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Abstract: With the increasing demand for wind energy, the vertical axis wind turbine (VAWT) is
attracting more and more attention. In order to design the VAWT array for better performance, the
VAWT wake model needs to reflect the wake characteristics well. Based on the asymmetric wake
characteristic, a new VAWT wake model is proposed in this paper, which is a combination of two semi
Gaussian functions with different deviations, and can be called the “double semi Gaussian functions
wake model”. The model is simple and has only four parameters (mean, amplitude, left deviation
and right deviation). Compared with the traditional Gaussian and Top-hat model, this model can
better reflect the asymmetric characteristic of the VAWT wake. In particular, it can describe the
behavior of wake merging in the case of counter-rotating twin turbines. Based on this wake model,
the velocity field of VAWT array can be reproduced accurately. The goal function is mainly based
on the performance of a basic array unit, and it can ensure the rapidity of the optimization process.
The optimal arrangements under two different criteria are analyzed. Moreover, the truncation ratio
is introduced to ensure that the downstream turbine works at the rated condition, and the optimal
arrangements under different truncation ratios are analyzed. In this paper, the proposed wake model
provides a good choice for the preliminary design of the VAWT array, and some relevant suggestions
on the array arrangement have been put forward.

Keywords: vertical axis wind turbine (VAWT); asymmetric wake model; array optimization; criteria
of the array performance

1. Introduction

There is huge potential in offshore wind energy, and the number of wind turbines
has grown rapidly in recent years [1]. In offshore engineering, wind turbines are often
arranged in the array layout. As a widely used device for wind energy, the vertical axis
wind turbine (VAWT) has received more and more attention. According to some previous
studies, the velocity deficit of the VAWT wake would recover more quickly than that of the
horizontal axis wind turbine (HAWT) wake [2]. When the power density is considered, the
VAWT array has the potential to achieve higher power density than the HAWT array [3]. In
addition, due to the limitation of land use, an active control of the yaw angle is often used
in the HAWT array, which could deflect the wake of yawed HAWT. Although the power
output of a single turbine would become slightly smaller, the HAWTs can be arranged
closer and the whole HAWT wind farm could achieve higher power density [4]. In the
same way, the deflection characteristics of VAWT wake can also make the VAWT array
achieve high power density. In order to study and design the VAWT array, the VAWT wake
model needs to reflect the wake characteristics well.

According to the previous experimental studies, it can be found that there are some
characteristics of a VAWT wake. The asymmetry is one of the most typical characteristics
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of a VAWT wake, the wake deflection has been observed in many experiments [5–8]. Due
to the Magnus effect, the VAWT wake deflects and becomes asymmetric [7]. At a higher tip
speed ratio, the velocity deficit in the near field is greater and the velocity recovery in the
far field is faster [9]. Due to the wake deflection, the two wakes of the counter-rotating twin
VAWTs would merge into one wake in the far field [10]. Moreover, the greater dynamic
solidity could lead to the greater wake deflection and velocity deficit [11,12]. In the case
of turbulent inflow, the recovery of velocity deficit is faster [13]. The influence of the
boundary layer on the VAWT wake depends on the relative height between the turbine
and the boundary layer [14].

The characteristics of the VAWT wake are complex, and it is a challenging work for
the VAWT wake model. In terms of research status, there are a few studies on the VAWT
wake model. The introduction of each VAWT wake model is shown in Table 1.

Table 1. The research status of VAWT wake model.

Wake Model Model Description

The wake edges model [15]

The edges of wake region are assumed to be linear expansion in the downstream; the
different spreading rates reflect the asymmetry of the wake. The averaged streamwise
velocity at each cross-section can be predicted, which is similar to the Top-hat model,

but it cannot present the asymmetric velocity profiles at different cross sections.

The Gaussian wake model [16–18]

This model is useful in both HAWT wake and VAWT wake, and the velocity profiles at
different cross sections can be fitted into the Gaussian function. This model can be

used to prove the self-similarity of wake field, but it cannot reflect the asymmetry of
velocity distribution in some cases.

A porous plate with a yaw angle [19]

In the experiment, a square porous plate with a yaw angle of 15◦ is used to deflect the
wake. The area of the porous plate is the same as the projection area of rotor, the

induced axial thrust of the porous plate is similar to that of the VAWT. However, the
wake of porous plate is not similar with the VAWT wake.

The reduced-order wake model [20]

The distribution of the vorticity strength is fitted into the exponentially modified
Gaussian (EMG), which could present the asymmetric distribution of the vorticity
strength. The fitting process of this model is based on the two-dimensional CFD

simulation. Although it has been verified by the PIV data in the near-field, the error is
obvious in the far-field.

The shadowing angle model [21]

This model was mainly used for a VAWT cluster, which may contain two, three, four
or more turbines. The shadowing angle represents the boundary of the wake region. It

could measure the negative impact when the turbine works in the downstream.
However, the expansion of the wake region is not considered.

The potential flow model [22]

It is based on the potential flow theory; the VAWT wake can be considered as the flow
field induced by three potential singularity models, which are the uniform flow, dipole

and point vortex. The velocity deficit in the VAWT wake has also been taken into
account. However, it cannot reflect the asymmetry of velocity distribution.

It can be seen that the studies on the VAWT wake model are few, and the characteristics
of VAWT wake cannot be accurately reflected. However, there is less research on the array
optimization. Only the wake edges model and the potential flow model have been used
to optimize the array arrangement [23–25]. No matter the array optimization or the
appropriate wake model, the relevant studies are quite limited. In order to design the
VAWT array for better performance, it is necessary to develop a wake model which can
better reflect the characteristics of VAWT wake.

In this paper, the “double semi Gaussian functions wake model” is proposed, which
can better reflect the asymmetry of velocity distribution and deflection characteristic of
the VAWT wake. In Section 2, the model is introduced in detail and compared with some
traditional models. In Section 3, some experimental cases are fitted into the model and the
contours of streamwise velocity are presented. It is proved that the proposed model can
well reproduce the VAWT wake field. Then, in Section 4, this wake model is used for the
array optimization. Under two common criteria (average inflow velocity and array power
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density), the optimal arrangements are analyzed. In Section 5, in order to ensure that the
downstream turbine works at the rated condition, the truncation ratio is introduced and
the optimal arrangements under different truncation ratios are analyzed.

2. Description of the Double Semi Gaussian Functions Wake Model

In order to closely match the asymmetric velocity profile of the VAWT wake, some
statistical distributions are chosen, and the curves of these functions are asymmetric. These
functions are the Weibull distribution, polynomial interpolation and double semi Gaussian
functions. The statistical meaning of these functions is not used here, and their geometric
curves are used to fit the velocity profile of the VAWT wake. The formulas of these functions
are listed in Table 2.

Table 2. The formulas of some asymmetric functions.

Weibull Distribution Polynomial Interpolation Double Semi Gaussian Functions

y = k
λ

( x
λ

)k−1e−( x
λ )

k

(k is shape parameter, λ is scale
parameter)

y =
n
∑

i=0
aixi

(ai is the coefficient, n is the order of
polynomials)

y =


Ae

− (x−c)2

2σ2
le f t · · · x ≤ c

Ae
− (x−c)2

2σ2
right · · · x > c

(c is mean, σis deviation, A is the amplitude)

To qualitatively compare the fitting accuracy of these functions, an asymmetric velocity
profile of a PIV experiment [8] is selected as the fitting target. The fitting results of Weibull
distribution, double semi Gaussian functions and single Gaussian function are shown
in Figure 1. The fitting results of second order, third order and fourth order polynomial
functions are shown in Figure 2.
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To qualitatively compare the fitting accuracy of these functions, an asymmetric ve-
locity profile of a PIV experiment [8] is selected as the fitting target. The fitting results of 
Weibull distribution, double semi Gaussian functions and single Gaussian function are 
shown in Figure 1. The fitting results of second order, third order and fourth order poly-
nomial functions are shown in Figure 2. 

 

Figure 1. The comparison between the original data and three fitting functions. Here, the double semi Gaussian functions
are divided into left Gaussian function and right Gaussian function. The original data is the velocity profile at 3D position
in a PIV experiment [8]. X-axis is the position of cross-section which is normalized by the diameter D. Y-axis is the velocity
deficit which is normalized by the inlet velocity U0. (The deviation of left Gaussian is 0.7, the deviation of right Gaussian is
0.27, the parameters of Weibull function: k = 1.6, λ = 1. The deviation of single Gaussian is 0.5).
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In the preliminary design of the VAWT array, only the streamwise velocity needs to
be considered. In the fitting process, the streamwise velocity profile of cross section is
fitted into the proposed model. The peak of the velocity profile is easy to be identified.
The abscissa of the peak is the mean (c), the ordinate of the peak is the amplitude (A). In
order to determine the other two model parameters (left deviation and right deviation), the
fitting principle is based on the area conservation, that is, the area enclosed by the fitting
curve should be kept roughly equal to the area enclosed by the original curve. If the fitting
curve is higher in some places, it needs to be lower in other places. Especially in the peak
region of the velocity profile, the fitting curve should be as close as possible to the original
curve. Additionally, the fitting accuracy of the peak region should be ensured prior to that
of edge region. Based on the area conservation, the two deviations can be adjusted and
determined empirically.

In the existing research on the VAWT wake model, the fitting weight is empirical and
has not been systematically studied. The fitting weights of different regions are adjusted
empirically, so it is not easy to calculate the quantitative error of the whole fitting curve.
However, only the qualitative comparison of different wake models is needed, the fitting
curve of wake model is not required to completely match every point of the velocity profile,
and it is unnecessary to consider the quantitative errors and uncertainty of a wake model.
In a word, on the basis of the conservation of enclosed area, there are still some empirical
corrections. Although it is difficult to achieve complete high-precision fitting through the
wake model, the general consistency and first-order accuracy approximation of the wake
model are sufficient for the array optimization. In this paper, wake model is mainly focus
on the array optimization, rather than the fine fitting of flow details. The applicability of
the proposed model can be verified by the qualitative comparison in Figure 1.

According to Figures 1 and 2, the comparison of these fitting functions are summarized
in Table 3. The physical meaning in the third column is that the model parameters can
be corresponding to the wake parameters. As a good wake model, the model parameters
should represent the wake parameters more intuitively, the mathematical parameters
should be more relevant to the physical meaning.
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Table 3. The comparison and summary of these fitting functions.

Fitting Function Fitting Accuracy Physical Meaning of the Model Parameters

Double semi Gaussian
functions

The peak value and
asymmetric distribution can

be well fitted.

Gaussian function is a basic solution of physical equation, and
is widely used in many models. The wake parameters can be
well represented by the model parameters, for example, the

mean c represents the lateral displacement of wake deflection,
the amplitude A represents the maximum velocity deficit, the
left and right deviations (σle f t, σright) approximately represent
the width of the wake region on both sides. Although it is a

piecewise function, the curve is still continuous and
differentiable at the peak. Moreover, this model can be used to

prove the self-similarity of wake [26].

Gaussian function
The peak value can be well

fitted, but it cannot reflect the
asymmetry.

There is only one deviation in a single Gaussian function, so it is
impossible to describe the asymmetric velocity distribution of
the VAWT wake. However, in some cases, it can still be used to

prove the self-similarity of wake [17].

Weibull distribution

Although the curve is
asymmetric, it is still difficult

to keep a good fit on both
sides of the curve.

The formula is a little complicated; the model parameters
cannot well represent the physical properties of wake

parameters. At least its parameters are not as representative as
those of Gaussian function. When one parameter is being

adjusted, both the peak and the width would change
simultaneously, so it is difficult to accurately fit the peak and

width, respectively.

Polynomial function

If the order is low, the fitting
accuracy is not high. If the

order is high, it is easy to over
fit at the edge of velocity

profile.

For higher polynomial order, more fitting coefficients are
required. Nevertheless, it is still difficult to accurately fit the
peak value, which is an important local feature of the VAWT

wake. In addition, with the increase in polynomial order, over
fitting may appear at the edge of velocity profile, which is a

non-physical phenomenon for the wake field. Moreover, these
fitting coefficients are difficult to directly correspond to the

wake characteristics.

According to the comparison of fitting accuracy and physical meaning, the double
semi Gaussian functions perform better in both aspects. As a VAWT wake model, the
proposed model not only can fit the asymmetric velocity profile well, but also has some
other advantages in engineering, which are introduced one by one in the following three
paragraphs.

In the design of array layout, not only the maximum velocity deficit but also the
area of velocity deficit is often used to measure the wind power. The inflow velocity
of downstream turbine can be better represented by velocity integration rather than the
maximum velocity. The area of velocity deficit is the integral area of the double semi
Gaussian functions. Compared with other fitting functions, the velocity integration can be
calculated directly according to the amplitude and deviation, without any complex integral
process.

A pair of VAWTs would also be a basic unit in the VAWT array [3,10]. Due to the
wake deflection, the two wakes of a pair of VAWTs would merge into one wake in the far
field [10]. In view of this phenomenon, most of the conventional wake models may not be
applicable. However, the model proposed in this paper can make one of the two deviations
close to zero, so that this phenomenon can be reproduced in the flow field. This is also an
important advantage of this model, which is verified in Section 3.

According to some previous studies, the wake of a yawed HAWT is asymmetric [27],
and the wake of a rotating cylinder is also deflected [28]. Therefore, the double semi
Gaussian functions could also be applied to the wake of yawed HAWT and rotating
cylinder.

According to the introduction above, it can be found that the double semi Gaussian
functions proposed in this paper could be widely applicable under different working
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conditions. In the following sections, the verification and application of this model are
introduced in detail.

3. Velocity Contours Reproduced by the Proposed Model

The wake model is used for the preliminary design of VAWT array. Although different
experimental parameters (turbulence intensity and tip speed ratio) lead to different model
parameters, it is not the purpose of this paper to study the effect of experimental parame-
ters. Therefore, the experimental parameters would not be the selection standard of the
benchmark experiment, the complete measurement of the VAWT wake is more important
and would be the selection standard of benchmark experiment.

There are few experiments on the VAWT wake; especially, there are fewer experiments
which measured the complete wake as far as 10D downstream. To be applicable for the
array design, more data of complete wake is necessary, so that the whole field could be
fitted into the wake model. In the existing experiments, three different layouts [10,15] of
the same VAWT prototype are selected as the benchmark experiments, which present ten
velocity profiles from near field to far field. The details of these three cases are shown in
Table 4.

Table 4. The basic information of these three cases.

The Parameters of Experiment The Parameters of Turbine The Operating Conditions

Wind tunnel test
Hot-wire anemometer

The blockage ratio = 1.8%
Uniform inflow

The measured cross sections are 1D,
2D, 3D, 4D, 5D, 6D, 7D, 8D, 9D, 10D

Diameter = 0.3 m
Height = 0.3 m

Chord length = 0.045 m
Number of blades = 5

Solidity = nc/πD = 0.239
Chord-based Reynolds number

Rec ≈ 3.4~3.9 × 104

Case 1: Single turbine [15].
Tip speed ratio = 0.75. Turbulence intensity = 2.5%

Case 2: Counter-rotating twin turbines
(backward) [10].

Tip speed ratio ≈ 1. Turbulence intensity = 1.1%

Case 3: Counter-rotating twin turbines (forward) [10].
Tip speed ratio ≈ 1. Turbulence intensity = 1.1%

The velocity profiles of each measured section are fitted into the double semi Gaussian
functions wake model. The fitting results and the four corresponding parameters (lateral
displacement, maximum velocity deficit, left deviation and right deviation) are shown in
detail in Appendix A. The lateral displacement (skewed distance) and deviation (σ) are
dimensionless by the rotor diameter D, and the maximum velocity deficit is dimensionless
by the inlet velocity U0. In order to unify the definition, the leeward side is defined as the
left side, and the windward side is defined as the right side.

In order to obtain a better view of the flow field, the streamwise velocity contours are
reproduced based on the wake model. It is worth mentioning that the velocity profiles of
each cross section have been fitted into the proposed model, and the model parameters
along the streamwise direction also need to be fitted into some related curves. In this paper,
the polynomial function is used to fit the model parameters along the streamwise direction.
It should be distinguished that the double semi Gaussian functions are fitted in the lateral
direction of the wake, the polynomial function is fitted in the streamwise direction of
the wake. Considering that the linear fitting may not be accurate enough for some cases,
and the cubic polynomial may be over fitted and causes some non-physical results, the
quadratic polynomial is used to fit the model parameters along the streamwise direction
within 10D. Moreover, according to the observation of the far field [7,29], the velocity
distribution would remain basically unchanged beyond 10D downstream; therefore, in
the far field beyond 10D, the slopes of each fitting curve gradually approach zero, so that
the curves remain at a nearly constant value in the far field. The corresponding quadratic
polynomials are presented in the Appendix B. The reproduced velocity contours of these
three cases are shown in Figures 3–5.
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In Figure 3, there is a wake deflection in the velocity field, and the velocity distribution
in the wake region is also asymmetric. The yellow dashed lines in Figure 3 represent the
wake edges model, and the corresponding model parameters are provided in the paper [15].
By comparison, it can be found that, in the wake edges model, although the spreading
rates of the wake edges are different and asymmetric, this model cannot well reproduce
the wake field of a VAWT. At least, the proposed model (double semi Gaussian functions)
is more accurate than the wake edges model.

By comparing with the original velocity contours which are presented in the refer-
ence [10], it can be found that the reproduced velocity contours in Figures 4 and 5 are
highly similar with the experimental results [10]. Although the reproduced velocity fields
and fitting curves are not accurate enough within 1D in the near field, the wake simulation
in the near field is not the focus, because the downstream rotor is generally not placed so
close to the upstream rotor. Small errors within 1D would not affect the array optimization.
In addition, it can be seen clearly in Figure 5, there are four deviations (dashed lines)
and two center lines (solid lines) in the near field. At about 8D downstream, the center
lines of the two wakes merge into one, and the two deviations on the windward side
gradually approach zero, the other two deviations on the leeward side are not zero. These
two nonzero deviations constitute the deviations of the far field wake on both sides. The
behavior of wake merging is reproduced in this way, and it is one of the innovations of the
proposed wake model.

4. The Optimal Array Arrangements under Different Criteria

From the work of Section 3, it has been proved that the double semi Gaussian functions
can well reproduce the asymmetric VAWT wake, and the accuracy of the wake model is
enough for the array design and optimization. In this paper, the array optimization of
single turbine (case 1) is carried out.

In the previous studies of array optimization [25,30], optimization algorithms are
often used. However, due to the inherent randomness of the optimization algorithm,
the optimal arrangement is usually not regular, and it is difficult to analyze the irregular
optimal arrangement. The irregular arrangement is not usual in engineering. Therefore,
the optimization algorithm is not adopted in this paper; instead, the optimal solution
can be found out by comparing the performance of array units in different arrangements.
The performance of the array units is calculated one by one under the different distance
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parameters, and there are many conditions need to be calculated. Nevertheless, the wake
model ensures that this process can still be carried out quickly.

In the VAWT array, there is no obvious wake interference in the first three columns of
turbines. The wake interference becomes serious and should be considered from the fourth
column to the further downstream. In the VAWT array, the velocity field in the downstream
is similar to that in the upstream, the performance of upstream turbine is proportional to
that of downstream turbine, and the performance of the whole array is proportional to
that of the turbines in the fourth and fifth columns. Therefore, the performance of turbines
in the fourth and fifth columns are enough to represent the performance of the whole
array, and the region containing three rows and five columns of VAWTs is defined as the
basic array unit in this paper. The turbines in the fourth and fifth columns are mainly
studied, and the optimal arrangement can be found out by comparing the performance of
the turbines in fourth and fifth columns. The schematic diagram of the array unit and the
zoom-in view are shown in Figure 6.
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arrangement. Blue circles represent the VAWTs in the odd column. Green circles represent the 
VAWTs in the even column. All VAWTs are rotating anticlockwise. There are three distance param-
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x2 represents the streamwise distance between two columns. Symbol y2 represents the staggered 
distance between two columns, and y2 < y1 is satisfied. The gray region is defined as the unit area, 
which is y1 × x2. 

Figure 6. The picture (a) is schematic diagram of VAWT array unit, the picture (b) is zoom-in view.
The red arrow indicates the inflow direction. Odd and even columns are arranged in the staggered
arrangement. Blue circles represent the VAWTs in the odd column. Green circles represent the VAWTs
in the even column. All VAWTs are rotating anticlockwise. There are three distance parameters
(y1, x2, y2) of the array. Symbol y1 represents the lateral distance between two turbines. Symbol
x2 represents the streamwise distance between two columns. Symbol y2 represents the staggered
distance between two columns, and y2 < y1 is satisfied. The gray region is defined as the unit area,
which is y1 × x2.

The performance of wind farms is usually based on the power output. However, the
power output is proportional to the cube of the inflow velocity, and the normalized velocity
is also representative in the array optimization. When the inflow velocity of turbine is high,
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more wind energy could be captured by the wind turbine. Therefore, in the preliminary
design of the VAWT array, the criterion of the array performance is based on the velocity
field. There are two common criteria to measure the performance of the VAWT array [22].
The first criterion is the average inflow velocity (u) of the downstream turbine. Another
criterion is the array power density (∑ u/A), which is the total array power output over
array area [22].

In this paper, the average inflow velocity is calculated according to the following
process: The inflow velocity of each turbine is the velocity integral on the projected length
(diameter D), then sum the inflow velocities of the turbines in the fourth and fifth columns,
and divide it by the number of turbines, the result obtained can be regarded as the average
inflow velocity, as shown in Equation (1). The array power density is calculated according
to the following process: As shown in Figure 6, the unit area is defined as y1 × x2. The
inflow velocities of the two turbines are summed—one is in the fourth column and the other
is in the fifth column—and then divided by the unit area (y1 × x2). The result obtained can
be regarded as the array power density, as shown in Equation (2).

u = (u4 + u5)/2 (1)

∑ u/A = (u4 + u5)/A = (u4 + u5)/(y1 · x2) (2)

It is worth mentioning that both of these two criteria are single objective functions.
The formulas are based on expert judgment rather than rigorous mathematical derivation.
Additionally, the calculation process of these two criteria is not exactly the same in different
papers. For example, the power density may be calculated by the cube of velocity, while
the power density may be calculated by dividing the area of the whole array. These
differences in the calculation process could change the absolute value of the criterion.
However, optimization mainly focuses on the relative value, not the absolute value. The
overall relativity would not be significantly affected by these details, and the final optimal
solutions are still representative.

There are three distance parameters (y1, x2, y2) in the array configuration. By changing
the distance parameters, the goal function of the corresponding array configuration is
calculated. When all the array configurations have been calculated, the goal function of
each configuration would be compared one by one, and the maximum of the goal function
indicates that the corresponding array configuration is the optimal. The variables y1 and
x2 change from 2 to 5 with an interval of 0.5, the variable y2 changes from 0 to y1 with an
interval of 0.5. The three distance parameters (y1, x2, y2) are dimensionless by the rotor
diameter D. The wake velocity is dimensionless by the inlet velocity U0. The average
inflow velocity under different distance parameters is shown in Figure 7.
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As shown in Figure 7, it can be found that, when y1 = 5, x2 = 5, y2 = 2.5, the average
inflow velocity is the maximum. The corresponding velocity contour under this distance
parameters is shown in Figure 8. In Figure 8, the lateral distance (y1) and streamwise
distance (y2) are quite big, there is no obvious wake interference in the downstream.
In order to analyze the characteristic of average inflow velocity more clearly, the three-
dimensional scatter diagram (Figure 7) is redrawn into several pieces of heat maps, which
are shown in Figure 9.
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Figure 8. The velocity contour of the array, which is the optimal arrangement under the criterion of average inflow velocity.
y1 = 5, x2 = 5, y2 = 2.5. The color bar is the velocity deficit, the black solid lines represent the position of the maximum
velocity deficit, and the black dashed lines represent the deviations of the double semi Gaussian functions.

It is clear from Figure 9, no matter how big y2 is, that the average inflow velocity
will increase with the increase in y1 and x2. This is because the larger the distance, the
smaller the wake interference. When y2 is small (y2 < 1), x2 has a more obvious effect on the
average inflow velocity than y1. However, when y2 is big enough (y2 > 2), y1 has a more
obvious effect on the average inflow velocity than x2. Moreover, when y2 is more than 1.5,
the average inflow velocity of these corresponding staggered arrangements is generally
high. However, when the increasing y2 is close to y1 (for example y2 = 4.5, y1 = 5), the array
is near the aligned arrangement, and the average inflow velocity becomes smaller again. It
also proves that staggered arrangement (0 < y2 < y1) can achieve better performance than
the aligned arrangement.

According to the criterion of average inflow velocity, in order to maximize the inflow
velocity and the performance of VAWT array, the lateral distance (y1) and streamwise
distance (x2) should be as large as possible. However, in real engineering practice, the
land use of wind farms is usually limited, and the distances between turbines are also con-
strained [3]. The criterion of average inflow velocity is not applicable under the constraint
of land use. However, there is another criterion that can be used under the constraint of
land use, which is the array power density, which takes into account the area of the array.
It can be used to measure the array performance per unit area. The array power density
under different distance parameters is shown in Figure 10.
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Figure 10. The three-dimensional scatter diagram of array power density. The left and right pictures are two different side
views of the scatter. The three axes are the three distance parameters (y1, x2, y2). The color bar represents the array power
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As shown in Figure 10, it can be found that, when y1 = 3, x2 = 2, y2 = 1.5, the array
power density is the maximum. The corresponding velocity contour under this distance
parameters is shown in Figure 11. By comparing the velocity contours (Figures 8 and 11), it
can be found that the optimal array arrangements under these two different criteria are
quite different. In Figure 11, the lateral distance (y1) and streamwise distance (y2) are small,
and the wake interference in the downstream is obvious. The downstream turbines work
in the upstream wake, and the velocity deficit of the downstream turbine is bigger than
that of the upstream turbine. In order to analyze the characteristics of array power density
more clearly, the three-dimensional scatter diagram (Figure 10) is redrawn into several
pieces of heat maps, which are shown in Figure 12.
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From Figure 12, the array power density does not change monotonously with the
distance parameters (y1 and x2), which is different from the average inflow velocity. At the
optimal solution, the distances (y1 and x2) are not the smallest, and better performance can
be achieved under a slightly larger lateral distance (y1), which is also in agreement with a
previous study [22]. Moreover, when y2 is small (y2 < 1), x2 has a more obvious effect on
the array power density than y1. However, when y2 is big enough (y2 ≥ 1), y1 has a more
obvious effect on the array power density than x2. This finding is similar to that under the
criterion of average inflow velocity.

Under the criterion of average inflow velocity, the distances (y1 and x2) should be as
big as possible for the good performance. The y1 and x2 of the optimal solution are the
maximum in the range (y1 = 5, x2 = 5). However, under the criterion of array power density,
the distances (y1 and x2) should be as small as possible in general. Although the y1 of the
optimal solution is not the minimum in the range, the distances are still quite small. By
comparing the optimal arrangements under the two criteria, there is a big difference and
the final optimal arrangement still cannot be determined. In order to solve this problem,
the requirement of the rated inflow velocity is introduced and the relevant analysis is
provided in Section 5.
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5. The Optimal Array Arrangements under Different Truncation Ratios

No matter the horizontal axis wind turbine or the vertical axis wind turbine, there
is an inflow velocity range at the rated working condition. The maximum of this inflow
velocity range is the cut-out velocity, and the minimum of this inflow velocity range is the
rated inflow velocity. When the inflow velocity is within this range, the output keeps at the
rated power. When the inflow velocity is beyond the range, the output drops rapidly [25].
Therefore, in order to maintain a stable power output, the inflow velocities of the turbines
should preferably be within the rated range.

In this section, the inlet velocity U0 is defined as the maximum of the inflow velocity
range. The truncation ratio is defined as the rated inflow velocity divided by inlet velocity
U0. In some array arrangements, if the inflow velocity of the downstream turbine is lower
than this truncation ratio, it means that the output of the downstream turbine does not
reach the rated power, and these arrangements will be discarded. Under the criterion of
average inflow velocity, the distance of the optimal arrangement is as large as possible, the



J. Mar. Sci. Eng. 2021, 9, 820 17 of 32

inflow velocity of the downstream turbine is also big enough, different truncation ratios
will not affect the optimal solution. However, under the criterion of array power density,
the distance of the optimal arrangement is relatively small, wake interference is obvious
and the small distance would make the downstream turbine unable to work at the rated
condition. Therefore, the truncation ratio should be considered under the criterion of array
power density, rather than the criterion of average inflow velocity. Moreover, the inflow
velocity range and the rated working condition may vary depending on the prototype.
Four different truncation ratios (0.5, 0.6, 0.7, 0.8) are compared, and the corresponding
optimal arrangements under the criterion of array power density are analyzed. The side
views of the three-dimensional scatter diagrams are shown in Figures 13–16, and the front
views of them are shown in Appendix C.
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Figure 13. The three-dimensional scatter diagram of array power density (truncation ratio is 0.5). The missing scatters 
represent that the inflow velocity under this distance parameters is less than the truncation ratio. The left and right pictures 
are two different side views of the scatter. The three axes are the three distance parameters (y1, x2, y2). The color bar 
represents the array power density. The black star represents the maximum array power density (its coordinates are y1 = 
3, x2 = 2, y2 = 1.5). 

Figure 13. The three-dimensional scatter diagram of array power density (truncation ratio is 0.5). The missing scatters
represent that the inflow velocity under this distance parameters is less than the truncation ratio. The left and right pictures
are two different side views of the scatter. The three axes are the three distance parameters (y1, x2, y2). The color bar
represents the array power density. The black star represents the maximum array power density (its coordinates are y1 = 3,
x2 = 2, y2 = 1.5).
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Figure 14. The three-dimensional scatter diagram of array power density (truncation ratio is 0.6). The missing scatters 
represent that the inflow velocity under this distance parameters is less than the truncation ratio. The left and right pictures 
are two different side views of the scatter. The three axes are the three distance parameters (y1, x2, y2). The color bar 
represents the array power density. The black star represents the maximum array power density (Its coordinates are y1 = 
3.5, x2 = 2, y2 = 2). 

 
Figure 15. The three-dimensional scatter diagram of array power density (truncation ratio is 0.7). The missing scatters 
represent that the inflow velocity under this distance parameters is less than the truncation ratio. The left and right pictures 
are two different side views of the scatter. The three axes are the three distance parameters (y1, x2, y2). The color bar 
represents the array power density. The black star represents the maximum array power density (Its coordinates are y1 = 
4, x2 = 2.5, y2 = 2). 

 

Figure 14. The three-dimensional scatter diagram of array power density (truncation ratio is 0.6). The missing scatters
represent that the inflow velocity under this distance parameters is less than the truncation ratio. The left and right pictures
are two different side views of the scatter. The three axes are the three distance parameters (y1, x2, y2). The color bar
represents the array power density. The black star represents the maximum array power density (Its coordinates are y1 = 3.5,
x2 = 2, y2 = 2).



J. Mar. Sci. Eng. 2021, 9, 820 18 of 32

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 18 of 33 
 

 
J. Mar. Sci. Eng. 2021, 9, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/jmse 
 

 
Figure 14. The three-dimensional scatter diagram of array power density (truncation ratio is 0.6). The missing scatters 
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represents the array power density. The black star represents the maximum array power density (Its coordinates are y1 = 
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Figure 15. The three-dimensional scatter diagram of array power density (truncation ratio is 0.7). The missing scatters 
represent that the inflow velocity under this distance parameters is less than the truncation ratio. The left and right pictures 
are two different side views of the scatter. The three axes are the three distance parameters (y1, x2, y2). The color bar 
represents the array power density. The black star represents the maximum array power density (Its coordinates are y1 = 
4, x2 = 2.5, y2 = 2). 

 

Figure 15. The three-dimensional scatter diagram of array power density (truncation ratio is 0.7). The missing scatters
represent that the inflow velocity under this distance parameters is less than the truncation ratio. The left and right pictures
are two different side views of the scatter. The three axes are the three distance parameters (y1, x2, y2). The color bar
represents the array power density. The black star represents the maximum array power density (Its coordinates are y1 = 4,
x2 = 2.5, y2 = 2).
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Figure 15. The three-dimensional scatter diagram of array power density (truncation ratio is 0.7). The missing scatters 
represent that the inflow velocity under this distance parameters is less than the truncation ratio. The left and right pictures 
are two different side views of the scatter. The three axes are the three distance parameters (y1, x2, y2). The color bar 
represents the array power density. The black star represents the maximum array power density (Its coordinates are y1 = 
4, x2 = 2.5, y2 = 2). 

 
Figure 16. The three-dimensional scatter diagram of array power density (truncation ratio is 0.8). The missing scatters
represent that the inflow velocity under this distance parameters is less than the truncation ratio. The left and right pictures
are two different side views of the scatter. The three axes are the three distance parameters (y1, x2, y2). The color bar
represents the array power density. The black star represents the maximum array power density (Its coordinates are y1 = 4.5,
x2 = 3, y2 = 2.5).

From Figures 13–16, it can be found that, when the streamwise distance (x2) and stag-
gered distance (y2) are small, the downstream turbine cannot work at the rated condition,
and the corresponding scatter is discarded in the scatter diagram. When the truncation
ratio is 0.5, the distance parameters of the optimal arrangement does not change compared
with that without truncation. With the increase in truncation ratio, the distance parameters
(y1, x2, y2) of the optimal arrangement are also increasing. That is to say, if the optimal
arrangement is only measured by the criterion of array power density, the actual perfor-
mance of the array is not optimal, because many downstream turbines would not work at
the rated condition. It is better to combine the density criterion with the truncation ratio to
measure the optimal arrangement.

By observing Figures 17–19, it is clearer that, under the small truncation ratio, the
distance parameters of the optimal arrangements are not big, and there is obvious wake
interference in the downstream. However, with the increase in the truncation ratio, the
wake interference of optimal arrangement becomes weaker. By comparing the distance
parameters of the optimal arrangements under different truncation ratios, the staggered
distance (y2) is about half of the lateral distance (y1), and the lateral distance (y1) is bigger
than the streamwise distance (x2). Moreover, the distances (y1, x2) should not be too small,
so that the downstream turbine can work at the rated condition. These findings could
provide some suggestions for the preliminary design of the VAWT array.
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Figure 16. The three-dimensional scatter diagram of array power density (truncation ratio is 0.8). The missing scatters 
represent that the inflow velocity under this distance parameters is less than the truncation ratio. The left and right pictures 
are two different side views of the scatter. The three axes are the three distance parameters (y1, x2, y2). The color bar 
represents the array power density. The black star represents the maximum array power density (Its coordinates are y1 = 
4.5, x2 = 3, y2 = 2.5). 

From Figure 13 to Figure 16, it can be found that, when the streamwise distance (x2) 
and staggered distance (y2) are small, the downstream turbine cannot work at the rated 
condition, and the corresponding scatter is discarded in the scatter diagram. When the 
truncation ratio is 0.5, the distance parameters of the optimal arrangement does not 
change compared with that without truncation. With the increase in truncation ratio, the 
distance parameters (y1, x2, y2) of the optimal arrangement are also increasing. That is to 
say, if the optimal arrangement is only measured by the criterion of array power density, 
the actual performance of the array is not optimal, because many downstream turbines 
would not work at the rated condition. It is better to combine the density criterion with 
the truncation ratio to measure the optimal arrangement. 

By observing Figures 17–19, it is clearer that, under the small truncation ratio, the 
distance parameters of the optimal arrangements are not big, and there is obvious wake 
interference in the downstream. However, with the increase in the truncation ratio, the 
wake interference of optimal arrangement becomes weaker. By comparing the distance 
parameters of the optimal arrangements under different truncation ratios, the staggered 
distance (y2) is about half of the lateral distance (y1), and the lateral distance (y1) is bigger 
than the streamwise distance (x2). Moreover, the distances (y1, x2) should not be too small, 
so that the downstream turbine can work at the rated condition. These findings could 
provide some suggestions for the preliminary design of the VAWT array. 

 
Figure 17. The velocity contour of the array, which is the optimal arrangement under the criterion of array power density 
(truncation ratio is 0.6). y1 = 3.5, x2 = 2, y2 = 2. The color bar is the velocity deficit, the black solid lines represent the position 
of the maximum velocity deficit, and the black dashed lines represent the deviations of the double semi Gaussian func-
tions. 

Figure 17. The velocity contour of the array, which is the optimal arrangement under the criterion of array power density
(truncation ratio is 0.6). y1 = 3.5, x2 = 2, y2 = 2. The color bar is the velocity deficit, the black solid lines represent the position
of the maximum velocity deficit, and the black dashed lines represent the deviations of the double semi Gaussian functions.
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Figure 18. The velocity contour of the array, which is the optimal arrangement under the criterion of array power density 
(truncation ratio is 0.7). y1 = 4, x2 = 2.5, y2 = 2. The color bar is the velocity deficit, the black solid lines represent the position 
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tions. 

 
Figure 19. The velocity contour of the array, which is the optimal arrangement under the criterion of array power density 
(truncation ratio is 0.8). y1 = 4.5, x2 = 3, y2 = 2.5. The color bar is the velocity deficit, the black solid lines represent the 
position of the maximum velocity deficit, and the black dashed lines represent the deviations of the double semi Gaussian 
functions. 

6. Conclusions 
A new VAWT wake model, double semi Gaussian functions, is proposed in this pa-

per. It is simple in form and its model parameters can well represent the wake parameters. 
Compared with the traditional Gaussian and Top-hat models, it can better reflect the 
asymmetric characteristics of the VAWT wake, and it can also describe the wake merging 
in the case of counter-rotating twin turbines. 

Based on the proposed wake model, three experimental cases are fitted into the pro-
posed model. Then, the optimal arrangements under two different criteria are analyzed. 
To ensure the downstream turbine works within the rated range, the truncation ratio is 
introduced to the array optimization, and some relevant suggestions on the array design 
have been put forward. 

Figure 18. The velocity contour of the array, which is the optimal arrangement under the criterion of array power density
(truncation ratio is 0.7). y1 = 4, x2 = 2.5, y2 = 2. The color bar is the velocity deficit, the black solid lines represent the position
of the maximum velocity deficit, and the black dashed lines represent the deviations of the double semi Gaussian functions.
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Figure 19. The velocity contour of the array, which is the optimal arrangement under the criterion of array power density
(truncation ratio is 0.8). y1 = 4.5, x2 = 3, y2 = 2.5. The color bar is the velocity deficit, the black solid lines represent the
position of the maximum velocity deficit, and the black dashed lines represent the deviations of the double semi Gaussian
functions.
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6. Conclusions

A new VAWT wake model, double semi Gaussian functions, is proposed in this paper.
It is simple in form and its model parameters can well represent the wake parameters.
Compared with the traditional Gaussian and Top-hat models, it can better reflect the
asymmetric characteristics of the VAWT wake, and it can also describe the wake merging
in the case of counter-rotating twin turbines.

Based on the proposed wake model, three experimental cases are fitted into the
proposed model. Then, the optimal arrangements under two different criteria are analyzed.
To ensure the downstream turbine works within the rated range, the truncation ratio is
introduced to the array optimization, and some relevant suggestions on the array design
have been put forward.

This paper is mainly to propose a new VAWT wake model and optimize the array
arrangement. Due to the limitations of the existing research, few wake models are used for
the VAWT array optimization. At the present stage, there is no available array optimization
for comparison. The comparison on array optimization will be carried out in the future
when more relevant studies are published. Nevertheless, based on the comparison on the
velocity profile, it can be preliminarily proved that the wake model proposed in this paper
is more suitable than other traditional models. The higher fitting accuracy on velocity
profile could make the array optimization more correct. We believe that the proposed model
could be a promising approach for the VAWT array design, the optimal arrangements and
corresponding suggestions could be helpful to the preliminary design of VAWT array.
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Appendix A. The Fitting Results of the Velocity Profiles and the Corresponding 
Model Parameters 

Case 1 

  
TSR(λ) = 0.75      X = 1D 

Skewed distance(△y/D) = 0.283919 
Velocity deficit(△U/U0) = 0.793671 
σ of left Gaussian function = 0.52 
σ of right Gaussian function = 0.35 

TSR(λ) = 0.75      X = 2D 
Skewed distance(△y/D) = 0.49912 
Velocity deficit(△U/U0) = 0.743949 
σ of left Gaussian function = 0.55 
σ of right Gaussian function = 0.32 
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TSR(λ) = 0.75      X = 3D 

Skewed distance(△y/D) = 0.669319 
Velocity deficit(△U/U0) = 0.71634 
σ of left Gaussian function = 0.45 
σ of right Gaussian function = 0.27 

TSR(λ) = 0.75      X = 4D 
Skewed distance(△y/D) = 0.829427 
Velocity deficit(△U/U0) = 0.578621 
σ of left Gaussian function = 0.5 
σ of right Gaussian function = 0.23 

  
TSR(λ) = 0.75      X = 5D 

Skewed distance(△y/D) = 0.881552 
Velocity deficit(△U/U0) = 0.465359 
σ of left Gaussian function = 0.48 
σ of right Gaussian function = 0.25 

TSR(λ) = 0.75      X = 6D 
Skewed distance(△y/D) = 0.935852 

Velocity deficit(△U/U0) = 0.4 
σ of left Gaussian function = 0.5 
σ of right Gaussian function = 0.25 

  
TSR(λ) = 0.75      X = 7D 

Skewed distance(△y/D) = 0.933862 
Velocity deficit(△U/U0) = 0.339241 
σ of left Gaussian function = 0.5 
σ of right Gaussian function = 0.33 

TSR(λ) = 0.75      X = 8D 
Skewed distance(△y/D) = 0.920035 
Velocity deficit(△U/U0) = 0.297208 
σ of left Gaussian function = 0.5 
σ of right Gaussian function = 0.35 
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TSR(λ) = 0.75      X = 9D 

Skewed distance(△y/D) = 1.03289 
Velocity deficit(△U/U0) = 0.283711 
σ of left Gaussian function = 0.55 
σ of right Gaussian function = 0.35 

TSR(λ) = 0.75      X = 10D 
Skewed distance(△y/D) = 1.06826 
Velocity deficit(△U/U0) = 0.238961 
σ of left Gaussian function = 0.55 
σ of right Gaussian function = 0.35 

 
Case 2 

 
TSR(λ) ≈ 1      X = 1D 

Skewed distance(△y/D) = 0.49391    Velocity deficit(△U/U0) = 0.732308 
σ of left Gaussian function = 0.57     σ of right Gaussian function = 0.5 

 
TSR(λ) ≈ 1      X = 2D 

Skewed distance(△y/D) = 0.77275    Velocity deficit(△U/U0) = 0.732308 
σ of left Gaussian function = 0.67     σ of right Gaussian function = 0.37 
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TSR(λ) ≈ 1      X = 3D 

Skewed distance(△y/D) = 1.0         Velocity deficit(△U/U0) = 0.746264 
σ of left Gaussian function = 0.63     σ of right Gaussian function = 0.26 

 
TSR(λ) ≈ 1      X = 4D 

Skewed distance(△y/D) = 1.07246     Velocity deficit(△U/U0) = 0.626374 
σ of left Gaussian function = 0.64     σ of right Gaussian function = 0.26 

 
TSR(λ) ≈ 1      X = 5D 

Skewed distance(△y/D) = 1.19942     Velocity deficit(△U/U0) = 0.494382 
σ of left Gaussian function = 0.64     σ of right Gaussian function = 0.26 
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TSR(λ) ≈ 1      X = 6D 

Skewed distance(△y/D) = 1.25536     Velocity deficit(△U/U0) = 0.426966 
σ of left Gaussian function = 0.64     σ of right Gaussian function = 0.26 

 
TSR(λ) ≈ 1      X = 7D  

Skewed distance(△y/D) = 1.26638     Velocity deficit(△U/U0) = 0.380435 
σ of left Gaussian function = 0.68     σ of right Gaussian function = 0.29 

 
TSR(λ) ≈ 1      X = 8D 

Skewed distance(△y/D) = 1.35884     Velocity deficit(△U/U0) = 0.318681 
σ of left Gaussian function = 0.85     σ of right Gaussian function = 0.29 
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TSR(λ) ≈ 1      X = 9D 

Skewed distance(△y/D) = 1.35884     Velocity deficit(△U/U0) = 0.296703 
σ of left Gaussian function = 0.85     σ of right Gaussian function = 0.35 

 
TSR(λ) ≈ 1      X = 10D 

Skewed distance(△y/D) = 1.38783     Velocity deficit(△U/U0) = 0.274725 
σ of left Gaussian function = 0.85     σ of right Gaussian function = 0.35 

Case 3 

 
TSR(λ) ≈ 1      X = 1D 

Skewed distance(△y/D) = 0.06179     Velocity deficit(△U/U0) = 0.722921 
σ of left Gaussian function = 0.62     σ of right Gaussian function = 0.4 
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TSR(λ) ≈ 1      X = 2D 

Skewed distance(△y/D) = 0.342424     Velocity deficit(△U/U0) = 0.672921 
σ of left Gaussian function = 0.7       σ of right Gaussian function = 0.3 

 
TSR(λ) ≈ 1      X = 3D 

Skewed distance(△y/D) = 0.472537     Velocity deficit(△U/U0) = 0.651685 
σ of left Gaussian function = 0.6       σ of right Gaussian function = 0.21 

 
TSR(λ) ≈ 1      X = 4D 

Skewed distance(△y/D) = 0.504848     Velocity deficit(△U/U0) = 0.559326 
σ of left Gaussian function = 0.6       σ of right Gaussian function = 0.27 
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TSR(λ) ≈ 1      X = 5D 

Skewed distance(△y/D) = 0.55         Velocity deficit(△U/U0) = 0.445287 
σ of left Gaussian function = 0.63      σ of right Gaussian function = 0.33 

 
TSR(λ) ≈ 1      X = 6D 

Skewed distance(△y/D) = 0.736567     Velocity deficit(△U/U0) = 0.355909 
σ of left Gaussian function = 0.73      σ of right Gaussian function = 0.24 

 
TSR(λ) ≈ 1      X = 7D 

Skewed distance(△y/D) = 0.821642     Velocity deficit(△U/U0) = 0.335843 
σ of left Gaussian function = 0.73      σ of right Gaussian function = 0.14 
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