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Abstract: Clay–sand–clay deposits are commonly encountered in the offshore field. For spudcan
installation in this soil stratigraphy, the potential for punch-through exists, with the peak penetration
resistance formed within the interbedded sand layer. Therefore, a careful assessment of the penetra-
tion resistance profile has to be performed. Based on the recently proposed failure-stress-dependent
model, this paper presents a modified predictive model for estimating the peak resistance. The
modified model incorporates the bearing capacity depth factor and the protruded soil plug in the
bottom clay layer into the formulation. It is proven that the modified predictive model provides
improved deterministic estimations for the peak resistances measured in centrifuge tests. Based on
the modified predictive model, a parameter optimization technique is utilized to optimize the predic-
tion of peak resistance using penetration resistances observed beforehand. A detailed application
procedure is proposed and applied to the centrifuge tests accumulated from existing publications,
with further improvement on the predictions demonstrated. The proposed parameter optimization
procedure combined with the modified predictive model provides an approach to perform real-time
optimization for assessing spudcan peak resistance in clay–sand–clay deposits.

Keywords: punch-through; spudcan; penetration resistance; real-time optimization; probabilis-
tic method

1. Introduction

The increasing demand for hydrocarbon resources and renewable energy is driving off-
shore explorations into regions where highly layered seabed conditions are prevalent [1,2].
On such soil stratigraphy, the installation of mobile jack-up rigs involves more complexity
and uncertainty. This is particularly the case for the assessment of punch-through inci-
dent, which refers to a sudden and large penetration of the spudcan foundation attached
to the bottom of the jack-up leg due to a negative or near zero gradient of penetration
resistance profile.

Clay–sand–clay stratigraphy is recognized as one of the soil profiles commonly en-
countered in the offshore field with a significant potential for punch-through failure [1,3].
The typical penetration resistance profile of spudcan in such deposits is shown in Figure 1,
which is presented as the total penetration resistance q versus the penetration depth d
measured from the seabed surface to the lowest point of the largest cross-section of spudcan.
As the spudcan penetrates in the top clay layer, either a single-layer response (i.e., the
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penetration response in single-layer clay, without being affected by the underlying layers)
or a squeezing response occurs depending on the distance between the spudcan base and
the sand layer [1,4,5]. Once the squeezing response is triggered at the depth of dsq, the
penetration resistance will increase sharply until reaching the peak value of qpeak in the
interbedded sand layer at the depth of dpeak. The potential for punch-through accidents
should be assessed by comparing the designed preload with qpeak. Since the preload is
applied through ballast water, which can only be dumped gradually, the spudcan may
experience uncontrolled penetration once the preload exceeds qpeak. Therefore, accurate
prediction of the peak resistance is a vital component for spudcan penetration in clay–sand–
clay deposits. Recently, deterministic design methods have been proposed by Ullah et al. [4]
and Zheng et al. [5] based on centrifuge model tests and large-deformation finite-element
(LDFE) analyses. The peak resistance of spudcan in the interbedded sand layer is calculated
by modifying the failure-stress-dependent predictive model established by Lee et al. [6]
and Hu et al. [7] for a spudcan on sand-over-clay deposits. Both deterministic predictive
methods provide reasonable predictions for the peak resistances from centrifuge tests and
LDFE analyses. Nevertheless, as will be detailed later, the depth where the peak resistance
occurs is underestimated by these design methods. This deficiency leads to uncertainties
in the prediction of spudcan peak resistance and should be rectified by modifying the
predictive model. Therefore, further improvement is proposed in this study to obtain a
more realistic representation of the true soil failure mechanism at punch-through.

Figure 1. Illustration of spudcan in clay–sand–clay deposit and corresponding typical penetration resistance profile.

Although deterministic design methods have been satisfactorily verified against
centrifuge tests and numerical analyses, their practical applications can still lead to con-
siderable divergences between predicted and recorded results, even for relatively simple
single-layer and double-layer soil stratigraphies [8,9]. This is, among others, mainly due
to the uncertainties associated with (a) the error of the predictive model itself and (b) the
determination of model parameters as input for the calculation [10–12]. The former is
induced as a result of simplifications of the physical problem. The latter can be more signif-
icant for practical applications than physical modeling tests, as much more uncertainties
are involved in the investigation and interpretation of in-situ soil properties. Therefore, a
technique that allows fast optimization of the prediction based on penetration resistances
measured real-time will definitely favor the assessment of punch-through. Probabilistic
methods provide a feasible way to perform real-time optimization for the prediction based
on the monitored data. The percentile curves or probabilistic contours of the spudcan
load-penetration response can be predicted through Monte Carlo simulations by account-
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ing for the uncertainties and probabilistic distribution of the inputs in the predictive
model [11,13–15]. Bayes’ theorem can then be adopted to update these predictions accord-
ing to the measured load-penetration data [16,17]. The parameter optimization technique
(POT) is another alternative option, which is also formulated based on Bayes’ theorem, but
the prediction is updated by optimizing the model parameters according to the measured
data. Most recently, POT was applied to the real-time assessment of spudcan installation
in sand over clay deposits [18]. The resistances measured just below the sand surface
were used to optimize the strength parameters of the clay layer, which were later input
into the predictive model for an optimized prediction of peak resistance. Calibrations
against a series of centrifuge tests and two case histories have demonstrated promising
performance of the approach proposed by Jiang et al. [18]. However, the applicability
of POT for more complex soil stratigraphies, e.g., clay–sand–clay deposits, has yet to be
examined. Moreover, the current POT scheme optimizes the predicted peak resistance only
after the spudcan penetrates into the sand layer, which does not allow sufficient time for
the rig operator to adjust the preload strategy if a punch-through incident is deemed to
occur. A more robust POT scheme is hence required.

In this paper, a deterministic predictive model for the calculation of spudcan peak
resistance in clay–sand–clay deposits is presented first, which is modified from that pro-
posed by Ullah et al. [4] to rectify the underestimated peak resistance depth. Accordingly,
design formulas are proposed to account for the effects of the bearing capacity depth factor
and the protruded soil plug in the bottom clay layer in the calculation of peak resistance.
After that, a detailed procedure is proposed for the application of POT in clay–sand–clay
deposits. By the proposed approach, the prediction of peak resistance in the interbedded
sand layer is optimized based on the resistances measured in the overlying clay layer. The
feasibility and performance of the proposed POT are investigated based on a series of
existing centrifuge tests.

2. Deterministic Prediction of Peak Resistance
2.1. Soil Parameters

A schematic diagram of a spudcan of diameter D penetrating in clay–sand–clay
deposits is illustrated in Figure 1. The sand layer with effective unit weight γ′s and
thickness Hs, is interbedded by clay layers. The top clay layer has an effective unit weight
of γ′ct, undrained shear strength of suts at the mudline, strength gradient of kt and thickness
of Hct. The bottom clay layer has an effective unit weight of γ′cb, undrained shear strength
of subs at the sand-clay interface, strength gradient of kb and nominally infinite depth.

2.2. Modified Predictive Model

The predictive model proposed by Ullah et al. [4] has been validated against the
centrifuge tests reported by Ullah et al. [19] and Hossain [1]. Based on the geometries and
soil parameters summarized in Table 1, the peak resistances can mostly be predicted with
an error bounded by ±20%, as shown in Figure 2 (solid grey circles) in terms of the ratio r
between predicted and measured peak resistances. For the conciseness of the narration,
the mathematic framework of Ullah et al.’s [4] method is provided in Appendix A. The
predictive model proposed in this study is modified from Ullah et al. [4] so that the soil
failure mechanism is modeled more realistically. The modifications include four aspects,
which are detailed as follows.
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Table 1. Geometries and soil properties for centrifuge tests considered for parameter optimization [1,19].

Test D (m)
1st Layer Clay 2nd Layer Sand 3rd Layer Clay

Hct (m) suts
(kPa)

kt
(kPa/m) γ

′
ct(kN/m3) Hs (m) Relative

Density
Critical State

Friction Angle γ
′
s (kN/m3)

subs
(kPa)

kb
(kPa/m) γ

′
cb (kN/m3)

T1SP 6 2.38 4.9 1.9 6.85 4 74% 31◦ 10.6 25.6 2.5 7.32
T2SP 6 4.32 4.5 1.6 6.85 4 74% 31◦ 10.6 27 2.5 7.32
T3SP 6 5.47 4.1 1.5 6.85 4 74% 31◦ 10.6 26 2.3 7.32
T5SP 6 3.44 4.7 1.7 6.85 2 74% 31◦ 10.6 18.2 2 7.32
T6SP 6 4.35 4.5 1.6 6.85 6 74% 31◦ 10.6 26 2.3 7.32
SPa16 16 6.42 0.2 0.5 6.61 6.25 51% 31◦ 10.14 22.6 2.2 7.63
SPa14 14 6.42 0.2 0.5 6.61 6.25 51% 31◦ 10.14 22.6 2.2 7.63
SPa12 12 6.42 0.2 0.5 6.61 6.25 51% 31◦ 10.14 22.6 2.2 7.63
SPa10 10 6.42 0.2 0.5 6.61 6.25 51% 31◦ 10.14 22.6 2.2 7.63
SPa6 6 6.42 0.2 0.5 6.61 6.25 51% 31◦ 10.14 22.6 2.2 7.63
SPb16 16 6.32 0.2 0.5 6.61 4 51% 31◦ 10.14 24.6 2.4 7.63
SPb12 12 6.32 0.2 0.5 6.61 4 51% 31◦ 10.14 24.6 2.4 7.63
SPb8 8 6.32 0.2 0.5 6.61 4 51% 31◦ 10.14 24.6 2.4 7.63
SPb6 6 6.32 0.2 0.5 6.61 4 51% 31◦ 10.14 24.6 2.4 7.63
SPc16 16 4 0.3 0.58 6.61 4 51% 31◦ 10.14 23 2.5 7.63
SPc8 8 4 0.3 0.58 6.61 4 51% 31◦ 10.14 23 2.5 7.63
SPc6 6 4 0.3 0.58 6.61 4 51% 31◦ 10.14 23 2.5 7.63
FS12 6 3.7 0.5 0.75 7.1 1.5 89% 34◦ 11 4.4 0.75 7.1
FS13 6 3.7 0.5 0.75 7.1 2 89% 34◦ 11 4.775 0.75 7.1
FS14 6 3.7 0.5 0.75 7.1 4 89% 34◦ 11 6.275 0.75 7.1

Figure 2. Comparison between measured and predicted peak resistances.

2.2.1. Distribution Factor DF

Zheng et al. [20] reported that the peak resistances were significantly overestimated
for sand overlying clay with high undrained shear strength using the distribution factors
estimated by Equation (A3). They have hence collected centrifuge test data from existing
publications, carried out additional centrifuge tests and LDFE analyses, and proposed a
new design formula for DF, which is expressed as

DF = 0.6
(
(0.1γ′cb + kb)D

subs

)0.2(Hs

D

)−0.4
for 0.16 ≤ Hs

D
≤ 1.0 (1)

The new formula covers a more comprehensive range of soil properties and geometries,
and provides an improved performance for the prediction of peak resistance in sand-over-
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clay deposits by Hu et al.’s [7] method, based on which Ullah et al.’s [4] model was
developed. Therefore, it is also adopted in the modified predictive model of this study.

2.2.2. Peak Resistance Depth dpeak

By plotting the measured dpeak from all the related centrifuge tests reported by
Ullah et al. [19] and Hossain [1] against the predictions from Equation (A5) of Appendix A,
as shown in Figure 3, it is found that the formula tends to underestimate dpeak. The
measured values of dpeak from centrifuge tests can be better fitted by

dpeak

D
= 1.04

(
Hct

D

)0.72
+ 0.12

Hs

D
(2)

Figure 3. Comparison between measured and predicted depths of peak resistance.

For Hct = 0, Equation (2) reduces to dpeak = 0.12Hs for sand-over-clay deposits. The
comparison between the measured and predicted dpeak for Equation (2) is also plotted in
Figure 3, which shows improvement in the estimations.

2.2.3. Soil Resistances from the Sand Plug

With Equation (2) being used and with the assumption that the thickness of the
trapped clay frustum is Hc = 0.07Hct following Ullah et al. [4,19], the effective sand layer
height measured from the top of the sand plug to the original sand-clay interface, Heff, is
changed from 0.88Hs to

Heff
D

= 0.93
Hct

D
− 1.04

(
Hct

D

)0.72
+ 0.88

Hs

D
(3)

By substituting Equation (3) into Equation (A1) with the rest of the design formulas,
the same as Ullah et al. [4], the resulting peak resistance ratios are shown as crosses in
Figure 2. It is seen that most of the peak resistances are overly underestimated, with the
largest error of −44.5%. This is because, for dpeak from Equation (2), the spudcan has
penetrated into the sand layer by a depth that the sand-bottom clay interface can no longer



J. Mar. Sci. Eng. 2021, 9, 689 6 of 20

be regarded as undeformed. Instead, this deformed interface, which forms the bottom
end of the soil plug, protrudes into the bottom clay layer. This is evidenced by Figure 11
of Ullah et al. [19] and Figures 11 and 17a of Hossain [1], which demonstrate the digital
images taken from half-model centrifuge tests. Additional resistance is provided by the
soil plug below the original sand-bottom clay interface, which contributes an important
portion of the peak resistance.

Based on the above failure mechanism, the predictive model by Ullah et al. [4] is
modified to incorporate the effects of the soil plug below the original sand-bottom clay
interface, as illustrated in Figure 4a. According to the equilibrium of the thin disc element,
Equation (A1) can still be used to calculate qpeak. However, the term Nc0subs, which is equal
to the vertical stress within the sand frustum at z = Heff, has to be modified to consider the
base and frictional resistances provided by the sand plug with a height of Hplug3 in the
bottom clay layer. As such, the vertical equilibrium is established according to Figure 4b
for the sand frustum in the bottom clay layer, with the assumption that the shear stress on
the periphery is constant and equal to the average undrained shear strength su,plug3 of the
clay around the frustum

Nc0subs
πD2

1
4

= qplug
πD2

2
4

+ su,plug3 cos ψ
∫ Hplug3

0
π
(

D1 + 2z′ tan ψ
) dz′

cos ψ
(4)

which can be transformed to

Nc0subs = qplug

(
D2

D1

)2
+

4Hplug3

(
D1 + Hplug3 tan ψ

)
su,plug3

D2
1

(5)

Figure 4. A modified predictive model for qpeak. (a) Illustration of soil failure mechanism; (b) forces
acting on the sand frustum in the bottom clay layer.
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In Figure 4, D1, D2, and Hplug3 are the upper base diameter, lower base diameter, and
height of the sand frustum in the bottom clay layer, respectively; and qplug is the vertical
resistance acting on the lower base of the frustum due to soil shearing. To determine
these parameters, Test T3SP, as reported by Ullah et al. [19], was reproduced using the
LDFE approach in Zheng et al. [5]. Similar to the finding by Zheng et al. [5], a reasonable
agreement between the measured and computed penetration resistance profiles is obtained,
as shown in Figure 5a. As for the soil plug heights, which are compared in Figure 5b, the
total plug height of about 0.05Hct + 0.9Hs is found from the numerical analysis, close to
0.07Hct + 0.9Hs reported and assumed by Ullah et al. [4,19]. Therefore, a trapped clay
height of Hc = 0.07Hct and a sand plug height, which is the summation of Heff and Hplug3,
of 0.9Hs are also assumed in this study, and hence the parameters in Equation (5) can be
calculated as:

D1 = D + 2
(

Hct + Hs − dpeak

)
tan ψ (6)

D2 = D + 2
(

Hct + Hs − dpeak + Hplug3

)
tan ψ (7)

Hplug3 = dpeak − 0.93Hct − 0.1Hs (8)

su, plug3 = subs + 0.5kbHplug3 (9)

Figure 5. A comparison of experimental and numerical results for Test T3SP of Ullah et al. [19].
(a) Penetration resistance profiles; (b) soil plug heights.



J. Mar. Sci. Eng. 2021, 9, 689 8 of 20

The plug end resistance qplug can be calculated by multiplying the bearing capacity
factor by the corresponding undrained shear strength. The design formula recommended
by ISO [21], which considers the embedment depth and soil non-homogeneity after Skemp-
ton [22] and Young et al. [23], respectively, is adopted to calculate qplug as

qplug = 6
[

1 + 0.2
Hct + Hs + Hplug3

D2

][
subs + kb

(
Hplug3 + 0.25D2

)]
(10)

The effects of the bearing capacity depth factor and protruded soil plug in the bottom
clay layer are captured through Equation (5) in combination with Equations (6)–(10). The
modified predictive model hence estimates the peak resistance according to Equations (A1)
and (A2) with DF from Equation (1), Heff from Equation (3) and Nc0subs from Equation (5).

2.2.4. Non-Linear Load-Penetration Response before Peak

The squeezing response was simplified as a straight line by Hu et al. [7] and Ullah et al. [4].
This is acceptable in the deterministic models as the penetration resistance prior to the
peak is non-crucial to the assessment of punch-through. However, this curve has to be
described appropriately for the application of POT in optimizing the prediction of peak
resistance [18]. A non-linear curve is thus proposed to model the load-penetration response
between d = 0.9Hct and dpeak, as shown in Figure 6. According to the centrifuge test data
reported by Ullah et al. [19] and Hossain [1], it is found that an exponential function may
be used to approximate the non-linear response as

q− qs

qpeak − qs
= A− A(1− 1/A)

d−0.9Hct
dpeak−0.9Hct for 0.9Hct ≤ d ≤ dpeak (11)

where qs is the penetration resistance at d = 0.9Hct and A is a parameter that is best fitted
as A = 1.04. The comparison between Equation (11) and the centrifuge data is plotted in
Figure 7. For deterministic predictions, the value of qs can be estimated based on a linear
interpolation between the resistances at dsq and dpeak.

Figure 6. Illustration of simplified squeezing response.
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Figure 7. Comparison of measured and predicted penetration resistance profiles between d = 0.9Hct

and dpeak.

3. Application of POT for Spudcan in Clay–Sand–Clay Deposits

The methodology of POT is based on the data assimilation theory, which is a particular
application of Bayes’ theorem [24]. It provides a real-time optimization for the prediction by
“adjusting” the model parameters based on the observational information of the variables
(e.g., penetration resistance in this study). The technique has been widely incorporated in
the forecast models of earth systems [25–32]. The steps for the implementation of POT are
summarized in Appendix B.

3.1. POT Scheme for qpeak in Clay–Sand–Clay

Optimized estimation of qpeak in sand over clay deposits was proposed by Jiang et al. [18],
in which POT was performed based on the penetration resistances observed at depths of
0–0.025Hs below the sand surface. A straight line was used to simplify the load-penetration
response above dpeak. However, this may not be appropriate for clay–sand–clay deposits
since the load-penetration response before peak resistance is much more non-linear, with
the gradient reducing as the spudcan approaches dpeak. Therefore, a more reasonable
description, e.g., Equation (11), should be adopted. Moreover, the observation locations
selected by Jiang et al. [18] are below the sand surface and close to dpeak, while an earlier
optimization of the predicted peak resistance is preferred, which allows the rig operator to
make a judgment as early as possible about whether a punch-through incident will occur
or not for spudcans under the designated preload.

For the deterministic model of spudcan in clay–sand–clay deposits introduced in
Section 2.2, it is suggested in this study that the observation locations above the top
clay–sand interface are adopted so that the prediction of qpeak can be optimized before
punch-through occurs. Here, observation locations at d = 0.925, 0.95, 0.975, and 1.0Hct are
selected to verify the performance of the proposed POT in Section 4. With qs measured
at d = 0.9Hct and the penetration resistance profile estimated from Equation (11) of the
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modified predictive model, POT can then be performed at the selected observation locations.
As justified by Jiang et al. [18], among the model parameters that are determined with
relatively significant uncertainties, the most dominant parameter for qpeak in sand overlying
clay is the undrained shear strength at the sand-clay interface. A similar phenomenon was
found in the trial calculations for clay–sand–clay deposits. Therefore, only subs is adopted
as the parameter to be optimized in order to rectify all the uncertainties associated with the
prediction of qpeak.

3.2. Procedure of Application

For a modern jack-up rig with the ability to monitor applied vertical load and corre-
sponding spudcan penetration depth during the installation stage, the modified predictive
model can be combined with the POT scheme to provide real-time optimization for the
prediction of spudcan peak resistance in clay–sand–clay deposits. The detailed procedure
is proposed and illustrated in Figure 8, which is summarized as follows:

(1) Carry out an assessment of punch-through before jack-up installation by making
a deterministic prediction of qpeak according to the modified predictive model, i.e.,
Equations (A1), (A2), (3) and (5)–(10) with DF from Equation (1). Note that DF from
Equation (1) is only applicable for 0.16 ≤ Hs/D ≤ 1.0. If the designated preload
is much lower than the predicted qpeak, e.g., less than 0.75qpeak, POT may not be
necessary as the spudcan is highly likely to rest in the top clay layer. However,
caution should still be exercised, especially when the spudcan continues to approach
the top clay–sand interface with the increase of ballast water.

(2) Lower the jack-up legs to the seabed and commence the installation. Arrange and
apply the load increments carefully to make the spudcan approach the depth of
d = 0.9Hct. If the preload is fully applied before the spudcan reaches the depth of
d = 0.9Hct, POT is not required for optimization. Otherwise, record the observed
penetration resistance qs at the depth of d = 0.9Hct.

(3) Generate the parameter ensemble of subs to be optimized, which comprises 10,000
random values with the expectation selected as the value used in the deterministic
prediction and the standard deviation (SD) σV,M taken as 20% of the expected value.

(4) Add more ballast water carefully to jack the spudcan down further (e.g., by an
increment of 0.025Hct or smaller), and record the current vertical load q and the
resulted penetration depth d. The recorded load (i.e., penetration resistance) serves
as the observed value VO in Equation (A6) of Appendix B, and its SD is set as
σV,O = 0.001VO [18].

(5) Evaluate the model ensemble of q at the observation location according to Equation
(11), in which qs is obtained from Step 2, dpeak from Equation (2) and qpeak from the
modified predictive model with the parameter subs from the parameter ensemble
generated in Step 3. Each member in the model ensemble serves as the model
prediction in Equation (A6), and the mean and SD of the model ensemble are VM and
σV,M, respectively.

(6) Obtain the observational increments according to Equation (A6) based on the variable
values determined in Steps 4 and 5, and update the parameter ensemble according to
the increments calculated from Equation (A7).

(7) Optimize the prediction of qpeak using the mean value of the updated parameter
ensemble obtained in Step 6.

(8) Repeat Steps 4–7 to make real-time judgments about whether punch-through will
occur or not, and adjust the operation plan accordingly.
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Figure 8. Flowchart of proposed assessment procedure for optimized estimation of qpeak.

Due to the promising convergent rate of POT, the above procedure can be implemented
within seconds through, e.g., object-oriented programming languages. This enables real-
time optimization in practice for the prediction of the spudcan peak resistance in clay–
sand–clay deposits.

4. Performance of the Proposed Approach
4.1. Performance of Modified Predictive Model

The peak resistance ratios resulting from the deterministic predictions of the modified
predictive model are plotted as triangles in Figure 2 for the centrifuge tests in Table 1. At
first glance, both the modified predictive model and the original one by Ullah et al. [4] show
similar performances, resulting in prediction errors mostly within ±20%. However, the
statistics summarized in Table 2 indicate an improved performance of the modified predic-
tive model, with the SD and mean absolute error (MAE) reducing from 0.126 to 0.094 and
9.7 to 8.3%, respectively. The peak resistance ratios resulting from the modified predictive
model also fell into a narrower range of 0.77–1.101, compared with the range of 0.732–1.267
from Ullah et al.’s [4] approach. This is because the modified predictive model is a more
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realistic representation of the true soil failure mechanism at peak resistance. Additionally,
it also provides the basis for the application of POT in clay–sand–clay deposits.

Table 2. Statistics for the performance of different predictive models.

Predictive Model Design Formulas
Peak Resistance Ratio, r

MAE *
Min. Max. SD

Ullah et al. [4]
Equations (A1) and (A2) with DF from

Equation (A3), Heff = 0.88Hs and Nc0subs
from Equation (A4)

0.732 1.267 0.126 9.7%

Figure 4 in this study
Equations (A1) and (A2) with DF from

Equation (1), Heff from Equation (3) and
Nc0subs from Equation (5)

0.770 1.101 0.094 8.3%

* MAE = Σ|r − 1| divided by the number of centrifuge tests.

4.2. Performance of POT

Following the procedure developed in Section 3.2, the proposed POT is used to
optimize the prediction of peak resistance for spudcan penetration in clay–sand–clay
deposits. Although there are a number of case histories reported by the joint industry
project InSafeJIP [3], the recorded load-penetration data were either terminated before the
peak resistance or incomplete for the application of POT. Therefore, only centrifuge tests
listed in Table 1 are considered, which are all the centrifuge tests available in the existing
publications. As mentioned previously, the observation locations in each test are selected
at d/Hct = 0.925, 0.95, 0.975, and 1.0.

4.2.1. Overall Performance

After probabilistic analyses with POT at all observation locations, the absolute errors
of the peak resistance ratios are plotted in Figure 9 to compare with results from the
corresponding deterministic predictions. Improved predictions of qpeak are observed for
most cases, especially for those with relatively large errors from deterministic predictions.
However, a relatively obvious increase in the absolute error is also observed in three
centrifuge tests, i.e., Tests SPb6, SPb8, and SPb12, with |r − 1| increasing from 3.7, 3.8, and
1% to 19.7, 9.1, and 9.7% respectively. This may be because the modified predictive model
is still somewhat biased due to simplifications (e.g., the idealized shape of the soil plug
and the simplified representation of the load-penetration squeezing response), despite the
modifications proposed in this study. Nevertheless, the absolute errors mostly drop below
10% after the optimization of POT. The overall performance of POT is quantified in Table 3,
where the statistics for the peak resistance ratios after the optimization at all observation
locations are listed. Compared with the data in Table 2, the overall performance is further
improved, with the SD and MAE of the peak resistance ratios reducing from 0.094 and 8.3%
to 0.075 and 5.9%, respectively.

Table 3. Statistics for peak resistance ratios after parameter optimization.

Predictive Model Design Formulas
Peak Resistance Ratio, r

MAE *
Min. Max. SD

Figure 4 in this study
Equations (A1) and (A2) with DF from

Equation (1), Heff from Equation (3) and
Nc0subs from Equation (5)

0.803 1.127 0.075 5.9%

* MAE = Σ|r − 1| divided by the number of centrifuge tests.
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Figure 9. Performance of proposed approach for optimized assessment of qpeak.

4.2.2. Discussions

Four centrifuge tests, i.e., Tests SPc16, SPb16, T6SP, and SPb6 reported by Ullah et al. [19],
are taken as examples to illustrate the optimization process and effectiveness. For each case,
the optimized prediction of the penetration resistance profile at each observation location
are compared with the centrifuge test result and deterministic prediction in Figure 10.
The variations of the ensemble spread (i.e., SD), ensemble mean and experimental value
for subs, and the measured and predicted penetration resistances at different observation
locations are listed in Tables 4–7. There are some interesting points to note in Figure 10 and
Tables 5–7, as discussed below.

While the proposed approach does not work perfectly for all cases, Tests SPc16 and
SPb16 are representative cases in terms of the variations of optimized resistance profile
and parameter ensemble with the observation location. As shown in Figure 10a,b, the
optimized penetration resistance profile evolves towards the measured profile along with
the spudcan penetration after the first observation location, providing greater confidence
in the assessment of punch-through. The best performance is observed for Test T6SP
(Figure 10c), where the absolute error reduces from 23.0% to 2.4% after the optimization
at all observation locations. This may reflect the relatively large experimental error in the
measurement of subs for Test T6SP. For these three cases where POT leads to an improved
prediction, the statistics in Tables 4–6 demonstrate a consistent trend: after the first observa-
tion location, the variation of subs is evolutionary (by less than 5% after each optimization),
and the lower degree of variation is associated with better performance; the optimized q at
each observation location is close to the measured value, with errors less than 1%.

However, it should be noted that for cases where the POT has resulted in an improved
prediction of qpeak, the optimized resistance profile does not necessarily evolve towards
the measured data all the way as the spudcan approaches the dpeak. For example, in Test
SPb16 (Figure 10b), the optimization of qpeak at d = 0.925Hct results in a profile that is
even further away from the measured data, although the following optimized profiles
gradually get closer to the measured data as the spudcan penetrates further and leads to
a smaller predictive error after all observation locations. Test T6SP is another example
(Figure 10c), where the discrepancy between the optimized and measured penetration
resistance profiles gets larger after each observation location. Nevertheless, the optimized
penetration resistance profile gets very close to the measured data immediately at the
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first observation location (i.e., d = 0.925Hct), and its changes in the following observation
locations are quite negligible (less than 2%).

The worst performance of POT is observed for Test SPb6 (Figure 10d). Table 7 shows
that at the first observation location of d = 0.925Hct, there is a sharp change in subs from
24.6 to 7.7 kPa and the predictive error of qpeak changes from 3.7% to −31.6%, although
the optimized prediction of q becomes almost identical to the observed value with the
updated subs. At subsequent observation locations, the optimized resistance profiles evolve
towards the measured data, but the variation in subs is still significant (by ~20% after each
optimization), and the gap between the optimized and observed values of q also grows
with the penetration depth, with a difference of about 9% (461.9 vs. 507.8 kPa) at the last
observation location. This is in contrast to the cases that show an improved prediction
with POT, where the variation in subs is evolutionary and the optimized and observed
values of q only have a minimal difference. The main reason may be because the simplified
non-linear curve is not a good representation for the squeezing response of Test SPb6.

The different patterns of variations discussed above lead to the following implications
for the practical application of the proposed POT approach: (a) an evolutionary variation
of the optimized subs (e.g., by <5%) and a close agreement between the optimized and
measured q values usually indicate an improved prediction of qpeak; and (b) extreme
cautions should be taken during the optimization process if the variation of the optimized
subs is significant (e.g., by >5%) and there is an increasing error between the optimized and
measured q values, which, although rare, may indicate a worsened prediction by POT.

Figure 10. Variation of predicted penetration resistance profile with the optimization at each observa-
tion location. (a) Test SPc16; (b) Test SPb16; (c) Test T6SP; (d) Test SPb6.
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Table 4. Variations of data during the process of parameter optimization for Test SPc16.

Centrifuge Test Type of Variable
Observation Location

0.925Hct 0.95Hct 0.975Hct Hct

SPc16

SD of parameter ensemble subs (kPa) 0.32 0.16 0.10 0.07
Mean of parameter ensemble subs (kPa) 23.8 24.6 25.3 26.1

Experimental value of subs (kPa) 23.0
Deterministic prediction of q (kPa) 251.2 269.4 285.7 300.4

Optimized prediction of q (kPa) 286.7 303.1 319.0 334.4
Measured q (kPa) 286.6 303.3 320.1 336.8

Deterministic prediction of qpeak (kPa) 421.1
Optimized prediction of qpeak (kPa) 427.0 433.5 439.8 446.0

Measured qpeak (kPa) 486.7

Table 5. Variations of data during the process of parameter optimization for Test SPb16.

Centrifuge Test Type of Variable
Observation Location

0.925Hct 0.95Hct 0.975Hct Hct

SPb16

SD of parameter ensemble subs (kPa) 0.22 0.11 0.07 0.06
Mean of parameter ensemble subs (kPa) 23.3 24.5 25.7 26.9

Experimental value of subs (kPa) 24.6
Deterministic prediction of q (kPa) 264.3 291.0 313.6 342.1

Optimized prediction of q (kPa) 275.6 301.5 326.2 349.7
Measured q (kPa) 275.6 302.5 329.4 356.2

Deterministic prediction of qpeak (kPa) 439.6
Optimized prediction of qpeak (kPa) 428.6 438.9 448.9 458.8

Measured qpeak (kPa) 519.6

Table 6. Variations of data during the process of parameter optimization for Test T6SP.

Centrifuge Test Type of Variable
Observation Location

0.925Hct 0.95Hct 0.975Hct Hct

T6SP

SD of parameter ensemble subs (kPa) 0.38 0.19 0.12 0.09
Mean of parameter ensemble subs (kPa) 43.7 44.3 44.7 45.1

Experimental value of subs (kPa) 26.0
Deterministic prediction of q (kPa) 583.9 654.8 712.8 760.2

Optimized prediction of q (kPa) 1182.8 1198.2 1212.6 1226.1
Measured q (kPa) 1183.5 1199.1 1214.8 1230.4

Deterministic prediction of qpeak (kPa) 953.9
Optimized prediction of qpeak (kPa) 1246.3 1255.5 1262.2 1268.7

Measured qpeak (kPa) 1238.7

Table 7. Variations of data during the process of parameter optimization for Test SPb6.

Centrifuge Test Type of Variable
Observation Location

0.925Hct 0.95Hct 0.975Hct Hct

SPb6

SD of parameter ensemble subs (kPa) 0.07 0.04 0.03 0.03
Mean of parameter ensemble subs (kPa) 7.7 9.5 11.7 13.7

Experimental value of subs (kPa) 24.6
Deterministic prediction of q (kPa) 442.5 519.0 570.1 604.2

Optimized prediction of q (kPa) 293.0 355.4 412.1 461.9
Measured q (kPa) 290.3 362.8 435.3 507.8

Deterministic prediction of qpeak (kPa) 659.0
Optimized prediction of qpeak (kPa) 434.4 455.9 483.2 510.2

Measured qpeak (kPa) 635.4
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5. Conclusions

This paper describes a modified predictive model for assessing the peak resistance of
spudcan in clay–sand–clay deposits. Model modifications mainly include the incorporation
of the effects of the bearing capacity depth factor and the protruded soil plug in the
bottom clay layer. The modified model provides a more realistic representation for the true
soil failure mechanism at punch-through, and the verification against existing centrifuge
tests shows an improved performance compared with the original model. Based on the
modified predictive model, the parameter optimization technique has been employed to
optimize the prediction of peak resistance in clay–sand–clay deposits using the penetration
resistances observed at locations above the top clay–sand interface. A detailed procedure
for applying the parameter optimization technique has been summarized and then applied
to the centrifuge tests. Further improvement on the prediction of peak resistance has been
demonstrated compared with the deterministic predictions from the modified predictive
model, which confirms the effectiveness of the proposed approach. Discussions have been
made on the optimization process in terms of the variations of the parameter ensemble and
the optimized penetration resistances. Based on the discussions, some guidelines for the
application of the proposed approach have been suggested.

Author Contributions: Conceptualization, J.J.; methodology, S.Z.; software, J.J. and J.Z.; formal anal-
ysis, J.Z.; writing—original draft preparation, J.Z., S.Z., D.W. and J.J.; visualization, J.Z.; supervision,
D.W.; project administration, D.W.; funding acquisition, J.Z., S.Z. and D.W. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant No.
51809247, U1806230, 42025702, 41772294), and the Taishan Scientist Program of Shandong Province
(Grant No. ts201712017).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: This research was supported by the National Natural Science Foundation of
China (through the grants of No. 51809247, No. U1806230, No. 42025702, and No. 41772294), and the
Taishan Scientist Program of Shandong Province. All this support is gratefully appreciated.

Conflicts of Interest: The authors declare no conflict of interest.

Notation

A fitting parameter
D spudcan diameter at largest section
D1 upper base diameter of sand frustum in bottom clay layer
D2 lower base diameter of sand frustum in bottom clay layer
DF distribution factor
d penetration depth of spudcan base (lowest point at largest section)
dpeak depth of peak resistance
dsq penetration depth at which squeezing is triggered
E* model parameter
HBF height of backfill soil on top of spudcan
Hc height of trapped clay
Hct thickness of top clay layer
Heff effective sand layer height
Hplug3 height of sand frustum in bottom clay layer
Hs thickness of interbedded sand layer
kb rate of increase of undrained shear strength in bottom clay layer
kt rate of increase of undrained shear strength in top clay layer
Nc0 bearing capacity factor of clay at sand-bottom clay interface
q total penetration resistance on spudcan
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q0 surcharge on soil surface
qpeak peak resistance
qplug vertical resistance on soil plug base due to soil shearing
qs measured penetration resistance at d = 0.9Hct
r ratio of predicted to measured peak resistance
su,Hc average undrained shear strength of trapped clay
su,plug3 average undrained shear strength of clay around sand frustum in bottom clay layer
subs undrained shear strength of bottom layer clay at sand-clay interface
suts undrained shear strength of top layer clay at mudline
Vf volume of spudcan embedded by soil
VO observed variable
Vi

M ith member of model ensemble
VM mean value of model ensemble
∆Vi

O observational increment for ith ensemble member
z depth below upper base of sand frustum
γ′cb effective unit weight of bottom clay layer
γ′s effective unit weight of interbedded sand layer
γ′ct effective unit weight of top clay layer
∆Pi increment of ith member of parameter ensemble
σV,M standard deviation of model ensemble
σV,O standard deviation of observed variable
φ* reduced friction angle of sand
ψ dilation angle of sand

Appendix A. The Mathematic Framework of Predictive Model for Ullah et al.’s Method

In the design approach developed by Ullah et al. [4], the penetration resistance profile
of a spudcan in clay–sand–clay deposits is simplified as four segments of straight lines,
as illustrated in Figure 1. The approach has been calibrated against centrifuge tests. For
spudcan in the top clay layer, the penetration resistances at depths above dsq are estimated
using the bearing capacity factors reported by Houlsby and Martin [33] for single-layer
clay. The penetration resistance profile in the bottom clay layer is calculated with a deep
bearing capacity factor, which is expressed as a function of the thicknesses of the overlying
clay and sand layers.

The peak resistance focused on in this study is formulated based on a punching
shear mechanism (see Figure 4 of Ullah et al. [4]). Therefore, qpeak mainly comprises the
contributions from the frictional resistance and the end bearing capacity of the layered soil
plug (or soil frustum) that consists of trapped clay and sand. According to the equilibrium
of an element disc in the sand frustum, a general expression for qpeak can be given as

qpeak =
[

Nc0subs + q0 + (Hs − Heff)γ
′
s + Hctγ

′
ct + sign(Hct)

4Vf
πD2 γ′ct

](
1 + 2Heff

D tan ψ
)E∗

+
γ′sD

2(E∗+1) tan ψ

[
1−

(
1− 2Heff

D E∗ tan ψ
)(

1 + 2Heff
D tan ψ

)E∗
]

+
[

4Hcsu,Hc(D+Hc tan ψ)
D2 − Hcγ′ct − HBFγ′ct

]
(A1)

where Nc0 is the bearing capacity factor of clay at the sand-bottom clay interface (i.e.,
z = Heff); Heff is the effective sand layer height measured from the top of the sand plug to
the original sand-clay interface; q0 is the surcharge on the soil surface; Vf is the volume of
spudcan embedded by the soil; and ψ is the dilation angle of sand. The parameter E* is
expressed as

E∗ = 2
[

1 + DF

(
tan φ∗

tan ψ
− 1
)]

(A2)

where φ* is the reduced friction angle calculated from the operative friction and dilation
angles following Drescher and Detournay [34], while the operative friction and dilation
angles are determined through iterative calculations based on the strength-dilatancy re-
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lationships modified from those proposed by Bolton [35]. DF is the distribution factor
following Hu et al. [7], which was proposed for spudcan penetration in sand-over-clay
deposits and expressed as a function of Hs/D

DF = 0.642
(

Hs

D

)−0.576
for 0.16 ≤ Hs

D
≤ 1.0 (A3)

In the first term of Equation (A1), Nc0subs calculates the resistance at the sand-clay
interface due to soil shearing in the bottom clay layer. Ullah et al. [4] suggested estimating
Nc0 following the lower bound solution of a flat rough-based surface footing (i.e., no depth
factor being considered) reported by Houlsby and Martin [33], which is expressed as

Nc0subs = (6.34 + 0.56kbD/subs)subs (A4)

The last bracketed term of Equation (A1) calculates the contributions from the fric-
tional resistance and weight of the trapped clay frustum, and the weight of the backfill
soil. The height and average undrained shear strength of the trapped clay frustum are
Hc and su,Hc, respectively, and the height of the backfill soil is HBF. Based on the ob-
servations from 11 centrifuge tests on half-model spudcan and flat-based foundations,
Ullah et al. [4,19] reported Heff = 0.88Hs and Hc = 0.07Hct. Therefore, the depth of peak
resistance is determined as

dpeak = Hct + Hs − Hc − Heff = 0.93Hct + 0.12Hs (A5)

By assuming su,Hc = the average strength of the top clay layer and HBF = 0.5Hct,
Ullah et al. [4] predicts qpeak using Equations (A1) and (A2) with DF from Equation (A3),
Heff = 0.88Hs and Nc0subs from Equation (A4).

Appendix B. Steps for Implementation of POT

The implementation of POT can be summarized as follows:

(1) Generate a number of random values that follow a standard normal distribution for
each of the model parameters to be optimized, which serve as the parameter ensemble.

(2) Carry out probabilistic predictions based on the predictive model using the pa-
rameter ensemble generated in the last step, and the predicted results form the
model ensemble.

(3) Calculate the observational increment ∆Vi
O for each member of the model ensemble

based on the relationship between the observed data and the model predictions at the
observation location, i.e.,

∆Vi
O =

VM
σ2

V,M
+ VO

σ2
V,O

1
σ2

V,M
+ 1

σ2
V,O

+
Vi

M −VM√
1 +

(
σV,M
σV,O

)2
−Vi

M (A6)

where V represents the observable variable at the observation location; σV is the
standard deviation of V; the superscript i denotes the ith ensemble member; the
subscripts O and M refers to “observation” and “model”, respectively; and the overbar
denotes the ensemble mean.

(4) Distribute the observational increments onto the parameter ensemble by calculating
the increments of the parameter ensemble according to

∆Pi =
cov(PM, VM)

σ2
V,M

∆Vi
O (A7)
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where P denotes the parameter to be optimized, and hence ∆Pi is the increment of the
ith member of the parameter ensemble, while cov(PM, VM) refers to the covariance
between the parameter ensemble and model ensemble.

(5) The parameter ensemble is updated by adding ∆Pi to the corresponding ensemble
member. With the mean value of the updated parameter ensemble, an optimized
prediction can be obtained.
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