–88. [CrossRef]

21. Coppedè, A.; Gaggero, S.; Vernengo, G.; Villa, D. Hydrodynamic shape Optimization by high fidelity CFD solver and Gaussian
process based response surface method. Appl. Ocean Res. 2019, 90, 101841. [CrossRef]

22. Pellegrini, R.; Serani, A.; Liuzzi, G.; Rinaldi, F.; Diez, M. Hybridization of Multi-Objective Deterministic Particle Swarm with
Derivative-Free Local Searches. Mathematics 2020, 8, 546. [CrossRef]

23. Tezdogan, T.; Zhang, S.; Demirel, Y.K.; Liu, W.; Xu, L.; Yuyan, L. An investigation into fishing boat optimisation using a hybrid
algorithm. Ocean Eng. 2018, 167, 204–220. [CrossRef]

24. Serani, A.; Leotardi, C.; Iemma, U.; Campana, E.F.; Fasano, G.; Diez, M. Parameter selection in synchronous and asynchronous
deterministic particle swarm optimization for ship hydrodynamics problems. Appl. Soft Comput. 2016, 49, 313–334. [CrossRef]

25. Leotardi, C.; Serani, A.; Diez, M.; Campana, E.F.; Gusso, R. Dense conjugate initialization for deterministic PSO in applications:
ORTHOinit+. Appl. Soft Comput. 2021, 4, 107121. [CrossRef]

26. Khalili-Damghani, K.; Abtahi, A.R.; Tavana, M. A new multi-objective particle swarm optimisation method for solving reliability
redundancy allocation problems. Reliab. Eng. Syst. Saf. 2013, 111, 58–75. [CrossRef]

27. Kennedy, J.; Eberhart, R.C.; Shi, Y. The Particle Swarm. Swarm Intell. 2001, 1, 287–325.
28. Angeline, P.J. Evolutionary optimization versus particle swarm optimization: Philosophy and performance differences. In

Proceedings of the 7th Annual Conference on Evolutionary Programming, San Diego, CA, USA, 25–27 March 1998.
29. Eberhart, R.C.; Shi, Y. Comparison between Genetic Algorithms and Particle Swarm Optimization; Springer: Berlin/Heidelberg,

Germany, 1998.
30. Cheng, S.; Shi, Y.; Qin, Q. Dynamical exploitation space reduction in particle swarm optimisation for solving large scale problems.

In Proceedings of the Evolutionary Computation, IEEE, Brisbane, QLD, Australia, 10–15 June 2012; pp. 1–8.
31. Noel, M.M. A new gradient-based particle swarm optimisation algorithm for accurate computation of global minimum. Appl.

Soft Comput. J. 2012, 12, 353–359. [CrossRef]
32. Shi, J.; Li, P.; Liu, G.; Liu, P. Parameter Estimation of Chaotic Systems Based on Improved Particle Swarm Optimisation Algorithm.

J. Huazhong Univ. Sci. Technol. 2018, 46, 70–76.
33. Reungsinkonkarn, A.; Apirukvorapinit, P. Search space reduction of particle swarm optimisation for hierarchical similarity

measurement model. In Proceedings of the Computer Science and Software Engineering (JCSSE), 2014 11th International Joint
Conference, Chon Buri, Thailand, 14–16 May 2014.

34. Zhang, L.; Sun, J.; Guo, C. A novel multi-objective discrete particle swarm optimisation with elitist perturbation for reconfiguration
of ship power system. Pol. Marit. Res. 2017, 24, 1.

35. Wang, J.; Li, H. Particle swarm optimisation with enhanced global search and local search. J. Intell. Syst. 2017, 26, 3.
36. Wu, K.; Feng, B.; Chang, H. The design method for hull optimisation based on partial correlation analysis. Ship Eng. 2016, 10,

46–51.

http://doi.org/10.5957/jsr.2016.60.1.1
http://doi.org/10.1016/j.oceaneng.2019.106470
http://doi.org/10.1016/j.oceaneng.2019.106852
http://doi.org/10.1186/s40323-018-0118-3
http://doi.org/10.1080/10618562.2019.1683164
http://doi.org/10.1080/19942060.2017.1343751
http://doi.org/10.1016/j.apor.2019.05.026
http://doi.org/10.3390/math8040546
http://doi.org/10.1016/j.oceaneng.2018.08.059
http://doi.org/10.1016/j.asoc.2016.08.028
http://doi.org/10.1016/j.asoc.2021.107121
http://doi.org/10.1016/j.ress.2012.10.009
http://doi.org/10.1016/j.asoc.2011.08.037


J. Mar. Sci. Eng. 2021, 9, 955 20 of 20

37. He, X. Modern Statistical Analysis Methods and Applications. Master’s Thesis, Renmin University Press, Beijing, China, 1998.
38. Jia, J. Statistical Case Studies and Analysis. Master’s Thesis, Renmin University Press, Beijing, China, 2010.
39. Coello, C.A.C.; Pulido, G.T.; Lechuga M, S. Handling multiple objectives with particle swarm optimisation. IEEE Trans. Evol.

Comput. 2004, 8, 256–279. [CrossRef]
40. Coello, C.A.C.; Lamont, G.B.; Veldhuizen, D.A.V. Evolutionary Algorithms for Solving Multi-Objective Problems; Springer:

Berlin/Heidelberg, Germany, 2002; p. 576.
41. Fang, K.T. Uniform design: An application of number-theoretic methods to experimental designs. Acta Math. Appl. Sin. 1980, 3,

363–372.
42. Cheng, X.; Shen, T.; Feng, B.; Liu, Z. The determination method and application of support radius in hull surface deformation.

Shipbuild. China 2016, 57, 127–137.
43. Shen, T. The method and application of hull surface deformation based on radial basis function interpolation. Ph.D. Thesis,

Wuhan University of Technology, Wuhan, China, 2015.
44. Zheng, Q. Development and application of an interdisciplinary and comprehensive optimisation platform for ship hydrodynamic

performance. In Proceedings of Digital Shipbuilding Conference in 2018; The Chinese Society of Naval Architects and Marine
Engineers: Shanghai, China, 2018; p. 6.

http://doi.org/10.1109/TEVC.2004.826067

	Introduction 
	Space Reduction Technique Based on Partial Correlation Analysis 
	Partial Correlation Analysis 
	Partial Correlation Coefficient and Degree-of-Space Reduction 

	Improved Particle Swarm Optimisation 
	Particle Swarm Optimisation 
	Improvement of Particle Swarm Optimisation 
	Data Processing of Particle Swarm Population Initialisation 
	Data Processing of Particle Iterative Optimisation 
	Particle Velocity Adjustment Strategy 
	Particle Cross-Boundary Configuration 

	Optimisation Framework of Improved Particle Swarm Optimisation Algorithm 

	Function Examples of the Improved Particle Swarm Optimisation Algorithm 
	Bow Shape Optimisation in Engineering Vessel 
	Definition of Optimisation 
	Flowchart of Hull Form Optimisation 
	Hull Form Optimisation Results 

	Conclusions 
	References

