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Abstract: In this study, we propose an effective method using deep learning to strengthen real-time
vessel carbon dioxide emission management. We propose a method to predict real-time carbon
dioxide emissions of the vessel in three steps: (1) convert the trajectory data of the fixed time
interval into a spatial–temporal sequence, (2) apply a long short-term memory (LSTM) model to
predict the future trajectory and vessel status data of the vessel, and (3) predict the carbon dioxide
emissions. Automatic identification system (AIS) database of a liquefied natural gas (LNG) vessel
were selected as the sample and we reconstructed the trajectory data with a fixed time interval using
cubic spline interpolation. Applying the interpolated AIS data, the carbon dioxide emissions of the
vessel were calculated based on the International Towing Tank Conference (ITTC) recommended
procedures. The experimental results are twofold. First, it reveals that vessel emissions are currently
underestimated. This study clearly indicates that the actual carbon dioxide emissions are higher than
those reported. The finding offers insight into how to accurately measure the emissions of vessels,
and hence, better execute a greenhouse gases (GHGs) reduction strategy. Second, the LSTM model
has a better trajectory prediction performance than the recurrent neural network (RNN) model. The
errors of the trajectory endpoint and carbon dioxide emissions were small, which shows that the
LSTM model is suitable for spatial–temporal data prediction with excellent performance. Therefore,
this study offers insights to strengthen the real-time management and control of vessel greenhouse
gas emissions and handle those in a more efficient way.

Keywords: vessel trajectory prediction; LSTM; cubic spline interpolation; LNG; CO2 emissions

1. Introduction
1.1. Greenhouse Gases (GHGs) of Vessels

With global warming progressing worldwide, each government’s emission manage-
ment for greenhouse gases (GHGs) is becoming more meticulous. GHG emissions from
vessels are receiving increasing attention, especially in port cities, since vessels have be-
come a major source of polluting emissions. Most governments have introduced emission
tax rates to reduce the GHG emissions of vessels, especially emissions of carbon dioxide
(CO2), which is one of the most important greenhouse gases.

Since automatic identification system (AIS) database store the detailed real-time
trajectory data of vessels, we can use longitude, latitude, speed over ground (SOG) and
course over ground (COG) to accurately, and in real-time, estimate the carbon dioxide
emissions while the vessel is sailing. Many studies have been carried out to estimate vessel
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inventories using AIS data. Mabunda et al. [1] estimated a ship emission inventory near
the strait of Gibraltar. Winther et al. [2] implemented emission inventory estimation in
the Arctic though a S-AIS (satellite automatic identification system). The International
Maritime Organization [3] implemented full-scale vessel emission inventory analysis using
AIS data. Coello et al. [4] estimated an emission inventory from a UK fishing fleet, and
Yao et al. [5] estimated vessel emission inventories in an estuary of the Yangtze River.
Wang et al. [6] used the Ship Traffic Emissions Assessment Model (STEAM2) to estimate the
fuel consumption of a vessel, though wave and wind resistance were not considered and
the average speed had insufficient accuracy. Kim et al. [7] considered that the accuracy of
the calculation could be improved by solving the problem of an unstable AIS data interval.

1.2. Vessel Trajectory Prediction in Deep Learning

Generally, vessel trajectory data can be represented as a set of multi-dimensional
spatial–temporal sequences {(p1, a1, t1), (p2, a2, t2), (p3, a3, t3), . . . , (pn, an, tn)}, where pi is
the position (longitude, latitude), ai is the data attribute (SOG, COG) and ti is the recording
time of the AIS data.

Traditional trajectory prediction methods are linear prediction methods, but linear
methods have limitations when it comes to constructing the kinematics equations of the
vessel. Some traditional methods apply Gaussian-based models. Laxhammar et al. [8]
proposed a Gaussian mixture model that combines multiple probability distributions to
model vessel trajectories. Its disadvantage, however, was in determining the number and
quantity of Gaussian components; few Gaussian components made it difficult to describe
the vessel’s trajectory, and too many were prone to overfitting. Zhao et al. [9] proposed
an improved Kalman filter algorithm with system noise estimation to predict the vessel’s
trajectory; however, this method of setting parameters was complicated and difficult to
reproduce. In addition, the marine environment had a great influence on the trajectory of
vessels, which made research difficult.

Considering the inefficiency of linear relationships for different spatial–temporal
data, as discussed in previous studies, we opted to use the neural network method to
fit the relationship between the historical trajectory data and the next-time data. Deep
learning is an algorithm that uses artificial neural networks as a framework to perform
characterization learning on data. It can automatically learn the information in the data,
and can learn the essential characteristics of the dataset. As a subset of machine learning
methods, deep learning automatically extracts data features, which reduces the manual
extraction workload and improves prediction efficiency.

Some scholars have applied deep learning to AIS data prediction. Quan et al. [10]
established the recurrent neural network-long short-term memory (RNN-LSTM) model to
predict vessel trajectory. Nguyen et al. [11] used the sequence-to-sequence model to predict
vessel trajectory, while the encoder and decoder used long short-term memory (LSTM).
However, the vessel trajectory data were spatial–temporal sequence data that had both
temporal and spatial correlation. The SOG of the vessel will affect the distance the vessel
travels, and the COG of the vessel will affect the position of the vessel. Therefore, some
scholars proposed using the convolutional layer to extract the spatial characteristics of the
trajectory data, and then used the LSTM model to analyze the temporal characteristics.
This also achieved precise prediction results. For example, Ljunggren et al. [12] used
convolutional networks of different sizes to learn spatial–temporal sequences in trajectory
features, separate the different features in the data and finally, synthesize a feature to
perform trajectory prediction. Wang and Liu [13] proposed a convolutional neural network
model combined with LSTM, studying the spatial structure and temporal characteristics
of vessel trajectory data simultaneously; the prediction effect was better than using the
convolutional neural network alone, but the prediction error was not overwhelming
compared to the LSTM model. There are also studies that examine the accuracy of machine
learning methodologies on real datasets in vessels [14,15].
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Existing studies suggest that the LSTM model is a suitable algorithm for vessel trajec-
tory prediction applications. However, studies predicting emissions applying reconstructed
trajectory data in deep-learning models have been scarce. This study aims to fill the re-
search gap.

1.3. The Motivation of the Study

The motivation of this study is to strengthen the real-time management of vessel
carbon dioxide emissions and to control vessel GHG emissions in a more efficient way.
To achieve that, we propose a method that can accurately grasp the current emissions of
the ship and predict the future emissions status. We consider that the incompleteness
of the AIS trajectory data will affect the accuracy of the vessel carbon dioxide emissions
estimation. As such, we propose using the cubic spline interpolation method to enrich the
vessel trajectory. With this method, we can estimate the vessel carbon dioxide emissions
every 1 s to improve the estimation accuracy. Thereafter, we use the LSTM model to learn
the historical SOG characteristics and trajectory characteristics of vessels, to predict the
spatial–temporal distribution of vessels’ future carbon dioxide emissions.

Deep learning can learn the basic characteristics of the data from a small number of
samples through a deep non-linear network structure, which is suitable for rapid analysis
of vessel data in the marine environment, so we chose deep learning. To improve the
validity of the prediction data, we emphasized a real-time and short-term nature. Figure 1
outlines the flow of this study.
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The rest of the paper is structured as follows. Section 2 describes the formation of the
cubic spline interpolation model for reconstructing trajectory data, the LSTM model for
prediction and the CO2 emission estimation model. Section 3 discusses the experiments
and results. Section 4 summarizes the work and the prospects for future studies.

2. Equations of the Model
2.1. Cubic Spline Interpolation Model

Due to incorrect operation of the AIS system by shore and vessel personnel, informa-
tion transmission failure between AIS and the shore base, subjective and objective factors
such as the random failure of the AIS system itself or the problem of artificial improper
maintenance, we need to select a method of interpolation and repair the trajectory to
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obtain more accurate and complete vessel trajectory information. Compared with the linear
interpolation model, the non-linear interpolation model is more in line with the actual
sailing state of the ship; especially near the coast, the ship cannot always keep a straight
line sailing, but will adjust the course according to different sea conditions. Therefore, we
select the method of cubic spline interpolation to smooth the vessel trajectory.

We suppose that the interval of trajectory data is [a, b], divided [a, b] into n intervals,
as [(x0, x1), (x1, x2), · · · , (xn−1, xn)], x0 = a, xn = b, where the function expression for
each interval is S(x). Cubic spline means that the curve of each interval is a cubic equation
Si(x) that meets the interpolation conditions S(xi) = yi and meets the condition of a
smooth curve where Si(x), Si

′(x), Si
′′ (x) are a continuous function. The solved equation

(Bartels et al. [16]) is as follows:

Si(x) = ai + bi(x− xi) + ci(x− xi)
2 + di(x− xi)

3 (1)

Si
′(x) = bi + 2ci(x− xi) + 3di(x− xi)

2 (2)

Si
′′ (x) = 2ci + 6di(x− xi) (3)

where Si(x) is the cubic spline model expression, and ai, bi, ci, di are the parameters to
be solved.

Accordingly, Si(x) must meet interpolation conditions S(xi) = yi and Equations (1)–(3).
Then, we can obtain the equation as follows:

ai = yi (4)

hi = xi+1 − xi (5)

ai + bihi + cihi
2 + dihi

3 = yi+1 (6)

According to continuous function conditions,

S′′i (xi+1) = S′′i+1(xi+1) (7)

S′′′i (xi+1) = S′′′i+1(xi+1) (8)

We can obtain the equation as follows:

bi + 2hici + 3h2
i di = bi+1 (9)

2ci + 6hidi = 2ci+1 (10)

di =
mi+1 −mi

6hi
(mi = 2ci) (11)

Inputting Equations (4), (10) and (11) into Equation (6), we can obtain the equation
as follows:

bi =
yi+1 − yi

hi
− hi

2
mi −

hi
6
(mi+1 −mi) (12)

By inputting Equations (4) and (10)–(12) into Equation (9), we can obtain the equation
as follows:

himi + 2(hi + hi+1)mi+1 + hi+1mi+2 = 6
[

yi+2 − yi+1

hi+1
− yi+1 − yi

hi

]
(13)

We build linear equations with m as the unknown (m0 = 0, mn = 0):
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

1 0 0 0 · · · 0
h0 2(h0 + h1) h1 0 · · · 0
0 h1 2(h1 + h2) h2 · · · 0

0 0 h2 2(h1 + h2) h3
...

...
...

. . . . . . . . . 0
0 0 0 hn−2 2(hn−2 + hn−1) hn−1
0 0 0 0 0 1





m0
m1
m2
m3
...

mn


= 6



0
y2−y1

h1
− y1−y0

h0
y3−y2

h2
− y2−y1

h1
...

yn−yn−1
hn−1

− yn−1−yn−2
hn−2

0


(14)

We can calculate m0, m1, · · · , mn from Equation (14) and use it to calculate ai, bi, ci, di
and know the function expression for each interval to enrich the vessel trajectory data.

2.2. Long Short-Term Memory Model

The LSTM model (Hochreiter et al. [17]) is a variant of the recurrent neural network
(RNN). The RNN cannot learn longer histories’ data, resulting in a gradient decline or even
disappearance at further time steps. To solve this problem, the LSTM model introduces
storage units and unit states to control information transfer based on the RNN.

There are four gates (forget gate, input gate, update gate and output gate) in the
storage unit of the LSTM model. The input gate controls the addition of new information.
The forget gate can forget information that needs to be discarded and retain the useful
information of the past. The update gate can update data. The output gate causes the
storage unit to output only information related to the current time step. These four gate
structures perform matrix multiplication and non-linear summing in the memory cells so
that the memory does not decay in constant iterations.

As shown in Figure 2, the structure of LSTM neural network consists of three layers:
input layer, hidden layer (LSTM_Layer_1 and Other Layer) and output layer. Figure 3a
shows the structure of the RNN. Its cell contains only one activation function, and the cells
are only linked in order. Figure 3b is the structure of LSTM. Its cell is more complex than
the RNN. It needs four gate calculations to output to the next cell. Figure 3c is an enlarged
view of Figure 3b.
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Forget Gate: For time t, the state ht−1 at the previous time and the current training
data xt can get ft through the forget gate; the formula is as follows:

ft = σ
(

W f ·[xt, ht−1] + b f

)
(15)

Input Gate: C̃t decides the amount that can be added to the cell state in the tanh
network layer, and it outputs a number between 0 and 1 through the Sigmoid network
layer to decide which status values to update; the formula is as follows:

C̃t = tanh(Wc·[xt, ht−1] + bc) (16)

it = σ(Wi·[xt, ht−1] + bi) (17)

Update Gate: Updates old state Ct−1 to new state Ct. This gate retains long-term and
short-term memory in different proportions of the cell; the formula is as follows:

Ct = it ∗ C̃t + ft ∗ Ct−1 (18)

Output Gate: The third sigmoid network layer determines parts of the output cell
state, combined with Equation (20), to obtain the output value of the cell; the formula is
as follows:

ot = σ(Wo·[xt, ht−1] + bo) (19)

ht = ot ∗ θh(Ct) (20)

where ft: forget gate, C̃t: input cell, it: input gate, Ct: update gate, ot: output gate, σ:
sigmoid activation function, W: weights for different gates, xt: input value at time t, ht−1:
output value at the previous moment, and b: bias term for different gates.

2.3. CO2 Emission Estimation Model

In this study, we adopted the ITTC recommended procedure [19,20] to estimate
vessel resistance. It is necessary to derive the total resistance first. Total resistance can be
denoted as:

RT =
1
2

CTρSV2 (21)

where RT : total resistance, CT : total resistance coefficient, ρ: density of water, S: wetted
surface of the hull, V: SOG.
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CT , the total resistance coefficient, can denoted as:

CT = CF + CA + CAA + CR (22)

where CF: frictional resistance coefficient, CA: incremental resistance coefficient, CAA: air
resistance coefficient, CR: residual resistance coefficient.

Based on calculated total resistance of the vessel, an estimation of the required power
for the vessel to sail at speed V in a calm sea condition can be calculated by considering the
components of the propulsion efficiencies. Installed power is the power required to tow
the vessel with speed V in a calm sea. Service power can be derived from:

PI =
RTV

(ηTηD)
+ m (23)

where PI : installed power, ηT : transmission efficiency,ηD: quasi-propulsive coefficient, m:
sea margin.

Fuel oil consumption is calculated by using the specific fuel oil consumption (SFOC)
as shown in Table 1 from Smith et al. [21]. Table 1 shows the value of the SFOC for each
diesel engine type with engine age. As the vessel engine becomes older, the efficiency of
the engine decreases and the advent of technology makes a newer engine more efficient.

Table 1. Specific fuel oil consumption (SFOC) and distribution of engine age of vessels included in automatic identification
system (AIS) data.

Engine Age Slow-Speed Diesel (SSD) Engine Medium-Speed Diesel
(MSD) Engine High-Speed Diesel (HSD) Engine

Before 1983 205 215 225
1984–2000 185 195 205
Post–2001 175 185 195

The marine liquefied natural gas (LNG) CO2 emissions factor is 2.75. So, the CO2
emission estimation model can be denoted as:

Ei = ∑ PI × SFOC× 2.75× T (24)

where Ei, the total CO2 emissions, is calculated by summing the carbon dioxide emissions
at each trajectory point; T is the time interval of each track point.

3. Experiments and Results
3.1. Automatic Identification System (AIS) Dataset Analysis

This study used AIS data of an LNG vessel provided by exactEarth, as shown in
Figure 4. The time period was from 1 January 2016 to 30 June 2016, and number of
messages was about 50 million. It included vessel names, callsigns, maritime mobile
service identities (MMSIs), vessel types, vessel cargos, vessel classes, lengths, widths, flag
countries, destinations, estimated times of arrival (ETAs), draughts, longitudes, latitudes,
SOGs, COGs, rates of turn (ROTs), headings, navigation (nav) statuses, source, times, main
vessel types and sub vessel types.

The AIS data used this research took a comma-separated values (CSV) form. Every
datum was divided by day based on Greenwich Mean Time (GMT). A total of 182 days
were included, so the complete data of the vessel were divided into 182 small datasets.
This was inconvenient, so we used MySQL to build a trajectory database combining the
182 small datasets into a large dataset.

This trajectory dataset mainly included: MMSI, longitude, latitude, SOG, COG
and time.
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In the original dataset, we found that the average time interval of each piece of AIS
data in Table 2 was 520.52 s. Furthermore, 25% of the data had an interval time within 6 s,
50% were within 17 s, and 75% were within 42 s. According to Figure 5, we also found that
more than 90% of the data had a time interval of more than 30 min. Only about 8% of the
data had a time interval of 2 s. This may be because AIS data collected through satellites
show longer data collecting intervals when the vessel was sailing in areas with high traffic
compared to areas with less traffic.

Table 2. Summary statistics of data interval.

Items Hour Minutes Seconds

Count (number) 9,072,291 9,072,291 9,072,291
Mean 0.14 8.68 520.52
25% 0.00 0.10 6.00
50% 0.00 0.28 17.00
75% 0.01 0.70 42.00
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3.2. Interpolation Calculation

After database analysis, taking the data integrity and continuity as the principle, we
extracted the LNG vessel trajectory data of MMSI 310028000 from the trajectory database
as a sample to illustrate the feasibility of the model. The vessel trajectory over six months
is shown in Figure 6. The vessel travels mainly between Japan and Australia; the IMO
number is “8913174”, built in 1992.
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The focus of this research was to grasp the carbon dioxide emissions of vessels in
real-time. We chose to use vessel data from 5 January 2016 over 00:35:10–00:59:40 for
analysis. The reason for the selection was that the AIS data has relatively larger data points
during the period, which could minimize the workload of trajectory data reconstruction. In
addition, the trajectory trend is a straight line instead of a curve, which is more appropriate
for simplicity. The total time interval was 26 min, and there were 23 trajectory data points,
as shown in Table 3. For example, we found that the data intervals were different: 1 s, 7 s,
11 s, 12 s, 7 s from 00:35:10 to 00:35:48. Therefore, this study proposes using the cubic spline
interpolation method to resample the data at one second intervals.

Table 3. Partial sample data.

MMSI Time Longitude Latitude SOG COG

310028000 00:35:10 118.6957 −17.0403 15.9 24.7
310028000 00:35:11 118.6961 −17.0395 15.8 25.1
310028000 00:35:18 118.6963 −17.0391 15.9 25.1
310028000 00:35:29 118.6966 −17.0383 15.8 25
310028000 00:35:41 118.697 −17.0375 15.8 24.8
310028000 00:35:48 118.6972 −17.0371 15.8 25.2

We used Equations (1)–(14) to calculate the trajectory interpolation. Taking longitude
as an example, xi = longitudei. The partial calculation results are shown in Figure 7. We
found that the line connecting the original data points was no longer a simple straight line
(orange color), but had become a curve (blue color), which was more in line with the actual
situation. In terms of the actual geographic location, we could see the restored trajectory
after interpolation calculation from Figure 8, where the yellow point is the trajectory point
of the vessel at 00:59:40, the red point is the trajectory point on 5 January, the orange point
is on other days in January and the green points are interpolation points.



J. Mar. Sci. Eng. 2021, 9, 871 10 of 16J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 10 of 16 
 

 

 

Figure 7. Distribution of longitude interpolation.  

Figure 8. Geographical distribution of trajectory interpolation. 

3.3. Vessel Trajectory Prediction 
The recurrent neural network is a typical framework for deep learning; it can be used 

to deal with spatial–temporal sequence problems. The characteristics are that the output 
of the current moment depends on the calculation result of the previous moment and that 
the timing is strong. The LSTM model is an improvement on the recurrent neural network 
as it also analyzes historical calculation results that are much older, automatically removes 
invalid historical calculation results, and remembers useful historical calculation results 
by introducing gating functions. The timeliness is stronger than the recurrent neural net-
work.  

As described in Section 1.2, for a vessel, its trajectory characteristics at time t could 
be expressed as 𝑌(௧) ={(𝑝ଵ, 𝑎ଵ, 𝑡ଵ),( 𝑝ଶ, 𝑎ଶ, 𝑡ଶ),( 𝑝ଷ, 𝑎ଷ, 𝑡ଷ),…,(𝑝௡, 𝑎௡, 𝑡௡)}; we could use this as 
an input value of the LSTM model. The number of data after the interpolation calculation 
changed from 23 to 1472. The experimental environment for this study was the DELL 
OptiPlex 7050 desktop computer, the CPU was Intel(R) Core (TM) i7-7700 CPU @3.60GHz, 
the memory was 16.0 GB, the operating system was Windows10 Pro, the program devel-
opment environment was PyCharm (JetBrains, s.r.o., Prague, Czech Republic) in python 
3.7 and we used an LSTM model provided by Keras (Chollet, F., & others, Retrieved from 
https://github.com/fchollet/keras). After experiments and manual adjustment of parame-
ters, the optimal parameters of the LSTM model in this study were finally determined. As 
shown in Table 4, the time required to run the model once was 195 s.  

Figure 7. Distribution of longitude interpolation.

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 10 of 16 
 

 

 

Figure 7. Distribution of longitude interpolation.  

Figure 8. Geographical distribution of trajectory interpolation. 

3.3. Vessel Trajectory Prediction 
The recurrent neural network is a typical framework for deep learning; it can be used 

to deal with spatial–temporal sequence problems. The characteristics are that the output 
of the current moment depends on the calculation result of the previous moment and that 
the timing is strong. The LSTM model is an improvement on the recurrent neural network 
as it also analyzes historical calculation results that are much older, automatically removes 
invalid historical calculation results, and remembers useful historical calculation results 
by introducing gating functions. The timeliness is stronger than the recurrent neural net-
work.  

As described in Section 1.2, for a vessel, its trajectory characteristics at time t could 
be expressed as 𝑌(௧) ={(𝑝ଵ, 𝑎ଵ, 𝑡ଵ),( 𝑝ଶ, 𝑎ଶ, 𝑡ଶ),( 𝑝ଷ, 𝑎ଷ, 𝑡ଷ),…,(𝑝௡, 𝑎௡, 𝑡௡)}; we could use this as 
an input value of the LSTM model. The number of data after the interpolation calculation 
changed from 23 to 1472. The experimental environment for this study was the DELL 
OptiPlex 7050 desktop computer, the CPU was Intel(R) Core (TM) i7-7700 CPU @3.60GHz, 
the memory was 16.0 GB, the operating system was Windows10 Pro, the program devel-
opment environment was PyCharm (JetBrains, s.r.o., Prague, Czech Republic) in python 
3.7 and we used an LSTM model provided by Keras (Chollet, F., & others, Retrieved from 
https://github.com/fchollet/keras). After experiments and manual adjustment of parame-
ters, the optimal parameters of the LSTM model in this study were finally determined. As 
shown in Table 4, the time required to run the model once was 195 s.  

Figure 8. Geographical distribution of trajectory interpolation.

3.3. Vessel Trajectory Prediction

The recurrent neural network is a typical framework for deep learning; it can be used
to deal with spatial–temporal sequence problems. The characteristics are that the output of
the current moment depends on the calculation result of the previous moment and that the
timing is strong. The LSTM model is an improvement on the recurrent neural network as
it also analyzes historical calculation results that are much older, automatically removes
invalid historical calculation results, and remembers useful historical calculation results by
introducing gating functions. The timeliness is stronger than the recurrent neural network.

As described in Section 1.2, for a vessel, its trajectory characteristics at time t could be
expressed as Y(t) = {(p1, a1, t1),(p2, a2, t2),(p3, a3, t3), . . . ,(pn, an, tn)}; we could use this as
an input value of the LSTM model. The number of data after the interpolation calculation
changed from 23 to 1472. The experimental environment for this study was the DELL
OptiPlex 7050 desktop computer, the CPU was Intel(R) Core (TM) i7-7700 CPU @3.60GHz,
the memory was 16.0 GB, the operating system was Windows10 Pro, the program devel-
opment environment was PyCharm (JetBrains, s.r.o., Prague, Czech Republic) in python
3.7 and we used an LSTM model provided by Keras (Chollet, F., & others, Retrieved from
https://github.com/fchollet/keras (accessed on 20 July 2021)). After experiments and
manual adjustment of parameters, the optimal parameters of the LSTM model in this study
were finally determined. As shown in Table 4, the time required to run the model once was
195 s.

https://github.com/fchollet/keras
https://github.com/fchollet/keras
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Table 4. LSTM model parameters.

Items Parameters Items Parameters

Base Learning Rate 0.001 LSTM_layer_1 256

Optimizer Adaptive moment
estimation LSTM_layer_2 128

Epoch 125 Dropout_layer _1 128
Batch size 138 Dense_layer _1 128

Loss function Mean square error Dropout_layer _2 128
Activation_1 Tanh Dense_layer _2 4
Activation_2 Linear Kernel_initializer Orthogonal

Train set 938 Validation set 235
Test set 293 - -

The loss function is shown in Figure 9. We used 938 pieces of data to train the LSTM
model, and finally, 235 pieces of data were used to verify the prediction effect. At an equal
time (00:59:40), the predicted trajectory point of the LSTM model differed from the actual
trajectory point by 0.593 nm, which was in line with expectations.
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The prediction results are shown in Figure 10, and we further plot these in 2D
(Figure 11) and 3D (Figure 12) graphs for visualization.

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 12 of 16 
 

 

 
Figure 10. Geographical distribution of predicted results. 

Figure 11. Coordinate distribution of true trajectory and predicted trajectory results (2D). 

 
Figure 12. Spatial–temporal distribution of true trajectory and predicted trajectory results (3D). 

As Figure 10 shows, the trajectories predicted by the two models roughly coincided 
with the actual trajectories. In Figures 11 and 12, the green, red and blue lines indicate the 

Figure 10. Geographical distribution of predicted results.



J. Mar. Sci. Eng. 2021, 9, 871 12 of 16

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 12 of 16 
 

 

 
Figure 10. Geographical distribution of predicted results. 

Figure 11. Coordinate distribution of true trajectory and predicted trajectory results (2D). 

 
Figure 12. Spatial–temporal distribution of true trajectory and predicted trajectory results (3D). 

As Figure 10 shows, the trajectories predicted by the two models roughly coincided 
with the actual trajectories. In Figures 11 and 12, the green, red and blue lines indicate the 

Figure 11. Coordinate distribution of true trajectory and predicted trajectory results (2D).

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 12 of 16 
 

 

 
Figure 10. Geographical distribution of predicted results. 

Figure 11. Coordinate distribution of true trajectory and predicted trajectory results (2D). 

 
Figure 12. Spatial–temporal distribution of true trajectory and predicted trajectory results (3D). 

As Figure 10 shows, the trajectories predicted by the two models roughly coincided 
with the actual trajectories. In Figures 11 and 12, the green, red and blue lines indicate the 

Figure 12. Spatial–temporal distribution of true trajectory and predicted trajectory results (3D).

As Figure 10 shows, the trajectories predicted by the two models roughly coincided
with the actual trajectories. In Figures 11 and 12, the green, red and blue lines indicate the
trajectory points of the vessel during the period of study, where the green line indicates the
true trajectory point, the red point indicates the trajectory point predicted by the LSTM
model and the blue point represents trajectory point predicted by the RNN model. The
trajectory point predicted by the LSTM (118.7394, −16.9514) is closer to the true value
(118.7439, −16.9425) than the trajectory point predicted by the RNN model (118.7369,
−16.9564).

In Figure 11, we intercepted the prediction result from original trajectory to visualize
the differences. Three trajectories had the same start point (the first orange point at the
lower left in Figure 10) but the predicted endpoints were different. The LSTM model has a
smaller error (0.593 nautical miles or 1.097 km) than that of the RNN model (0.928 nautical
miles or 1.718 km). This can be observed in Figure 12 where the trajectory predicted by the
RNN was more concentrated at the end point, causing the trajectories to overlap, while the
LSTM model did not have this defect. The time step was the time difference from 00:54:49
(in seconds).

3.4. Carbon Dioxide Estimation

We first calculated the carbon dioxide emissions of the vessel without interpolation
by the ITTC; using Equation (24), we could determine the emissions of the vessel at
00:35:10–00:59:40 to be 47,169 kg for the period of study. The carbon dioxide emissions
after interpolation totaled 74,926 kg for the same period. This was 27,757 kg more carbon
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dioxide emissions than determined by traditional estimation methods. Our proposed
model was able to interpolate more time intervals, and hence, improve the accuracy of the
vessel carbon dioxide emissions. Observing the vessel carbon dioxide emissions from a
spatial–temporal perspective, they go down first and then up (Figures 13 and 14).
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Next, we used the trajectories predicted by the LSTM model to estimate the carbon
dioxide emissions, to obtain the spatial–temporal distribution of future carbon dioxide emis-
sions from vessels. With the vessel emissions per second obtained, we calculated that the
cumulative carbon dioxide emissions from vessels during 00:54:49–00:59:41 were 13,315 kg.
We predicted that the highest value would be reached in this area (118.7439, −16.9425).

The predicted carbon dioxide emissions (13,315 kg) and the true emissions (13,616 kg)
gave an error of 301 kg. A heat map is shown of the spatial–temporal distribution of carbon
dioxide emissions from vessels every second in specific section from 00:54:49 to 00:59:40
in Figure 15. Observing the vessel carbon dioxide emissions from a time perspective, the
actual and predicted values increased during this period. We found that the growth rate
of the predicted value was slower than the growth rate of the true value. At 00:59:41, the
error was 2.36 kg (51.46–49.10 kg).
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Moreover, it was found that the vessel emissions in the future would continue to
increase. The deceleration trend indicated that the vessel would accelerate to the northeast
in the future. On the other hand, because we had the data of the carbon dioxide emissions
of the vessel in seconds, we could re-establish any time interval to reduce the number of
vessel trajectory points if needed. That practice is useful for calculating a larger number of
vessel carbon emission trajectories, for example, to calculate the carbon dioxide emissions
of the vessel in 3 s, 6 s or 10 s intervals (Figure 16). We can see from Figure 16 that the
larger the number of time steps, the faster increase of carbon dioxide emissions, which also
indicates that the SOG of the vessel was accelerating. At the same time, the number of
trajectory points decreased as the time interval decreased, and the vessel carbon dioxide
emissions represented by each track point gradually increased, but the overall trajectory
trend remained the same.
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of the vessel in seconds, we could re-establish any time interval to reduce the number of 
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of vessel carbon emission trajectories, for example, to calculate the carbon dioxide emis-
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the larger the number of time steps, the faster increase of carbon dioxide emissions, which 
also indicates that the SOG of the vessel was accelerating. At the same time, the number 
of trajectory points decreased as the time interval decreased, and the vessel carbon dioxide 
emissions represented by each track point gradually increased, but the overall trajectory 
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Figure 16. Spatial distribution of true and predicted carbon dioxide emissions with time intervals.

4. Conclusions

In this study, we proposed a method to interpolate AIS data and estimate vessel
emissions based on predicted vessel trajectories using deep learning models. The results
suggest that the carbon dioxide emissions are underestimated. The method can be applied
to monitor a vessel’s carbon dioxide emissions and trajectory in real time, and to provide
vessels with early warning services relating to carbon dioxide emissions monitoring.

The contributions of the study are fourfold. Firstly, it has novelty in interpolating AIS
data points with a non-linear model. AIS data sometimes have time intervals that are too
long due to equipment issues and/or human reasons, which limits the accuracy of the
vessels’ carbon dioxide emissions estimation based on AIS data. To overcome the problem,
this study proposes a cubic spline interpolation model to resample missing AIS data points.
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The repaired trajectories of the vessel (Figure 8) maintain the same trend as the original
trajectory in smooth curves, which represent the actual situation well when compared to
the traditional linear models in previous studies. Through the interpolation, we could
successfully obtain AIS data with a time interval of one second.

Secondly, it reveals that vessel emissions are currently underestimated. In the study,
by applying the repaired trajectory data of the vessel (1472 pieces of data), we estimated
the carbon dioxide emissions of the vessel to be 74,926 kg. Compared to the emissions
calculated from the original trajectory data (23 pieces of data), a 27,757 kg increase of carbon
dioxide emissions was identified. This clearly indicates that the actual carbon dioxide
emissions are higher than those reported. The finding offers insight into how to accurately
measure the emissions of vessels, and hence, better execute a GHG reduction strategy.

Thirdly, it validated the performance of two deep-learning algorithms in predicting
vessel trajectories. We conducted prediction with two deep-learning algorithms, LSTM and
RNN. The results confirm that the LSTM model performs better. We used the predicted
SOG to predict the future carbon dioxide emissions of the vessel. The error was as small
as 301 kg, which shows that the LSTM model was suitable for spatial–temporal data
prediction with excellent performance.

Fourthly, it offers an alternative solution to predict vessel trajectories when AIS data
is not retrievable. The model can also be used to estimate vessel emissions when AIS data
are not available on occasions such as the shutdown of AIS for artificial reasons (including
active or passive) or when the collection of AIS data fails in certain time periods.

At present, the method has limitations since it has only been tested in cases where
the vessel trajectory is not comprehensive. It is unclear about the interpolation effect
and trajectory prediction effect on curved trajectories, which need further research with
several cases considering the computational time in the future. Future studies may also
verify different artificial neural network (ANN) models such as the feedforward neural
network (FFNN) or 1D convolutional neural networks (1D-CNN), which may work well
on time-series data [14].
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