
Journal of

Marine Science 
and Engineering

Article

A Universal Simulation Framework of Shipborne Inertial
Sensors Based on the Ship Motion Model and Robot
Operating System

Qianfeng Jing, Haichao Wang, Bin Hu, Xiuwen Liu and Yong Yin *

����������
�������

Citation: Jing, Q.; Wang, H.; Hu, B.;

Liu, X.; Yin, Y. A Universal

Simulation Framework of Shipborne

Inertial Sensors Based on the Ship

Motion Model and Robot Operating

System. J. Mar. Sci. Eng. 2021, 9, 900.

https://doi.org/10.3390/

jmse9080900

Academic Editor: Alessandro Ridolfi

Received: 2 August 2021

Accepted: 18 August 2021

Published: 20 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Key Laboratory of Marine Simulation and Control, Department of Navigation, Dalian Maritime University,
Dalian 116026, China; jqf64078@gmail.com (Q.J.); wanghaichao@dlmu.edu.cn (H.W.);
hubin_dlmu@163.com (B.H.); liu_xiuwen@outlook.com (X.L.)
* Correspondence: bushyin@dlmu.edu.cn

Abstract: A complete virtual test environment is a powerful tool for Autonomous Surface Vessels
(ASVs) research, and the simulation of ship motion and shipborne sensors is one of the prerequisites
for constructing such an environment. This paper proposed a universal simulation framework of
shipborne inertial sensors. A ship motion model considering environmental disturbances is proposed
to simulate the six-degrees-of-freedom motion of ships. The discrete form of the inertial sensor
stochastic error model is derived. The inertial measurement data are simulated by adding artificial
errors to a simulated motion status. In addition, the ship motion simulation, inertial measurement
simulation, and environment simulation nodes are implemented based on the computational graph
architecture of the Robot Operating System (ROS). The benefit from the versatility of the ROS
messages, the format of simulated inertial measurement is exactly the same as that of real sensors,
which provides a research basis for the fusion perception algorithm based on visual–inertial and
laser–inertial sensors in the research field of ASVs.

Keywords: autonomous surface vessels; shipborne sensors; inertial sensor simulation; ship motion
model; robot operating system

1. Introduction

Autonomous vehicles are often unsafe and expensive during the testing phase, which
limits the completeness verification of related algorithms in diverse scenarios. This issue is
further exacerbated by the fact that the sea trials of autonomous ships are more complex
and risky than on-land testing [1]. Therefore, high-fidelity simulation is required in the
development of autonomous vehicles [2]. Moreover, simulation is an efficient way to
generate experimental data in various scenarios for training and testing the perception,
decision-making, control, and end-to-end autonomous driving algorithms [3].

A complete perception unit based on various types of sensors is one of the prerequisites
of autonomy, considering a fully autonomous ship is capable of making decisions by itself
without the supervision of onboard crews or remote human operators [4]. Autonomous
ships are able to perceive the ego-motion state, targets, and environment information
by employing multi-sensor fusion algorithms [5]. Especially, different from the motion
status of a car constrained by the ground, ships are in a full six-degrees-of-freedom (6 DoF)
motion during navigating and when disturbed by winds, ocean currents, and waves. Since
shipborne sensors are generally fixedly connected to the hull, sensor information such as
camera images or LiDAR point clouds will be affected by the ship motions, which brings
challenges to the accuracy and stability of perception algorithms. It follows that the inertial
sensor is one of the indispensable shipborne sensors used in target perception [6] and ego-
motion state estimation [7]. As far as the ship’s ego-motion state estimation is concerned,
the fusion state estimation based on visual–inertial [8] and laser–inertial [9] is more stable
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and efficient than pure visual [10] and laser [11] methods. Therefore, studying the fusion
of ship inertial measurement data with other sensors is vital to the perception unit. Given
the above, constructing a virtual test environment is necessary to fully test and verify the
multi-sensor fusion perception algorithm for ships. The modeling and simulation of inertial
sensors and vehicles are the essential parts to build such an environment [12]. However,
the reliability of testing results is highly dependent on the accuracy of simulation models.

Numerous studies focusing on either simulating onboard sensors or building a practi-
cal virtual test environment have emerged in recent years. While an exhaustive review of
current simulation methods of various sensors is beyond the scope of this paper, we hereby
mention some notable recent works that deeply influenced this work.

Gazebo [13] has been a popular simulator for research work related to robotics, and
the its plugins expand quickly due to the rapid development of the open-source community
of the ROS [14]. In Gazebo, the inertial sensors are simulated based on the physics engine,
the noise and bias of the linear accelerations, and angular velocities are additive, whereas
the bias is treated as a fixed value that is sampled once at the start of a simulation. Plenty
of work focus on the simulation of drones [15], cars [16], and robots [14] in Gazebo;
however, the modeling and simulation of ships and shipborne sensors in Gazebo are
limited compared with other types of vehicles. A recent representative work of a Gazebo-
based ASV simulator is the Virtual RobotX (VRX) extends the Gazebo through the addition
of vessel dynamics representations [17]. Another excellent work is the USVsim [18], which
implements the physical-based motion model of Unmanned Surface Vehicles (USVs) in
Gazebo plugins. However, both the VRX and USVsim focus on the ship hydrodynamic
modeling and marine environment simulation, the shipborne sensors are inherited from
original Gazebo plugins. In other words, the error modeling of the simulated inertial
sensors is exactly the same as the Gazebo as discussed above in their work.

Recently, 3D game engines such as Unity 3D and UE4 (Unreal Engine 4) have also
become powerful tools for building virtual test environments for autonomous vehicles
due to their practical physics engines and realistic scene modeling. LGSVL [19] is a high
fidelity simulator for autonomous driving that has already been applied in Autoware [20]
and Apollo [21] projects. The LGSVL simulator was developed based on Unity 3D which
provides a basic vehicle dynamics model for the ego vehicle and diverse sensor models.
However, the inertial sensor model are directly output noise-free data according to the
document. Nevertheless, the users can create their own sensor plugins or integrate external
third-party dynamics models into the LGSVL simulator. CARLA [22] is an open simulator
aiming to support development, training, and validation of autonomous urban driving
systems. This simulator is implemented as an open-source layer over UE4 which enables the
addition of future extensions by the community. However, the main application scenario
of the simulator is vision-based autonomous driving and simulated sensors are limited to
RGB cameras. Similarly, AirSim is an open-source simulator published as a plugin of UE4
that aims to perform virtual tests for autonomous vehicles [3]. The core components of this
simulator consist of the environment model, vehicle model, and sensor models, etc. In their
work, the onboard gyroscope and accelerometers are modeled by adding white noise and
bias drift to the ground truth from the vehicle model. It is worth noting that the graphics
card manufacturing giant NVIDIA has published a high-fidelity simulation platform called
NVIDIA DRIVE Sim [23]. The platform could provide a large-scale, physically accurate
multi-sensor simulation. However, the typical research target is limit to autonomous aerial
or ground vehicles, and there is no modeling of ships and marine environment in LGSVL,
CARLA, AirSim, and NVIDIA DRIVE Sim.

To summarize, there are numerous researches on vehicle-mounted sensor simulation
at this stage, but the research on ship-borne sensor simulation is very limited. In aforemen-
tioned work, the error model in the inertial sensors is too simple in Gazebo. Moreover,
the description of the modeling method of the ship’s physical motion is relatively sketchy
in these works. Although the environmental disturbances are considered in some of the
studies, the actual ship measurement data are not used to fully verify the simulation and
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modeling methods. Inspired by the work above, the main focus of this work is to build
a universal simulation framework of the shipborne inertial sensors. The physical-based
ship motion model is established, and the ship motion simulation method is presented and
verified by onboard measurement data. In addition, the discrete stochastic error models of
inertial sensors are derived to generate realistic artificial errors. The shipborne inertial mea-
surement data are simulated based on the ship motion simulation and these error models.
Moreover, the ROS is employed to construct the simulation framework considering its uni-
versality. In other words, the wide application of the ROS in virtual [16,17] and real marine
robotics [24] seamlessly connected the simulation and reality. Consequently, the proposed
framework can be easily integrated with the ROS-compatible simulators to provide both
the noise-free motion status and realistic shipborne inertial measurement data.

The remainder of the paper is structured as follows: Section 2 describes physical-based
ship motion modeling and simulation methods. In addition, the ship motion simulation
results are validated by onboard measurement data. Section 3 presents the models of
inertial sensors, especially the discrete stochastic error models. The simulation framework
of the shipborne inertial sensor and implementation details are presented in Section 4. The
limitations are discussed and the paper is concluded in Section 5.

2. Physical-Based Ship Motion Modeling and Simulation

The ship motion simulation is one of the prerequisites to simulate shipborne inertial
sensors. In this section, the physical-based ship motion model is constructed. Moreover,
the simulation method of ship motion under environmental disturbances is proposed, and
validated by onboard measurement data. The detailed content is illustrated as follows:

2.1. Physical-Based Ship Motion Model

A bulk carrier was employed in this study and the main particulars of the ship are
listed in Table 1. This bulk carrier was a tramper that had no regular voyage routes.
Moreover, this bulk carrier was equipped with a shipboard measuring system. The data
from nautical instruments such as the voyage data recorder (VDR) were well recorded,
providing an important data foundation for validating different simulation methods.

Table 1. Main particulars of the bulk carrier.

Items Value

Length L 160.4 m
Breadth B 27.2 m

Draft d 8.16 m
Propeller type 4-bladed solid × 1 set (FPP)

Propeller diameter DP 5.25 m
Rudder type Balanced type × 1 set

Rudder area AR 26.4 m2

Sailing speed 14 knots

The ship motion model was constructed based on rigid body dynamics to perform
the 6 DoF motion simulation in the time-domain. The coordinate systems adopted in this
paper are shown in Figure 1, where the world frame is denoted by on–xnynzn, and the ship
body-fixed frame is denoted by ob–xbybzb. Moreover, U in body-fixed frame represents the
resultant speed of the ship, which is composed of the heading speed u and lateral speed v.
The angle between u and U is the so-called drift angle β. The rudder angle is indicated by
δ. Moreover, φ, θ, and ψ denote the roll, pitch, and yaw angles; p, q, and r denote the roll,
pitch, and yaw angular velocities, respectively. The direction of wind, ocean current, and
waves are denoted by ψA, ψC, and ψW respectively.
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Figure 1. Coordinate systems.

According to the vector representation form proposed by Fossen [25], the generalized
coordinates of the ship position, orientation, and velocities in the body-fixed system are
defined as follows:{

η = [x, y, z, φ, θ, ψ]T, η1 = [x, y, z]T, η2 = [φ, θ, ψ]T

v = [u, v, w, p, q, r]T, v1 = [u, v, w]T, v2 = [u, v, w]T
(1)

where η and v denote the pose and velocity vectors of ships, respectively. The kinematic
equations of ships can be expressed based on Equation (1):[ .

η1.
η2

]
=

[
J1(η2) 03×3
03×3 J2(η2)

][
v1
v2

]
(2)

Here, J1(η2) and J2(η2) are transformation matrices, the detailed form is defined by
the following set of equations:

J1 =

 c(ψ)c(θ) −s(ψ)c(φ) + c(ψ)s(θ)s(φ) s(ψ)s(φ) + c(ψ)c(φ)s(θ)
s(ψ)c(θ) c(ψ)s(φ) + s(φ)s(θ)s(ψ) −c(ψ)s(φ) + s(θ)s(ψ)s(φ)
−s(θ) c(θ)s(φ) c(θ)c(φ)



J2 =

 1 s(φ)t(θ) c(φ)t(θ)
0 c(φ) −s(φ)
0 s(φ)/c(φ) c(φ)/c(θ)


(3)

where s = sin( ), c = cos( ), and t = tan( ).
As it was proposed in our recent work [26], the 6 DoF nonlinear dynamic equations of

ship motion can be expressed as follows:

MRB
.
v + CRB(v)v = fH + fP + fR + fA + fC + fW1 + fW2 (4)

where MRB represents the inertia matrix of the rigid body and CRB(v) represents the Corio-
lis forces/moments matrix. Moreover, the total external forces/moments are composed of
hull term fH , propeller term fP, rudder term fR, wind term fA, current term fC, first-order
wave term fW1, and second-order wave term fW2.

The hull term fH is given by:

fH = −A(∞)
.
v− B(∞)v−

∫ t
0 K(t− τ)[v(τ)−Ue1]dτ − C(η) + fV(v)

e1 = [1, 0, 0, 0, 0, 0]T
(5)

where A(∞) and B(∞) are the added mass and the damping coefficient matrices at infinite
frequency, and K(t) is the matrices of IRFs (Impulse Response Functions); we already devel-
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oped an efficient pipeline to construct the databases, including the above coefficients [27].
Furthermore, the hydrostatic coefficients matrix C(η) is given by:

C(η) =



−ρg
(∫ z

0 Aw(z)dz
)

sin (θ)
ρg
(∫ z

0 Aw(z)dz
)

cos (θ) sin(φ)
ρg
(∫ z

0 Aw(z)dz
)

cos(θ) cos(φ)
ρg∇GMT sin(φ) cos(θ) cos(φ)
ρg∇GML sin(θ) cos(θ) cos(φ)

ρg∇(−GML cos(θ) + GMT) sin(φ) sin(θ)

 (6)

Here, Aw(z) is the waterline area, which can be conveniently calculated based on the
dense body plan generated in the work above [27]. GMT and GML represent the transverse
and longitudinal metacentric heights, and ∇ is the displacement volume. Moreover, fV(v)
represents the matrices of viscous hydrodynamic forces/moments as shown in Equation (7),
and the terms in fV(v) were modeled by polynomial functions of the non-dimensional
hydrodynamic derivatives and motion state as shown in Equation (8). The hydrodynamic
derivatives could be obtained by model test data [28] or empirical formulas [29]. The detail
coefficients in Equation (7) were provided and verified in our previous work [30].

fV(v) = [XV , YV , ZV , KV , MV , NV ]
T (7)

fV(v) =



0.5ρLdU2
(

X′vv′2 + X′vv′2 + X′vv′2 + X′vv′2
)
− RT

0.5ρLdU2
(

Y′vv′ + Y′rr′ + Y′vvvv′3 + Y′vvrv′2r′ + Y′vrrv′r′2 + Y′rrrr′3
)

0
Kp p + Kpp|p|p + YVzH

0
0.5ρL2dU2

(
N′vv′ + N′rr′ + N′vvvv′3 + N′vvrv′2r′ + N′vrrv′r′2 + N′rrrr′3

)


(8)

The modelling of hydrodynamic forces/moments fP, fR, fA, and fC were carefully
discussed in our previous work [30]; however, only the second-order wave term fW2 was
provided. To ensure the clarity of the article, both of the first-order and second-order wave
terms were redefined in Equations (9) and (10).

fW1 =
K

∑
k=0

N

∑
n=0

[∣∣∣Ti
W1(U, ωk, χe)

∣∣∣Ak,n cos
(

x cos(θn) + y sin(θn)−ωkt + εk,n − ϕi
k,n

)]
i=1∼6

(9)



Ci
W2 = 2

K
∑

k=0

N
∑

n=0

[∣∣∣Ti
W2(U, ωk, χe)

∣∣∣ SW (ωk ,θn)

H2
s

∆ω∆θ
]

i=1∼6

fW2 =


ρgLH2

s C1
W2

ρgLH2
s C2

W2
03×1

ρgL2H2
s C6

W2


(10)

Here, Ti
W1(U, ωk, χe) is the first-order wave load coefficient at a given ship speed U,

wave frequency ωk, and wave encounter angle χe, and Ak,n is the surface elevation of
the short-crest irregular waves. In addition, SW represents the wave spectrum, θn is the
wave spreading angles, εk,n denotes the random phases, and ϕi

k,n is the phase of complex
coefficients Ti

W1(U, ωk, χe). Furthermore, Ci
W2 represents the average second-order wave

drift coefficients, Ti
W2(U, ωk, χe) denotes the second-order wave load coefficients, and Hs is

the significant wave height. Both of the first-order and second-order wave load coefficients
are included in the hydrodynamic database mentioned above [27].

2.2. Ship Motion Simulation and Validation

Once the physical ship motion model was established, the ship motion could be
simulated based on the model. There were three main input quantities used to drive the
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simulation, which were hydrodynamic coefficients, the control command of the rudder and
propeller, and environmental vectors. The simulation flowchart is depicted in Figure 2. At
the beginning of the simulation, all of the motion statuses were initialized and employed to
perform the interpolations in the hydrodynamic and environment databases. In addition,
the interpolation methods were provided in the mentioned work [27,30]. The hydrody-
namic coefficients and environmental information were obtained through interpolations.
The environmental databases could be constructed by ocean observation data or ocean
hindcast data [31], which could improve the accuracy of the ship motion simulation in the
actual seas [30]. Nevertheless, the environment database was optional. The wind, current,
and wave vector could also be generated by a user-customized value, which provided a
flexible way to simulate the ship motion under various environmental conditions.
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Since the physical motion model consisted of differential equations, the motion status
could be numerically iterated by the fourth-order Runge–Kutta method. In addition to the
hydrodynamic coefficients and environmental information, the command of the propeller
and rudder was another important input value. The command of the propeller revolution
and rudder angle could be set by manual input, a group of fixed values, or real measured
data from onboard sensors. Moreover, the model could be reinitialized if requested. The
stop flag could either be a time period or iteration steps, and the simulation pipeline would
stop if it reached the defined period or iteration steps; otherwise, the new state would
be sent back to the databases to obtain the hydrodynamic coefficients and environmental
information needed for the next iteration.

The linear accelerations and angular velocities were the major data measured from
shipborne inertial sensors. Therefore, the purpose of the ship motion simulation was to
reproduce these two kinds of data. Since the inertial sensor was fixedly connected to the
ship, the accuracy of the ship motion simulation directly determined the accuracy of the
inertial measurement data simulation. As discussed in the aforementioned work [26,30],
the simulation of planar maneuvering motions, including the surge, sway, and yaw, were
compared with the onboard measured data of a bulk carrier. The average RMSE of the
one-hour simulated trajectories (surge, sway) and headings (yaw) were 0.3254 n mile and
8.15◦, respectively. However, we only provided a rough validation of the simulated rolling
motion. In order to adequately verify the modeling method before inertial measurement
simulation, the same onboard measured data were employed [30], and the pitching and
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rolling motion were simulated based on the purposed simulation method. Both of the
shipboard measured angles and simulated angles are given in Figures 3 and 4. Furthermore,
the wave encounter angles were between −2.3◦ and 106.8◦ in case one and between −3.4◦

and 152.7◦ in case two. The maximum wind speeds were 17.38 m/s for case one and
14.25 m/s for case two, corresponding to level eight (gale) and level seven (near gale) on
the Beaufort scale, respectively. The maximum values of the significant wave height were
6.34 m for case one and 5.74 m for case two, respectively, corresponding to the same levels
on the Beaufort scale as mentioned above. The detailed environmental conditions of the
two cases were illustrated in our previous work [30].
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Figure 4. Validation of simulated pitching motion. (a) simulated pitch angles of case 1; (b) simulated
pitch angles of case 2.

Because the roll and pitch angles oscillated at a high frequency at all times, this paper
adopted the zero up-crossing method consistent with the literature [30] to process the
data to reach a better visual effect. The measured data in Figures 3 and 4 represent the
shipborne inertial measurement of the bulk carrier, and the simulated data were generated
by our method. It can be clearly seen that the trend of the simulated value agreed with the
measured value, and the amplitude was also consistent. Moreover, the RMSE of the roll
angles in cases one and two were 1.31◦ and 1.19◦, and the relative errors were 14.5% and
16.4%, respectively. The RMSE of the pitch angles in cases one and two were 0.42◦ and 0.31◦,
the relative errors were 15.2% and 16.5%, respectively. In summary, the average relative
error of all simulated roll and pitch angles was about 15.7%, which indicates that the
proposed method was applicable to simulate the ship’s motion state under environmental
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disturbances. Moreover, both the arrangement of the shipborne inertial sensors and the
detailed voyage information of cases one and two were referred to the literature [30].

3. Modeling of Inertial Sensors

The error model was an essential element in the inertial measurement simulation.
This section first explains the main error sources of inertial sensors and then introduces
the measurement model of shipborne inertial sensors. Subsequently, according to the
propagation characteristics of the random errors, stochastic error models in the time
domain were established. In order to realize the simulation of inertial measurement data,
the discretization process of stochastic error is derived, and the detailed content is described
as follows:

3.1. Measurement Model for Inertial Sensors

An inertial sensor combined linear accelerations from an accelerometer and rotations
from a gyroscope to deliver navigation parameters and position update information [32].
Both of the accelerometer and gyroscope sensors contained two main types of errors which
were deterministic errors such as scale factor, bias, misalignment, and stochastic errors
such as bias instability and measurement noise as shown in Figure 5. The bias of an
inertial sensor was the offset of its output signal from the actual acceleration value. In
addition, the misalignment error referred to an axis-to-axis error and an axis-to-package
error. The former describes the alignment condition of each accelerometer and gyroscope
axis compared to the ideal mutual orthogonality and the latter indicates the alignment
condition in each axis related to the sensor package. Furthermore, the scale factor error
was the ratio of the output error over the input and is typically expressed as a percentage.
Bias instability was the random variation in the bias computed over a specified sample
time and averaging time interval, which led to the angle and velocity integration error
growth proportional to the time. Moreover, the measurement noise was the unwanted
signal generated from internal electronics that always exists in sensors.
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The complete measurement model of an inertial sensor is shown in Equation (11).
Where, the subscripts “a” and “g” represent the accelerometer and gyroscope, Ma/g is the
axis-to-axis misalignment error matrices, Sa/g is the scale error matrices, ba/g is the bias
vectors, and na/g is the measurement noise vectors. Moreover, the aI and ωI are the initial
uncorrected measurement values of acceleration and angular velocity vectors which are
denoted by subscript “I”. The aC and ωC are the corrected measurement value vectors
which are denoted by subscript “C”. The detailed form of the matrices and vectors above
are defined as in Equation (12).{

aC = MaSa(aI + ba + na)
ωC = MgSg

(
ωI + bg + ng

) (11)

Ma/g =

 1 mxy mxz
myx 1 myz
mzx mzy 1

, Sa/g =

 sx 0 0
0 sy 0
0 0 sz

, ba/g =

 bx
by
bz

, na/g =

 nx
ny
nz

 (12)
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3.2. Stochastic Error Model for Inertial Sensors

The variation of stochastic errors of inertial sensors is commonly described as a
random process. However, the exact values of stochastic errors were not obtainable, the
noise covariance was employed to approximately describe the strength of the bias instability
and measurement noise, and estimated by the widely used Allan variance analysis [33].
Based on the random process theory, the measurement noise of inertial sensors could be
modeled by a Gaussian noise nt(t) with a zero-mean and covariance σ2

t in continuous time.
The following set of equations was used to describe the measurement noise of both the
accelerometer and gyroscope, where the Dirac delta function δ(t1 − t2) indicates that the
noise at each moment was independent of each other. Furthermore, the larger the value of
the covariance, the stronger the noise of the inertial measurement.

nt(t) ∼ N
(
0, σ2

t
)

E[nt(t1)nt(t2)] = σ2
t δ(t1 − t2)

δ(t1 − t2) =

{
1, t1 = t2
0, t1 6= t2

(13)

The actual measured inertial data were discrete sampling values. As the sampling
frequency of inertial sensors were generally over 100 Hz, it could be assumed that the noise
remained unchanged in each sampling interval. Therefore, the discrete measurement noise
model is given by:

nd[k] ∼ N
(
0, σ2

d
)

nd[k] = nt(t0 + ∆t) ≈ 1
∆t
∫ t0+∆t

t0
nt(τ)dτ

(14)

Here, nd[k] denotes the discrete measurement noise at the kth moment, the dis-
crete noise covariance is represented by σ2

d , and ∆t is the sampling interval. Based on
Equations (13) and (14), the relation between continuous and discrete measurement noise
is derived by:

σ2
d = E[(nd[k])

2] = 1
∆t2

∫ t0+∆t
t0

∫ t0+∆t
t0

E[nt(t)nt(τ)]dtdτ

= 1
∆t2

∫ t0+∆t
t0

∫ t0+∆t
t0

σ2
t δ(t− τ)dtdτ

=
σ2

t
∆t2

∫ t0+∆t
t0

1dτ =
σ2

t
∆t

(15)

In addition to being affected by the measurement noise, the bias of the inertial sensors
also changed continuously over time. Generally, the Wiener process is used to describe
the variation of bias [34]. The following set of equations were used to explain the bias
instability of both the accelerometer and gyroscope:

w(t) ∼ N (0, 1)
.
b(t) = nbt(t) = σbtw(t)

b(t0 + ∆t) = b(t0) +
∫ t0+∆t

t0
nbt(t)dt

(16)

where w(t) is the Gaussian white noise with a variance of 1. The function nbt(t) represents
the derivative of the bias in continuous time and the σbt is the standard deviation which
indicates the strength of bias variation.

Similarly, the bias of inertial sensors could be assumed unchanged in each sampling
interval due to a high sampling frequency. The discrete form of the variation of the bias
is given:

w[k] ∼ N (0, 1)
bd[k] = bd[k− 1] + σbdw[k]

(17)
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where bd[k] is the discrete bias at the kth moment and σbd denotes the discrete standard
deviation related to σbt. The relation between continuous and discrete bias can be derived
based on Equations (16) and (17):

E
[
b2(t0 + ∆t)

]
= E

[
b2(t0) +

∫ t0+∆t
t0

∫ t0+∆t
t0

σ2
btδ(t− τ)dtdτ

]
= E

[
b2(t0)

]
+ σ2

bt∆t
⇒ σ2

bd = σ2
bt∆t

(18)

Finally, the derivation from continuous to discrete measurement noise and bias are
clearly given by Equations (15) and (18), which established one of the foundations of the
inertial measurement data simulation. Once we were able to simulate the acceleration and
angular velocity of the vehicle without error interference, then, with the above equations,
we could artificially add the error terms at any sampling frequency to the ideal inertial
measurement data to simulate realistic inertial sensors.

4. Simulation Framework of Shipborne Inertial Sensors

In this section, the idea of using the ship motion model and sensor error model to
simulate shipborne inertial sensors is explained firstly. Then, the implementation details
of three ROS nodes are illustrated and the complete simulation framework is developed.
Finally, the simulation results of the shipborne inertial measurement are provided.

4.1. Shipborne Inertial Sensors Simulation

The method of the shipborne inertial sensors simulation was composed of two basic
steps. First of all, the ideal inertial measurement data without any error were simulated
based on the physical motion model of ships proposed in Section 2. Subsequently, the
artificial deterministic and stochastic errors were generated at any specified sampling
frequency based on the discrete error models derived in Section 3.

The relations between simulated inertial measurement data and the simulated ship
motion status are described by the following set of equations:

aM =
[
ax, ay, az

]T
=
[ .
u,

.
v,

.
w
]T, ωM =

[
ωx, ωy, ωz

]T
= [p, q, r]T (19)

aS[k] = M−1
a S−1

a aM[k]− ba[k]− na[k]

na[k] ∼ N
(

0,
σ2

a,t
∆t

)
ba[k] = ba[k− 1] + σba,t

√
∆t·w[k]

(20)


ωS[k] = M−1

g S−1
g ωM[k]− bg[k]− ng[k]

ng[k] ∼ N
(

0,
σ2

g,t
∆t

)
bg[k] = bg[k− 1] + σbg,t

√
∆t·w[k]

(21)

where aM and ωM are vectors of linear acceleration and angular velocity that were gen-
erated by the ship motion model. These two vectors could be regarded as ideal inertial
measurements. Correspondingly, aS and ωS are vectors of simulated linear acceleration and
angular velocity which were produced by adding artificial errors to aM and ωM. The covari-
ance terms σ2

a,t and σ2
g,t denote the strength of the measurement noise of the accelerometer

and gyroscope. Likewise, σba,t and σbg,t represent the strength of bias instability of the
above sensors. The functional relationships between continuous and discrete covariance
were derived in Equations (15) and (18), and directly employed in Equations (20) and (21).

It should be noted that in addition to the influence of errors, the installation position
of the sensor was also a very important factor. As defined in Figure 1, the origin of
the ship motion model was chosen to coincide with the midship point. That is, all the
simulated motion statuses were defined relative to the origin. Since the ultimate goal of
the inertial sensor simulation was to develop and test the sensor fusion algorithms. A
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practical approach is to treat the simulation tests and actual tests separately. At the stage
of the simulation test, the installation position of inertial sensors could be assumed to
exactly coincide with the defined origin, for which there was no need to calibrate, and the
developers could focus on the fusion algorithms. Moreover, at the stage of the actual ship
test, the installation position of the actual sensors would be calibrated. All of the spatial
transformation matrices were conveniently managed by the ROS transform trees, and the
developers could be confident that the data were in the coordinate frame that they wanted
without requiring the knowledge of all the coordinate frames in the system [35].

4.2. Universal Simulation Framework Based on the ROS

The ROS is an open-source robot middleware and a collection of software frameworks
for robot development which had been developed based on a graph architecture [36].
The programs in the ROS can publish and receive various information as nodes in the
computation graph, such as sensor data, control signals, state information, planning
commands, etc. We developed a simulation framework based on the ROS, and the structure
is shown in Figure 6.

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 12 of 18 
 

 

The “Inertial_Sim” node subscribes to the “ideal_inertial” topic and adds artificial 

errors according to Equations (20) and (21). All of the necessary random numbers are gen-

erated based on the C++ 11 random number engines. Furthermore, the simulated acceler-

ation and angular velocity vectors are published by this node. Finally, the “rosbag” node 

from the ROS is applied to serialize and store the ship motion status and simulate the 

inertial measurement data, which makes the data be easily verified and reused. 

To summarize, any nodes used for fusion perception could obtain the inertial meas-

urement data with errors by subscribing to topic “sim_inertial”, and the poses of the ship 

in the virtual three-dimensional scene could be driven by an error-free data topic “mo-

tion_status”. Moreover, if there were no environment databases available, the user could 

manually publish the “/wind”, “/current”, and “/wave” topics. Since all of the messages 

used in the framework came from native message types of ROS, it was also very conven-

ient to develop a user-defined environmental message publishing node. Accordingly, the 

“Ship_Sim” is also a replaceable node if users could provide the ideal inertial measure-

ment data by same message type by themselves. 

 

Figure 6. Simulation framework of shipborne inertial sensors. 

4.3. Simulation Results 

Simulation results of the shipborne inertial sensor are provided in this section. The 

artificial standard deviation of the continuous measurement noise and bias instability 

adopted in the simulations are shown in Table 2. The settings of these parameters refer to 

the open-source inertial sensor calibration toolkit [37]. Since the deterministic error was 

only a fixed offset or scaling of the original data, we focused on the simulation of stochas-

tic errors. The axis-to-axis misalignment error matrices 𝑴𝑎/𝑔  and scale error matrices 

𝑺𝑎/𝑔 were set as the identity matrices. Moreover, the initial bias vectors 𝒃𝑎/𝑔 were set as 

the zero vectors. The covariance 𝝈𝑎/𝑔,𝑡 and 𝝈𝑏𝑎/𝑏𝑔,𝑡 in Equations (20) and (21) were ma-

trix values; here we assumed these matrices were diagonal and of the same order of mag-

nitude for all axes in practice. Although this hypothesis was adopted in our simulations, 

developers could still customize any covariance matrix according to the characteristics of 

their target sensors. 

Table 2. Settings of artificial measurement noise and bias instability. 

Error Type Accelerometer Gyroscope 

Measurement Noise 0.013 m/s2 0.0084 rad/s 

Bias Instability 0.00063 m/s2 0.000087 rad/s 

The above-mentioned simulation framework and error parameters were employed 

to simulate the shipborne inertial sensors. The same bulk carrier [30] and hydrodynamic 

coefficients database [27] were adopted in the simulations. The sampling frequency of the 

shipborne inertial sensor was set to 100 Hz (∆𝑡 = 0.01s). 

Figure 6. Simulation framework of shipborne inertial sensors.

There were three main nodes implemented in the computation graph, which were
“Env_Sim”, “Ship_Sim”, and “Inertial_Sim”. The “Env_Sim” node subscribes to the motion
status topic published from the “Ship_Sim” node, and publishes the specified environmen-
tal information. As we discussed in Section 2.2, the motion state was employed to perform
the interpolations in the environment databases. The “/wind” and “/current” topics use
the “geometry_msgs/Vector3Stamped” message type which includes a three-dimensional
vector to store the speed and direction of the wind/current and a timestamp. Similarly,
the “geometry_msgs/Vector3Stamped” message type is also used for the “/wave” topic to
store the timestamp, direction, height, and period of a wave vector.

The “Ship_Sim” node subscribes to two kinds of topics which are the environmental
vectors and the “prop_rud_ctrl”, and publishes two kinds of topics which are the ship
motion status and ideal inertial data. The “geometry_msgs/Vector3Stamped” message
type is adopted to store the command of propeller revolutions and rudder angles in the
topic “prop_rud_ctrl”. The “nav_msgs/Odometry” message type is employed to store the
linear and angular velocities, position, orientation, and timestamp of the ship. In addition,
the message type “sensor_msgs/Imu” consists of acceleration and angular velocity vectors
used for both the ideal inertial measurement data topic “ideal_inertial” and simulated
inertial measurement data topic “sim_inertial”.

The “Inertial_Sim” node subscribes to the “ideal_inertial” topic and adds artificial
errors according to Equations (20) and (21). All of the necessary random numbers are
generated based on the C++ 11 random number engines. Furthermore, the simulated
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acceleration and angular velocity vectors are published by this node. Finally, the “rosbag”
node from the ROS is applied to serialize and store the ship motion status and simulate the
inertial measurement data, which makes the data be easily verified and reused.

To summarize, any nodes used for fusion perception could obtain the inertial mea-
surement data with errors by subscribing to topic “sim_inertial”, and the poses of the
ship in the virtual three-dimensional scene could be driven by an error-free data topic
“motion_status”. Moreover, if there were no environment databases available, the user
could manually publish the “/wind”, “/current”, and “/wave” topics. Since all of the
messages used in the framework came from native message types of ROS, it was also very
convenient to develop a user-defined environmental message publishing node. Accord-
ingly, the “Ship_Sim” is also a replaceable node if users could provide the ideal inertial
measurement data by same message type by themselves.

4.3. Simulation Results

Simulation results of the shipborne inertial sensor are provided in this section. The
artificial standard deviation of the continuous measurement noise and bias instability
adopted in the simulations are shown in Table 2. The settings of these parameters refer
to the open-source inertial sensor calibration toolkit [37]. Since the deterministic error
was only a fixed offset or scaling of the original data, we focused on the simulation
of stochastic errors. The axis-to-axis misalignment error matrices Ma/g and scale error
matrices Sa/g were set as the identity matrices. Moreover, the initial bias vectors ba/g
were set as the zero vectors. The covariance σa/g,t and σba/bg,t in Equations (20) and (21)
were matrix values; here we assumed these matrices were diagonal and of the same
order of magnitude for all axes in practice. Although this hypothesis was adopted in
our simulations, developers could still customize any covariance matrix according to the
characteristics of their target sensors.

Table 2. Settings of artificial measurement noise and bias instability.

Error Type Accelerometer Gyroscope

Measurement Noise 0.013 m/s2 0.0084 rad/s
Bias Instability 0.00063 m/s2 0.000087 rad/s

The above-mentioned simulation framework and error parameters were employed
to simulate the shipborne inertial sensors. The same bulk carrier [30] and hydrodynamic
coefficients database [27] were adopted in the simulations. The sampling frequency of the
shipborne inertial sensor was set to 100 Hz (∆t = 0.01 s).

The simulation settings were arranged as follows: the ship sailed with a heading of
0◦ at the initial moment, the propeller revolution was fixed at 122 r/m, and a 10◦/10◦

zigzag maneuver was carried out when the ship motion reached a steady status, and
the simulation duration was set to 500 s. The main reason for choosing the zigzag test
was that the test would fully excite the ship motion and make the motion state change
periodically, so that the inertial simulation results were easier to observe. Moreover, the
average direction of the wind in the simulated environment was 0◦, and the average wind
speed was 2 m/s; the average direction of the ocean current was 0◦, and the average current
velocity was 0.1 m/s; the main wave direction was 0◦, and the significant wave height was
1.0 m; the average wave period was 8.0 s.

The “rosbag” node was used to record the error-free ship motion status and simulated
inertial measurement data. The recorded ship position and orientation are depicted in
Figure 7. The poses of the ship were interpreted from the “motion_status” topic and
displayed by the body-fixed frames. Since the data published by the nodes were 100 Hz, in
order to ensure clarity, the original poses were sparsely processed.
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The ideal and the simulated inertial measurement data were recorded by the same
method. The error-free accelerations generated by the ship motion model and the simulated
accelerations with artificial errors are provided in Figure 8. Correspondingly, the angular
velocities are provided in Figure 9.
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Figure 8. Error-free and simulated accelerations. (a) error-free accelerations of x direction; (b) error-free accelerations of y
direction; (c) error-free accelerations of z direction; (d) simulated accelerations of x direction; (e) simulated accelerations of y
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The first point to note is that the accelerations and angular velocities from the physical
ship motion model were very smooth and without the interference of measurement noise
and bias instability. Since the position was obtained by acceleration integration, the
changing trend of the acceleration components ax and ay in Figure 8 was completely
consistent with the x and y coordinates of the track points in Figure 7. Similarly, the
orientations were integrated by angular velocities; therefore, the varying of the yaw angle
rate ωz also agreed with the ship orientations shown in Figure 7. As can be seen from
the right parts of Figures 8 and 9, the inertial measurement data became more realistic
after adding the artificial measurement noise and bias instability. Further, the data in
Figure 8 were partially intercepted and enlarged to illustrate the difference between the
noise and high-frequency components in the simulated results. As mentioned in the ship
motion model, the ship was disturbed by environmental effects, especially the waves. The
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first-order wave forces and moments contributed to the high-frequency components of
the simulated ship motion as shown in the left part of Figure 10. However, these high-
frequency components could not completely reflect the characteristics of the shipborne
inertial sensors compared with the artificial noise in the right part of Figure 10. It follows
that model-based ship motion simulation could not be directly used as the simulation
result of shipborne inertial sensors.
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As mentioned in Section 2, the simulation method of ship motions was validated by
shipboard measurement data. Therefore, we could consider that the simulation of the ideal
motion state was accurate. The differences between the ideal motion state and the actual
inertial measurement data mainly consisted of errors and noise. Therefore, the process
from the ideal motion state to the realistic inertial measurement was to add artificial errors.
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As can be seen from Figure 8 to Figure 9, the errors oscillate around the ideal values due to
the zero-mean setting of the Gaussian distribution in Equations (20) and (21). Consequently,
the above results indicated that the proposed framework is rational and applicable for
simulations of shipborne inertial sensors.

5. Discussion

A universal simulation framework was implemented based on the ROS and ship
motion model in this paper. The proposed framework could perform a realistic simulation
of shipborne inertial sensors. Moreover, the modeling and simulation method in this
paper also gave insight for building a perfect virtual test environment for developing and
testing shipboard multi-sensor fusion perception algorithms. However, there were certain
assumptions in the proposed method. The limitations are discussed here which provide
directions for future studies. Firstly, only the measurement noise and random walks of bias
were considered in the simulations. However, there were more than two stochastic error
sources in real inertial sensors, such as temperature error and high-frequency vibration
noise from the ship engines. Secondly, the errors discussed in this paper all conformed to
the Gaussian distribution which was a practical solution in most literature [3,13], whereas
it may be impractical and inaccurate to use the Gaussian distribution to describe real sensor
errors. Given the above limitations, it is necessary to further study other error sources
and simulation mechanisms of shipborne inertial sensors to reach a physically accurate
simulation. Moreover, direct comparisons between the simulated inertial measurement
data and the real sensors under the same maneuvers and environmental conditions based
on a complete sensor error model should be conducted in future work.

6. Conclusions

In this paper, the physical-based ship motion model was integrated with the Robot
Operating System to simulate the shipborne inertial sensors. The proposed ship motion
model could reflect the physical movement characteristics of ship maneuvering under
realistic environmental disturbances based on well-modeled differential equations. The
accuracy and applicability of the model were further verified by the comparison with actual
ship measurement data. However, the acceleration and angular velocity data generated
by ship motion simulation contained no error and noise items, which brought up a gap
between the realistic inertial measurement data. Through an in-depth analysis of the error
mechanism of inertial sensors, the discretization process of continuous measurement noise
and bias instability was derived. Based on the above derivation conclusions, artificial errors
could be easily added to the ideal accelerations and angular velocities, which would close
the gap between the simulated sensors and real sensors. Moreover, the inertial simulation
data could be generated at any customized sampling frequency thanks to the discretized
stochastic error model. Finally, a universal simulation framework was implemented and
the features of this framework were summarized as follows:

• The physical-based ship motion model was established which could provide a realistic
simulation of the ship motion status under environmental disturbances;

• The framework was designed by a module decoupling idea. The interaction between
modules only relied on unified data interfaces and the modules were replaceable;

• The native ROS message types were employed in the framework which could directly
interact with algorithms designed for real sensors;

• The error terms, error strength, sampling frequency, environmental information input,
and rudder and propeller control input were all customizable which made the frame-
work more flexible to handle different environmental conditions and sensor settings.

The benefit from the aforementioned features, the proposed framework could perform
a realistic simulation of shipborne inertial sensors which built a research foundation for
the fusion perception algorithm based on visual–inertial and laser–inertial sensors in the
research field of ASVs. The current work built a connection between the ship motion model
and the shipborne inertial sensor simulation. However, it was a preliminary exploration in
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the field of the shipborne sensor simulation. In the near future, not only will the complete
sensor models be developed, but sufficient experiments on real ASVs will be performed to
further promote our work.
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