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Abstract: Constructing offshore and coastal structures with the highest level of stability and lowest
cost, as well as the prevention of faulty risk, is the desired plan that stakeholders seek to obtain. The
successful construction plans of such projects mostly rely on well-analyzed and modeled metocean
data that yield high prediction accuracy for the ocean environmental conditions including waves
and wind. Over the past decades, planning and designing coastal projects have been accomplished
by traditional static analytic, which requires tremendous efforts and high-cost resources to validate
the data and determine the transformation of metocean data conditions. Therefore, the wind plays
an essential role in the oceanic atmosphere and contributes to the formation of waves. This paper
proposes an enhanced weight-optimized neural network based on Sine Cosine Algorithm (SCA) to
accurately predict the wave height. Three neural network models named: Long Short-Term Memory
(LSTM), Vanilla Recurrent Neural Network (VRNN), and Gated Recurrent Network (GRU) are
enhanced, instead of random weight initialization, SCA generates weight values that are adaptable
to the nature of the data and model structure. Besides, a Grid Search (GS) is utilized to automatically
find the best models’ configurations. To validate the performance of the proposed models, metocean
datasets have been used. The original LSTM, VRNN, and GRU are implemented and used as
benchmarking models. The results show that the optimized models outperform the original three
benchmarking models in terms of mean squared error (MSE), root mean square error (RMSE), and
mean absolute error (MAE).

Keywords: recurrent neural networks; sine cosine algorithm; grid search; weight optimization;
metocean; waves

1. Introduction

In coastal and marine structural engineering, wave height is the main factor that needs
to be considered. The wave conditions affect several marine activities and have significant
consequences for marine industries. Nevertheless, it is challenging to accurately predict
such tasks because the ocean waves are stochastic by nature [1,2]. Thus, estimating the
wave heights and their trends was, and still is, a big challenge that has to be tackled [3,4].

At early stages, semi-analytic models, such as the Pierson–Neumann–James and
Sverdroup–Munk–Bretscheider models, were used to predict the height of the waves;
still, such models are inefficient at clearly describing in detail the wave conditions of the
sea surface [5,6]. After that, numerical models have been widely used for wave height
prediction; nevertheless, such models require a high computational resource when dealing
with large amount of data [7,8].

J. Mar. Sci. Eng. 2021, 9, 524. https://doi.org/10.3390/jmse9050524 https://www.mdpi.com/journal/jmse

https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0002-3001-1224
https://orcid.org/0000-0003-0038-3702
https://orcid.org/0000-0001-7208-693X
https://orcid.org/0000-0001-5226-4962
https://www.mdpi.com/2077-1312/9/5/524?type=check_update&version=1
https://doi.org/10.3390/jmse9050524
https://doi.org/10.3390/jmse9050524
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jmse9050524
https://www.mdpi.com/journal/jmse


J. Mar. Sci. Eng. 2021, 9, 524 2 of 27

Metocean data are the combination of meteorology and oceanography parameters
that need to be studied in order to predict the oceanic environmental change [9]. The
meteorology parameters are wind speed, direction, humidity, and air temperature. The
oceanography parameters are wave height, period, current, and tides [10,11]. The pre-
diction of oceanic environmental change is essential when planning coastal and offshore
constructions, maintenance, or operation. A high-accuracy prediction of these parameters
in the offshore environment reduces cost, time consumed, and fault risk. It also helps in
determining the required weather window to achieve the projects in time.

Deep learning models were recently applied to atmospheric observation [12,13]. First,
the height of the wave has been predicted based on Artificial Neural Network (ANN)
models. For instance, a feedforward network model was utilized to forecast the real-time
wave height [14]. Similarly, Mandal et al. [15] proposed a Recurrent Neural Network (RNN)
for forecast wave height and showed better correlation coefficient compared to feedforward
network. Another study conducted by Mahjoobi et al. [16] predicted wave height based on
regressive support vector machine (SVM). Their outcomes demonstrated that the proposed
model outperforms ANN model in terms of accuracy and computational time. Likewise,
ANNs backpropagation and feedforward were compared against model trees to indicate
the superiority of predicating wind speed as well as wave height and found that model
trees is superior [17].

The ultimate objective of sea wave prediction modeling is to find precise short- or long-
term forecasts of the studied variables at a certain time and location [18,19]. The literature
of oceanic modeling characteristic is categorized into physical-based and model-based
methods [20,21]. These methods have been utilized to forecast ocean waves. According
to the work in [3], which was based on the work in [21], these approaches are further graded
based on their attempts to specifically parameterize ocean wave interactions. Physical-
based methods mimic sea waves by finding the appropriate equation solutions and have
been proven to be beneficial over longer time periods for forecasting, whereas model-based
methods can be considered as time-series or statistical methods and work well for short-
term prediction [22–26]. Moreover, machine learning (or statistical) models can be applied
to postprocess physics-based models [27–31].

The main contribution of this study is to predict the wave height with high accuracy
and less computational cost. We precisely investigated the following objectives:

1. To propose an enhanced weight-optimized RNN based on SCA optimization to
process time-series data with high accuracy.

2. Three variants of RNNs are enhanced based on SCA: VRNN-SCA, LSTM-SCA, and
GRU-SCA.

3. To update and tune the learning rate based on grid search mechanism.
4. To compare the proposed models against three well-regarded prediction models:

LSTM, GRU, and VRNN, then investigate whether the proposed models outperforms
in terms of mean squared error (MSE), root mean square error (RMSE), and mean
absolute error (MAE).

The rest of this paper is categorized as follows. Section 2 reviews the recent related
work on recurrent neural network models for predictions. Section 3 describes metocean
data properties and four stations information in different locations. Section 4 explains the
methodology, and Section 5 illustrates the experimental setup. Results and discussion are
explained in Section 7. Last, this paper is concluded in Section 8.

2. Related Work

Artificial neural network models are labeled to fill within the model-based category,
and several neural networks have been utilized to forecast and reconstruct wave character-
istics. Artificial Intelligence (AI) models have become an alternative to numerical models
in recent years. These models are relatively simple to assemble and have outperformed
computational and statistical models for a site-specific wave parameter [32]. The metocean
data can be modeled and featured by applying the feature selection algorithms [20,33–37].
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Fully connected neural networks in [38] were used to forecast wave heights. RNNs were
used in [32] to predict the waves and showed a better correlation Coefficient forecasting.
A fuzzy logic modeling machine was also used in [32] to predict the ocean wave energy.
An extreme learning machine was applied in [39].

Several studies have been conducted using meta-heuristic algorithms to improve
neural network prediction. For instance, Zhang et al. [40] used a fruit fly optimization
algorithm and kernel extreme learning machine for bankruptcy prediction. Zhao et al. [41]
improved ant colony optimization by utilizing a chaotic intensification strategy and random
spare strategy for multi-threshold image segmentation. Tu et al. [42] proposed an improved
whale optimization algorithm to overcome the local optimum stagnation problem as well
as slow convergence speed. Similarly, the whale optimizer was improved using chaotic
multi-swarm to boost support vector machine for medical diagnosis [43]. Shan et al. [44]
proposed an improved moth flame optimizer based on a mechanism of adaptive weight.
Besides, an enhanced moth flame optimizer-based Gaussian mutation, Levy mutation,
as well as Cauchy mutation was proposed for global optimization [45]. Similarly, chaotic
moth flame optimizer was utilized in [46] to boost kernel extreme learning machine for
medical diagnoses. Chen et al. [47] proposed a new variant of Harris hawks optimizer
by integrating several strategies such as topological multi-population, chaos, as well as
differential evolution.

Comparative studies have been carried out in [48], taking into account geographical
differences and using different neutral networks. The findings show that networks with
less allocation of resources have a better structure and adaptability to different situations
and conditions [1]. Wang et al. [7] used an evolutionary hybrid algorithm to simulate
the ocean waves. This method demonstrated better results than other neural networks
in which fewer weather data were available. A symbiotic organisms hunt in [49] was
proposed to forecast ocean wave heights in two time zones based on a large number of
accurate weather data including wave heights measured by buoys. The proposed model
performed better than other state-of-the-art models. In [50], the efficiency of optimization
algorithms in resolving real-world complex problems such as the wave height problem is
discussed by proposing hybrid approach based on accent-based multi-objective particle
swarm optimization algorithm, whereas in [20], a sequence-to-sequence neural network,
feature selection, and bayesian hyperparameter are the techniques that were used and
applied to forecast the height of the wave and reconstruct a prediction for neighboring
buoys stations.

For time series forecasting, researchers apply cross-validation as a technique to dis-
tribute the data as in [51,52]. However, cross-validation approaches can be applied to
stationary synthetic time series. Besides, using cross-validation depends mainly on the
type of the data. Therefore, in our study we used the Out-of-sample (OOS) method, which
is traditionally used to estimate predictive performance in time-dependent data.

Despite the good performance of such models, they still face some limitations. For
example, feedforward models do not perform well with big time-series data. The RNNs
face the phenomenal issue of vanishing gradient. Recently, Rashid et al. [53] attempted
to use a set of meta-heuristics algorithms, such as Harmony search, GWO, as well as
SCA, in order to overcome the vanishing gradient in LSTM. Similarly, Somu et al. [54]
proposed an improved SCA using a Haar wavelet-based mutation operator to optimize the
hyperparameters of LSTM for energy consumption prediction [55]. In this paper, the main
contribution is to utilize the SCA to enhance the weight of three different types of RNN:
LSTM, VRNN, and GRU to forecast wave heights with high accuracy, so that instead of
random weight initialization, SCA generates weight values that are adaptable to the nature
of the data and model structure. Furthermore, GS is employed to automatically find the
best models’ configurations. Besides, according to the No free Lunch theorem [56], there is
no specific model to solve all forecasting problems. As such, improvements can be made to
the existing models to enhance the performance of such models [57].
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3. Study Area

In order to measure the efficiency of the proposed models, four stations were selected
from different locations, having several climate conditions as well as variants depths of
water. The hourly data that have been used in this study were recorded by floating buoys
located in the North Atlantic Ocean. Table 1 contains the details of the four stations, and
Figure 1 depicts their distribution.
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Figure 1. Stations’ location in the map.

The selected data obtained from the NOAA (https://www.ndbc.noaa.gov/, accessed on
24 December 2020). Four stations are used in this study: Station (41010) (https://www.ndbc.
noaa.gov/station_page.php?station=41010, accessed on 24 December 2020); Station (41040)
(https://www.ndbc.noaa.gov/station_page.php?station=41040, accessed on 11 January
2021); and Stations (41043) (https://www.ndbc.noaa.gov/station_page.php?station=41043,
accessed on 5 January 2021). The details of these stations are described in Table 1. The
stations are owned and maintained by National Data Buoy Center National Data Buoy
Center, the world’s largest environmental data buoys network [58].

The fourth station (41060) (https://www.ndbc.noaa.gov/station_page.php?station=
41060, accessed on 17 Janury 2021) is owned and maintained by Woods Hole Northwest
Tropical Atlantic Wave Station (http://uop.whoi.edu/currentprojects/currentprojects.
html, accessed on 17 January 2021), which mainly focuses on studying the physical process
in ocean surface using moored surface buoys that have metrological and oceanographic
sensors.

https://www.ndbc.noaa.gov/
https://www.ndbc.noaa.gov/station_page.php?station=41010
https://www.ndbc.noaa.gov/station_page.php?station=41010
https://www.ndbc.noaa.gov/station_page.php?station=41040
https://www.ndbc.noaa.gov/station_page.php?station=41043
https://www.ndbc.noaa.gov/station_page.php?station=41060
https://www.ndbc.noaa.gov/station_page.php?station=41060
http://uop.whoi.edu/currentprojects/currentprojects.html
http://uop.whoi.edu/currentprojects/currentprojects.html
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Table 1. Stations’ dataset.

Station ID Lon (W) Lat (N) Water Depth (M) SWH (M) Range Years (Interval) Training Points Test Points

41010 28.878 78.485 890 [0.00, 4.6] [2005,2017] 86356 37011
41040 53.045 14.554 5112 [0.00, 8.09] [2005, 2017] 54794 18617
41043 64.830 21.124 5271 [0.00, 13.42] [2007, 2017] 114990 49282
41060 51.017 14.824 5021 [0.72, 4.89] [2012, 2017] 28952 12409

The wave height is influenced by several factors such as direction and speed of wind,
past wave height, and temperature of ocean surface [59,60]. The dataset of each station
contains the following features: wind speed, significant wave height, wind direction, gust
speed, dominant wave period, the direction from which the waves at the dominant period
are coming, average wave period, air temperature, dewpoint temperature, sea surface
temperature, sea level pressure, the water level in feet above or below mean lower low
water, station visibility, and pressure tendency.

4. Methods

In this section, the main methods used in this paper are explained. First, the orig-
inal VRNN is outlined, followed by LSTM then GRU. After that, the SCA algorithm is
mathematically presented and finally the GS mechanism is elaborated.

4.1. Vanilla Recurrent Neural Network (VRNN)

The simplest structure of VRNN is initialized with one single input layer, one single
hidden layer, and one single output layer [61]. Simple architecture is constructed of three
layers that can process the sequence of T inputs through time t, which is the vector of
{. . . , xt−1, xt, xt+1, . . . }. The xt = {x1, x2, . . . xT}, where T is the different length series of
the xt inputs.

All three layers are hierarchically joined from input layer to the hidden layers and
from the hidden layer to the output layer. The link between the layers of the network is
called a weight matrix. WW defines the weight connection between the hidden layer and
the input layer at each time-step. Equation (1) computes the hidden layer recursively to
measure the current state of the network. WV is the weight matrix reference that links the
hidden layer units to each other. The number of hidden units H is ht = {h1, h2, . . . hH}.

st = WW xt + WVht−1 + bh (1)

The WW matrix is multiplied by the xt inputs and summed up with the product of
WV and the previous state ht−1. Then, this result is added to bias bh of the hidden layer.
Equation (1) defines this process. Equation (2) define the networks’ current state.

ht = fH(st) (2)

fH(.) represents the nonlinear activation function that converts the result of st to values
that depend on the selected activation function. Meanwhile, several activation functions
on the state-of-the-art such as sigmoid, tanh, relu, leaky relu, and many more [62–64].

WU is the weight matrix that connects hidden and output layers. The output numbers
is N units and can be represented as yt = {y1, y2, . . . , yN}, while ŷt is the network prediction
that can be obtained by Equation (3).

ŷt = fs(WUht + bo) (3)

The result of the output layer is the sum of product of weights WU and current hidden
state ht form Equation (2), added to bias of output layer bo, then it is transformed by
activation function fs(.). The output layer predicts the results at each time step based on
the results of the hidden layers calculations and input values. Ŷt defines the total prediction
length parameter. The ŷt =

{
ŷt1, ŷt2, . . . , ŷŶ

}
.
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4.2. Long Short-Term Memory (LSTM)

LSTM is a new improved variant of RNN that has been proposed to solve the classical
version VRNN in terms of gradient problem [65]. Nevertheless, because of different mem-
ory cells, LSTM is more expensive in terms of computational resources and requires extra
memory compared to RNN [65]. Typical LSTMs have almost four times more parameters
than simple VRNN; thus, they suffer from high complexity in hidden layers. The main
goal of designing LSTM is to solve the difficulties of learning long-term dependencies,
regardless of the uncertainty of their costs [61,66].

The LSTM cell is constructed of several main gates, which are the input gate, forget
gate, and the output gate. Irreverent information that has less importance on the prediction
is dropped out by the forget gate. By this mechanism, LSTM determines which new data
are going to be processed in the cell state [61]. The cell state is altered by the forget gate
positioned below the cell state and by the input gate. The previous cell state forgets and
adds new information through the output of input gates. The forget gate decides which
data should be dropped. It forgets the irrelevant details coming from the previous state
with the following calculation in Equation (8) [61,67]. The input gates decide which cell
state or long-term memory information can enter. There are two sections to this layer: One
is the sigmoid function, while the other is the function of tanh(). Typically, the target vector
is called the “output gate”. The following equations explain the parameter notations in
LSTM cell.

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi) (4)

ft = σ(Wx f xt + Wh f ht−1 + Wc f ct−1 + b f ) (5)

gt = tanh(Wxgxt + Whght−1 + bg) (6)

ot = σ(Wxoxt + Whoht−1 + Wcoct + bo) (7)

ct = ft ⊗ ct−1 + it ⊗ gt (8)

ht = ot ⊗ tanh(ct) (9)

ŷt = ht (10)

The f(t) is the forget gate, i(t) is the input gate, and o(t) is the output gate. g(t) is the
method that checks the current input of x(t). The previous short-term memory is h(t−1).
C(t−1) is the previous long-term memory state. The logistic sigmoid function is σ and the
tanh() is the tanh function. ŷt is the expected prediction output of the LSTM cell. The c(t)
is the long-term state for the next cell, and the h(t) is the short-term state for the next cell.

Wxi, Wx f , Wxg, and Wxo are the connecting weight matrices between the input xt and
the four layers. On the other hand, the connections between the previous state h(t−1) and
the four layers are Whi, Wh f , Whg, and Who. Every layer has its own bias as bi, b f , bg, and
bo, respectively.

4.3. Gated Recurrent Units (GRU)

Cho et al. [68,69] introduced GRU to solve the problem of decay of information
that occurs in the traditional recurrent neural network and minimize the computational
complexity in LSTM. Two controlling gates are used by GRU, which are the updating
and resetting gates that track the data forwarded to the output gate. The update gates
decide the past and present data that must be moved to the new state, while the reset gate
determines the previous data that must be dropped at every time step. The parameters of
the GRU cell are defined by the following equations.

Zt = σ(Wxzxt + Whzht−1 + bz) (11)

Rt = σ(Wxrxt + Whrht−1 + br) (12)

gt = tanh(Wxgxt + Whg(Rt ⊗ ht−1) + bg) (13)
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ht = Zt ⊗ ht−1 + (1− Zt ⊗ gt) (14)

where Zt is the update gate and Wxz is the weight matrix between input layer and the
update gate, whereas Whz is the weights connecting the update gate with the hidden state
ht−1. bz is the bias of the updating gate.

Rt representing the reset gate which is connected to the input layer by Wxr, while Whr
is the weight matrix that connects it to the hidden state ht−1. The bias that belongs to this
gate is bz.

4.4. Sine Cosine Algorithm (SCA)

SCA is a population-based optimization technique that randomly generates multi-
ple possible solutions for optimization problems. Using the mathematical Sine-Cosine
equations to oscillate towards or outwards in order to find the optimal solutions. It uses
random variables to adaptively ensure this technique emphasizes on the exploitation and
exploration to finding the possible global optima on the search space [70,71]. SCA has been
found more efficient than other population-based algorithms in achieving an optimal global
solution [54]. Different millstones on the search area are investigated when the sine and
cosine functions return values greater than one or less than one. Equations (15) and (16)
demonstrate the formation of sine and cosine functions.

Xt+1
i = Xt

i + r1 ∗ sin(r1) ∗ |r3Pt
i − Xt

i | (15)

Xt+1
i = Xt

i + r1 ∗ cos(r1) ∗ |r3Pt
i − Xt

i | (16)

where Xt
i is the position of the current candidate at the tth iteration in the ith dimension

AND Pi is the position of the best candidate at the tth iteration in the ith dimension. The
random agents are r1, r2, r3, and r4. The (∗) is the multiplication sign. Equations (15) and
(16) are combined in Equation (17).

Xt+1
i =

{
Xt

i + r1 ∗ sin(r1) ∗ |r3Pt
i − Xt

i |, r4 < 0.5
Xt

i + r1 ∗ cos(r1) ∗ |r3Pt
i − Xt

i |, r4 ≥ 0.5
(17)

The first agent (r1) is responsible for defining the afterward search space, located
between the solution region or outside it. The second operator (r2) defines the amount of
distance in the search space that should be in or out of the destination

ri = a− t
a
T

(18)

where T indicates the maximum iterations number and t is the currently running iteration.
The a is a constant variable. Algorithm 1 shows the main pseudocode of SCA algorithm.

4.5. Grid Search (GS)

In order to produce good accurate results, deep learning models require many param-
eters that need to be predefined before the training takes place [72,73]. These hyperparame-
ters have to be suitable for the network structure and the nature of the dataset. Setting these
hyperparameters can be accomplished manually by trial and error until the best results are
achieved; however, this is an inefficient method as it consumes time and may not work as
expected [68,74]. Therefore, there are many hyperparameter tuning techniques that have
automatically configured models to make them suitable to the network’s structure [75,76].

Grid Search is a hyperparameter tuning technique that can be applied to find the best
model configuration [77]; it produces more accurate results [75,78]. Therefore, in this paper,
GS has been utilized to obtain the best learning rate values.
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Algorithm 1 Algorithm SCA

Input:
• Set the lower bound and upper bound of X solutions
• Set the population size
• Initialize the agents of the search space randomly
• Specify the maximum number of iterations

Output:
• The best-selected solution (X∗)

LOOP Process
1: while (t ≤ Max number o f iterations T) do
2: Calculate every single solutions candidate
3: Define the best-selected solution (X∗)
4: Update r1, r2, r3, and r4
5: Update agents’ locations in the search space with (18)
6: end while

Return (X*)

5. The Proposed Enhanced Weight Optimized Recurrent Neural Networks

The models developed in this paper have been achieved by integrating the sine
cosine algorithm [70] to optimize and update the model weights of simple recurrent neural
networks aiming to overcome the problem of vanishing gradient in prediction wave heights.
Besides, we integrated an effective grid search mechanism to find the optimal configuration
of models’ structures.

The main contribution is to generate weight values that are adaptable to the nature
of dataset and models’ structure. To achieve that, instead of initializing the weights
of recurrent neural networks randomly, the weight initialization is adapted using SCA
algorithm. As explained in the literature, the traditional training of RNNs is usually
based on back propagation so that parameters, such as weights and leaning rate, would
be updated either by increasing their values or decreasing it until finding the optimal
values, resulting in minimizing the error value. The random initialization of the weights
was developed to overcome the drawbacks of the back propagation and to enhance the
convergence speed with less time. However, the randomness of weight initialization might
not be adaptive with every data type and size [79]. Therefore, we proposed an enhanced
weight optimized model to effectively overcome the limitations of the state-of-the-art
methods, as well as to be more adaptive to any type of dataset.

The general structure of the proposed model is illustrated in Figure 2. The following
subsections demonstrate the phases of the proposed model to analyze the metocean data
and predict the wave heights.

5.1. Data Preprocessing

As explained in Section 3, the four datasets that have been used in this paper were
selected from different locations based on Table 1. The datasets have been preprocessed
as follows:

• The linear interpolation is used to handle the missing values.
• The time series dataset has been partitioned into 70% for training data and 30% for

testing data; 25% of the training portion was assigned for validation.
• After splitting the dataset, the input features and target labels are identified.
• Finally, the MinMaxscaler function from a Python library named Scikit-Learn has been

utilized as a normalization technique to scale the data into a suitable form within the
range (0, 1).
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Figure 2. General model of the proposed RNN-SCA method.
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5.2. Grid Search Mechanism

The optimal hyperparameters are essential in any neural network to obtain sufficient
performance. Traditionally, trial and error was used to find the best hyperparameters;
however, this technique is not effective as it takes a long time and, in most cases, the
optimal values are not guaranteed. It needs to try to set the parameters, train the model,
validate, test, and compute the error. This cycling process needs to be repeated many times
until it begins getting better results.

Therefore, we integrate an effective technique known as grid search to efficiently find
the best hyperparameters for the proposed models. Table 2 shows the parameter settings
of the grid search.

Table 2 shows the values of the search space that allows the GS to find and selects the
optimal values that are suitable to dataset size and model structure. To avoid the vanishing
and exploding gradient problem, the optimal learning rate should not be too small nor too
big. Therefore, we set the search space to be between 0.001 and 0.3.

Table 2. Grid search space parameters.

Grid Search Parameters Initialization Values

learn_rate [0.001, 0.01, 0.1, 0.2, 0.3]
dropout_rate [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]

batch_size [32, 50, 64]
momentum [0.0, 0.2, 0.4, 0.6, 0.8, 0.9]

5.3. Weight Optimization Process Using SCA

SCA is a recent effective optimization algorithm capable of exposing an efficient
performance and proved to be more effective than several optimization algorithms for
attaining optimum or near optimum solution; therefore, it has been selected in this study
due to its special characteristics, which are summarized as follows.

• The potential to escape the local optima, besides the high exploration inheritance of
sine and cosine functions.

• The basic sine cosine functions enable this algorithm to adaptively shift from explo-
ration [<1, >1] to exploitation [−1, 1].

• The inclination towards the finest region of the search space as the solution modifies
its location around the finest solutions gained so far.

The three basic recurrent neural network models (VRNN, LSTM, and GRU) are en-
hanced based on sine cosine algorithm, and new models named VRNN-SCA, LSTM-SCA,
and GRU-SCA were developed. A clear description of these models is explained as follows.

5.3.1. Optimizing VRNN-SCA

The VRNN-SCA model’s inputs are multiplied with weights that are generated by the
SCA algorithm. The results of the multiplication are then fed as input vector to the hidden
state and multiplied with the hidden state weight matrix generated by SCA as well. All
products’ results are summed up with additional bias values that came from the SCA. The
weights of the basic VRNN presented in Equation (1) are updated by integrating the SCA
as shown in Equation (19).

st = WscaW xt + WscaVht−1 + bscah (19)

where WscaW indicates the generated weight based SCA in the input layer, whereas xt
represents the inputs. WscaV indicates the generated weight based SCA in the hidden
layer, whereas, ht−1 is the hidden state. Besides, bscah represents the generated bias based
on SCA.
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5.3.2. Optimizing LSTM-SCA

The cell state c(t) and the three gates of LSTM—input gate i(t), forget gate f(t), and
output gate o(t)—have their own weights, as explained in Section 4.2. Instead of generating
these weights randomly, they have been generated based on SCA to be more adaptive to
the input dataset. Equations (4), (5) and (7) have been updated as

it = σ(WscaXixt + WscaHiht−1 + WscaCict−1 + bscai) (20)

where WscaXi represents the generated weights (based on SCA) that connect the input layer
to input gate i(t), while hidden state ht−1 and input gate are connected by WscaHi, which
represents the updated weight matrix-based SCA. The cell state ct−1 is connected by WscaCi
generated SCA weights to input gate and bscai is the input gate bias updated by SCA.

ft = σ(WscaX f xt + WscaH f ht−1 + WscaC f ct−1 + bsca f ) (21)

The forget gate ft is connected to the input layer by generated SCA weights WscaX f
and connected to the hidden state ht−1 by WscaH f weights which generated by SCA as well.
It is also connected to the cell state ct−1 by SCA generated weights WscaC f . The forget gate’s
bias, which is generated by SCA, is bsca f .

ot = σ(WscaXoxt + WscaHoht−1 + WscaCoct + bscao) (22)

where WscaXo represents the generated weights based on SCA that connect the output gate
ot to the input layer. The generated SCA weight WscaHo is between the output gate and
hidden state ht−1, while the cell state is connected with the output gate by WscaCo, which
indicates SCA generated weights. The generated SCA bias of the output gate is bscao.

5.3.3. Optimizing GRU-SCA

GRU only has two gates: the update gate Zt and reset gate Rt. These gates have the
weights matrix as described in Section 4.3. These weights have been updated based on
SCA. Equations (11) and (12) have been updated as follows:

Zt = σ(WscaXzxt + WscaHzht−1 + bscaz) (23)

WscaXz is the weight matrix between the input layer and the update gate Zt, whereas WscaHz
is generated SCA weights that connecting the update gate with the hidden state ht−1. bscaz
is the updating gate bias generated based on SCA.

Rt = σ(WscaXrxt + WscaHrht−1 + bscar) (24)

Similarly, the reset gate Rt is connected to the input layer by SCA generated weights
(WscaXr), while WscaHr is the weight matrix obtained by SCA, and it connects the reset gate
to the hidden state ht−1. The bias that belongs to this gate is bscaz, and it is generated based
on SCA as well.

6. Experimental Setup

This section explains the experimental settings used in this paper; it starts with the
evaluation measures used to validate the proposed models then the parameter setting. The
implementation is performed on Intel(R) Core(TM) i7-9700 CPU @ 3.00 GHz 3.00 GHz,
0 16.0 GB RAM. The experiments were implemented using the Python 3 programming
language and the libraries below:

• Environment setup:

1. Python version (Python 3.7.9).
2. Virtual environment from Anaconda.
3. TensorFlow (2.3.0) as backend.
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• Library setup:

1. scikit-learn (0.23.2).
2. scipy (1.4.1).
3. pandas (1.1.3).
4. numpy (1.18.5).
5. matplotlib (3.3.2).
6. Keras (2.4.3)

6.1. Evaluation Measures

In order to comprehensively evaluate the effectiveness and prediction of the proposed
models, three common metrics are used in this paper: Mean Square Error (MSE), Root
Mean Square Error (RMSE), and Mean Absolute Error (MAE). All of these error evaluation
indices have been extensively applied in the forecasting model estimation. These three
metrics are defined as:

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2 (25)

RMSE =

√
∑N

i=1(yi − ŷi)
2

N
(26)

MAE =
1
N

N

∑
i=1
|yi − ŷi|2 (27)

6.2. Parameter Settings

Setting up the experimental environments has been done by first defining the parame-
ters of the SCA as illustrated in Table 3; the parameters are based on the default setting of
the algorithm itself. Then, we defined the parameters of the models that are explained in
Table 4. Note that the three recurrent neural network models (VRNN, LSTM, and GRU) are
implemented as benchmarking models for comparison purposes.

Table 3. Sine Cosine Algorithm (SCA) setup.

SCA Parameters Initialization Values

SCA Upper Bound 5
SCA Lower Bound −5
SCA Search Agents 25
SCA Max Iteration 200

For all the proposed models, the model structure consists of an input layer which
includes 12 input features, a hidden layer consisting of 32 hidden units, and an output
layer. The dataset has been partitioned into 70% for training data and 30% for testing data;
25% of the training portion was assigned for validation.

Table 4. Parameter settings and model configuration.

Models Parameters VRNN-SCA LSTM-SCA GRU-SCA

No of iterations [10–100] [10–100] [10–100]
Input Features 12 12 12
Hidden units 32 32 32

Activation Function Relu Relu Relu
Training Size 70% 70% 70%
Testing Size 30% 30% 30%
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7. Results and Discussion

This section demonstrates and discusses the results of the enhanced models. To ensure
the stability of the proposed models, the models have been run ten times for each dataset.
Besides, different initialization in terms of epoch has been conducted. The number of
epochs was set to 10, 20, 30, 40, 50, 60 , 70, 80, 90, and 100.

7.1. Results of Proposed Models

Table 5 illustrates the results achieved by proposed VRNN-SCA model in all four
datasets. In all epochs, this model demonstrates good performance in terms of MSE, RMSE,
and MAE. For example, in the 41010 dataset, the best MSE, RMSE, and MAE were in epoch
40 with 0.0002, 0.01152, and 0.0110, respectively. Similarly, in the 41040 dataset, the best
performance was in epoch 40 with 0.0016 MSE, 0.0396 RMSE, and 0.0230 MAE, whereas in
the 41,043 dataset, epoch 10 obtained best performance with 0.0029, 0.0543, and 0.0232 for
MSE, RMSE, and MAE, respectively. In the 41,060 dataset, the obtained MSE, RMSE, and
MAE best results was on epoch 90 with 0.0010, 0.0313, and 0.0234, respectively.

As can be seen form Table 6, which shows the results of the proposed LSTM-SCA
model in all datasets, this model demonstrates a promising performance in terms of MSE,
RMSE, and MAE. For example, in dataset from station 41010, the best MSE was in epochs
10, 20, and 30 with values of 0.0001, whereas the best performance in terms of RMSE
and MAE was in epoch 30 with 0.0106 and 0.0065, respectively. In dataset 41040, the
best obtained MSE, RMSE, and MAE were in epoch 20 with the values of 0.0014, 0.0371,
and 0.0210, respectively. In the 4143 dataset, epoch 10 achieved best results in terms of
MSE, RMSE, and MAE with the following values: 0.0019, 0.0435, and 0.0168, respectively,
whereas epoch 100 achieved the best performance in the 41060 dataset with the values of
0.0010, 0.0320, and 0.0239 for MSE, RMSE, and MAE, respectively.

Table 7 illustrates the results of the proposed GRU-SCA model in all datasets; this
model achieves an outstanding performance in terms of all evaluation measures MSE,
RMSE, and MAE. For instance, MSE in dataset 41010 achieved the best results in epochs
20, 30, 40, and 50 with the value of 0.0001, while RMSE and MAE obtained the best results
in epoch 40 with values of 0.0092 and 0.0063, respectively. Epoch 20 obtained the best
results for dataset from station 41040 with the values of 0.0008, 0.0282, and 0.0180 for MSE,
RMSE, and MAE, respectively. In dataset 41043, the best results were achieved in epoch 10,
whereas in epoch 100, the best performance was achieved for dataset 41060.

Table 8 shows the results of the original model of VRNN. These results demonstrated
how effective the integration of the SCA algorithm and the grid search mechanism are in
producing better results and overcome the existing work limitations. Table 9 explains the
results of the original LSTM. Table 10 explains the results of the original GRU benchmarking
over all the datasets.

Table 5. Results of the proposed VRNN-SCA model in all datasets.

Epoch
41010 41040 41043 41060

MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE

10 0.0003 0.0185 0.0131 0.0061 0.0779 0.0443 0.0029 0.0543 0.0232 0.0010 0.0318 0.0238
20 0.0004 0.0192 0.0147 0.0031 0.0554 0.0390 0.0079 0.0891 0.0329 0.0010 0.0321 0.0243
30 0.0003 0.0180 0.0137 0.0022 0.0473 0.0280 0.0120 0.1096 0.0399 0.0011 0.0326 0.0249
40 0.0002 0.0152 0.0110 0.0016 0.0396 0.0230 0.0167 0.1292 0.0453 0.0010 0.0317 0.0237
50 0.0003 0.0178 0.0130 0.0020 0.0447 0.0314 0.0322 0.1794 0.0573 0.0010 0.0316 0.0235
60 0.0009 0.0299 0.0135 0.0027 0.0519 0.0427 0.0443 0.2104 0.0625 0.0010 0.0315 0.0235
70 0.0010 0.0315 0.0149 0.0041 0.0640 0.0561 0.0608 0.2466 0.0702 0.0010 0.0315 0.0234
80 0.0014 0.0379 0.0130 0.0036 0.0600 0.0546 0.0688 0.2624 0.0744 0.0010 0.0314 0.0234
90 0.0017 0.0412 0.0129 0.0053 0.0729 0.0656 0.0867 0.2945 0.0884 0.0010 0.0313 0.0234
100 0.0016 0.0398 0.0130 0.0059 0.0768 0.0698 0.0610 0.2470 0.0668 0.0010 0.0313 0.0234
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Table 6. Results of the proposed LSTM-SCA model in all datasets.

Epoch
41010 41040 41043 41060

MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE

10 0.0001 0.0117 0.0081 0.0024 0.0494 0.0269 0.0019 0.0435 0.0168 0.0011 0.0324 0.0243
20 0.0001 0.0111 0.0079 0.0014 0.0371 0.0210 0.0134 0.1158 0.0389 0.0011 0.0324 0.0246
30 0.0001 0.0106 0.0065 0.0020 0.0444 0.0293 0.0325 0.1803 0.0577 0.0010 0.0321 0.0242
40 0.0002 0.0123 0.0069 0.0022 0.0472 0.0374 0.0484 0.2200 0.0643 0.0010 0.0323 0.0242
50 0.0006 0.0237 0.0110 0.0039 0.0628 0.0529 0.0878 0.2964 0.0857 0.0010 0.0322 0.0241
60 0.0004 0.0209 0.0147 0.0079 0.0890 0.0706 0.1344 0.3666 0.1012 0.0010 0.0322 0.0240
70 0.0005 0.0213 0.0164 0.0118 0.1085 0.0853 0.1986 0.4456 0.1144 0.0010 0.0322 0.0239
80 0.0005 0.0218 0.0166 0.0129 0.1134 0.0888 0.3038 0.5512 0.1439 0.0010 0.0322 0.0240
90 0.0007 0.0265 0.0182 0.0123 0.1108 0.0866 0.3714 0.6094 0.1463 0.0010 0.0321 0.0239
100 0.0021 0.0454 0.0224 0.0144 0.1200 0.0897 0.4576 0.6764 0.1661 0.0010 0.0320 0.0239

Table 7. Results of the proposed GRU-SCA model in all datasets.

Epoch
41010 41040 41043 41060

MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE

10 0.0002 0.0130 0.0084 0.0023 0.0475 0.0321 0.0035 0.0588 0.0231 0.0010 0.0323 0.0248
20 0.0001 0.0113 0.0071 0.0008 0.0282 0.0180 0.0120 0.1095 0.0352 0.0011 0.0330 0.0253
30 0.0001 0.0098 0.0063 0.0031 0.0558 0.0507 0.0212 0.1456 0.0427 0.0011 0.0326 0.0249
40 0.0001 0.0092 0.0063 0.0093 0.0964 0.0906 0.0294 0.1716 0.0490 0.0010 0.0320 0.0240
50 0.0001 0.0113 0.0082 0.0165 0.1286 0.1225 0.0364 0.1908 0.0559 0.0010 0.0319 0.0238
60 0.0002 0.0137 0.0102 0.0264 0.1626 0.1533 0.0605 0.2459 0.0756 0.0010 0.0319 0.0238
70 0.0005 0.0227 0.0171 0.0325 0.1803 0.1706 0.0924 0.3040 0.0924 0.0010 0.0320 0.0239
80 0.0007 0.0261 0.0193 0.0361 0.1901 0.1806 0.1157 0.3401 0.1024 0.0010 0.0320 0.0239
90 0.0006 0.0238 0.0163 0.0381 0.1952 0.1851 0.1259 0.3548 0.1064 0.0010 0.0319 0.0239
100 0.0006 0.0238 0.0138 0.0389 0.1973 0.1871 0.1277 0.3574 0.1068 0.0010 0.0317 0.0238

Table 8. Results of the original VRNN model in all datasets.

Epoch
41010 41040 41043 41060

MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE

10 0.1952 0.4418 0.4336 0.0189 0.1374 0.1021 0.4543 0.6740 0.2082 0.0256 0.1599 0.1143
20 0.5750 0.7583 0.7526 0.0189 0.1374 0.1020 0.1121 0.3349 0.1486 0.0222 0.1489 0.1101
30 0.1444 0.3799 0.3708 0.0186 0.1363 0.1014 0.7871 0.8872 0.3177 0.0221 0.1486 0.1101
40 0.0458 0.2141 0.1989 0.0174 0.1318 0.0989 0.0112 0.1057 0.0397 0.0219 0.1480 0.1100
50 0.0854 0.2923 0.2164 0.0182 0.1347 0.1005 0.0227 0.1507 0.0531 0.0219 0.1480 0.1100
60 0.9393 0.9692 0.9214 0.0191 0.1381 0.1025 0.0398 0.1995 0.0668 0.0222 0.1489 0.1101
70 0.8705 0.9330 0.8164 0.0185 0.1359 0.1011 0.0480 0.2190 0.0691 0.0224 0.1496 0.1102
80 0.9574 0.9785 0.8724 0.0168 0.1296 0.0980 0.0694 0.2634 0.0796 0.0219 0.1479 0.1100
90 1.5022 1.2256 1.1772 0.0173 0.1315 0.0988 0.0765 0.2766 0.0818 0.0219 0.1479 0.1100
100 0.6831 0.8265 0.7906 0.0190 0.1379 0.1023 0.0899 0.2998 0.0875 0.0219 0.1480 0.1100

Table 9. Results of the original long short-term memory (LSTM) model in all datasets.

Epoch
41010 41040 41043 41060

MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE

10 0.6245 0.7902 0.7858 0.4422 0.6650 0.6403 0.0107 0.1037 0.0718 0.0216 0.1470 0.1068
20 0.6654 0.8157 0.8126 0.3749 0.6123 0.5679 0.0105 0.1023 0.0735 0.0155 0.1243 0.0968
30 0.0067 0.0820 0.0536 0.0732 0.2706 0.2076 0.1079 0.3285 0.3173 0.0174 0.1319 0.1017
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Table 9. Cont.

Epoch
41010 41040 41043 41060

MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE

40 0.1245 0.3529 0.3271 0.3949 0.6284 0.6143 0.0084 0.0915 0.0735 0.1481 0.3848 0.3646
50 0.3213 0.5669 0.5641 0.1136 0.3371 0.3193 0.0103 0.1015 0.0847 0.0195 0.1397 0.1067
60 0.3138 0.5602 0.5561 0.0610 0.2469 0.2146 0.0055 0.0740 0.0588 0.0158 0.1256 0.0934
70 0.5317 0.7292 0.7266 0.0378 0.1943 0.1527 0.0182 0.1349 0.1148 0.0214 0.1464 0.1156
80 0.6541 0.8087 0.8032 0.0692 0.2630 0.2271 0.0265 0.1627 0.0926 0.0176 0.1327 0.1010
90 0.7102 0.8427 0.8378 0.1075 0.3279 0.2970 0.0055 0.0740 0.0572 0.0151 0.1228 0.0919
100 0.3599 0.5999 0.5942 0.0570 0.2388 0.2037 0.0061 0.0779 0.0637 0.0194 0.1394 0.1058

Table 10. Results of the original GTU model in all datasets.

Epoch
41010 41040 41043 41060

MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE

10 0.2678 0.5175 0.5111 0.0023 0.0475 0.0321 0.0304 0.1744 0.1628 0.0990 0.3147 0.2932
20 0.7878 0.8876 0.8830 0.0008 0.0282 0.0180 0.1378 0.3712 0.3589 0.0217 0.1473 0.1144
30 1.3172 1.1477 1.1458 0.0031 0.0558 0.0507 0.0115 0.1073 0.0887 0.0182 0.1348 0.1031
40 0.5831 0.7636 0.7578 0.0093 0.0964 0.0906 0.0046 0.0675 0.0476 0.0163 0.1276 0.0966
50 2.8268 1.6813 1.6800 0.0165 0.1286 0.1225 0.0208 0.1443 0.1312 0.0193 0.1389 0.1052
60 2.4997 1.5810 1.5780 0.0264 0.1626 0.1533 0.0161 0.1269 0.1069 0.0172 0.1313 0.1010
70 3.9638 1.9909 1.6340 0.0325 0.1803 0.1706 0.0053 0.0729 0.0538 0.0165 0.1284 0.0989
80 1.0773 1.0380 1.0337 0.0361 0.1901 0.1806 0.0237 0.1539 0.1400 0.0181 0.1344 0.1023
90 0.2698 0.5194 0.5116 0.0381 0.1952 0.1851 0.0051 0.0717 0.0522 0.0195 0.1397 0.1050
100 0.1293 0.3595 0.3501 0.0389 0.1973 0.1871 0.0065 0.0806 0.0600 0.0156 0.1250 0.0931

7.2. Comparison of the Proposed Models with Existing Models

In this subsection, we benchmark our proposed models with three existing recurrent
neural networks. Table 11 shows the comparison in terms of average MSE on all dataset
for all the three proposed models as well as the three original RNNs models. As can be
seen from Table 11, the proposed VRNN-SCA model outperforms the other two proposed
models as well as the three original models in terms of MSE in datasets 41040 and 41060.
The proposed GRU-SCA outperforms all other models in dataset 41010. However, the
original VRNN-SCA clearly outperforms the three original models (VRNN, LSTM, and
GRU) in the 41040 dataset and takes the third place in general.

Table 11. Comparison in terms of average mean squared error (MSE) on all dataset.

Dataset VRNN-SCA LSTM-SCA GRU-SCA VRNN LSTM GRU

41010 0.0008 0.0005 0.0003 0.5998 0.4312 1.3723
41040 0.0037 0.0071 0.0204 0.0182 0.1731 0.0204
41043 0.0393 0.1650 0.0625 0.1711 0.0209 0.0262
41060 0.0010 0.0010 0.0010 0.0224 0.0311 0.0261

Table 12 shows the comparison in terms of RMSE average for optimized models
and original ones on all datasets. The results clearly show that the proposed models
outperformed the original RNNs and GRU-SCA shows best results in datasets 41010 and
41060, while LSTM-SCA achieved the best results on dataset 41043. Finally, VRNN-SCA
shows the best RMSE results on dataset 41040.

Table 13 explains the average of MAE comparison for all models on all dataset. It
is obvious that GRU-SCA came at the first rank with best two results on datasets from
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stations 41010, and 41060. LSTM-SCA model shows best result value on dataset 41043. On
the dataset from station 41040, the best RMSE average results was achieved by VRNN-SCA.

Table 12. Comparison in terms of average root mean square error (RMSE) on all dataset.

Dataset VRNN-SCA LSTM-SCA GRU-SCA VRNN LSTM GRU

41010 0.0269 0.0205 0.0165 0.7019 0.6148 1.0487
41040 0.0591 0.0783 0.1282 0.1351 0.3784 0.1282
41043 0.1822 0.3505 0.2279 0.3411 0.1251 0.1371
41060 0.0317 0.0322 0.0321 0.1496 0.1594 0.1522

Table 13. Comparison in terms of average mean absolute error (MAE) on all dataset.

Dataset VRNN-SCA LSTM-SCA GRU-SCA VRNN LSTM GRU

41010 0.0133 0.0130 0.0113 0.6550 0.6061 1.0085
41040 0.0455 0.0589 0.1191 0.1008 0.3444 0.1191
41043 0.0561 0.0935 0.0690 0.1152 0.1008 0.1202
41060 0.0237 0.0241 0.0242 0.1105 0.1284 0.1213

Figures 3a, 6a, 9a and 12a show the best selected prediction vs. actual data for VRNN-
SCA on all datasets. The blue color line represents the actual data, while the orange color
represents the prediction. Figures 3b, 6b, 9b and 12b show the result that was produced
from the non-optimized model.

LSTM-SAC model’s best predicted results are illustrated in prediction graphs as shown
in Figures 4a, 7a, 10a and 13a and compared with the best selected results of original LSTM,
which are shown in Figures 4b, 7b, 10b and 13b.

The best selected results produced by GRU-SCA can be seen in Figures 5a, 8a, 11a and 14a.
On the other hand, Figures 5b, 8b, 11b and 14b show the results for the original GRU model.

7.3. Discussion

All experiments on the three models showed that our proposed technique can be
effectively used to forecast wave heights with more prediction accuracy. The simple
architecture of all variant of recurrent neural networks, which are VRNN, LSTM, and GRU,
can be optimized in terms of weights generation by sine cosine optimization algorithm. The
proposed RNN-SCA models have shown an outstanding performance and outperformed
the state-of-the-art models in terms of MSE, RMSE, and MAE.

The difference between the graphs in Figure 3 is slightly noticeable. The enhanced
model VRNN-SCA’s best prediction for dataset 41010 was in epoch 40 and is shown in
Figure 3a. It is more accurate than original model (VRNN) prediction illustrated in Figure 3b.
Similarly, Figure 4 shows the comparison over dataset 41010 in terms of prediction between
the enhanced LSTM-SCA and original LSTM. As can be seen in Figure 4a, LSTM-SCA in
epoch 40 produces the best results for predicating the wave heights. The results outperform
and is more precise than that of original LSTM which is shown in Figure 4b. The performance
of GRU-SCA is compared with the original GRU in terms of prediction as shown in Figure 5.
As can be seen form Figure 5a, the best results among all models over dataset 41010 was for
GRU-SCA with the value of 8.54× 10−5, which clearly outperform the original GRU shown
in Figure 5b.

Figure 6 shows the comparison between the proposed VRNN-SCA and the original
VRNN models in term of prediction for dataset form station 41040. Figure 6a shows that
the prediction of VRNN-SCA outperforms the original VRNN shown in Figure 6b. This is
because the SCA algorithm is effective at producing better prediction accuracy compared
to the original one. Similarly, Figure 7 shows the comparison between the proposed model
LSTM-SCA and the original LSTM; the proposed model (Figure 7a) clearly outperforms
the original one (Figure 7b) in terms of accurately predicating the wave heights. The
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performance of GRU-SCA is compared with the original GRU in terms of prediction as
shown in Figure 8. As can be seen form Figure 8a, the best results among all models over
dataset 41040 was for GRU-SCA, which clearly outperform the original GRU shown in
Figure 8b.

In Figure 9, there is the comparison between VRNN-SCA model and VRNN in terms of
best prediction on dataset 41043. Figure 9a demonstrates the best prediction of the enhanced
model VRNN-SCA, while Figure 9b explains the prediction of the original VRNN. The
performance of LSTM-SCA on dataset 41043 is demonstrated in Figure 10a, similarly the
performance of original LSTM is depicted on Figure 10b. Figure 11a demonstrates the
prediction of the enhanced model GRU-SCA, whereas Figure 11b model’s prediction.

Figure 12 shows the comparison between the proposed VRNN-SCA and the original
VRNN models in term of prediction for the dataset from station 41060. Figure 12a shows the
prediction of VRNN-SCA outperforms the original VRNN showed in Figure 12b. Similarly,
Figure 13 shows the comparison between the proposed model LSTM-SCA and the original
LSTM; the proposed model (Figure 13a) clearly outperform the original one (Figure 13b) in
terms of accurately predicate the wave heights. The performance of GRU-SCA is compared
with the original GRU in terms of prediction as shown in Figure 14. As can be seen form
Figure 14a, the best results among all models over dataset 41043 was for GRU-SCA, which
clearly outperforms the original GRU shown in Figure 14b. This is due to the effective of
the SCA algorithm in producing better prediction accuracy comparing to the original one.

(a) VRNN-SCA : True vs. Prediction (41010) (b) VRNN : True vs. Prediction (41010)

Figure 3. Comparison of VRNN models on dataset 41010.

(a) LSTM-SCA : True vs. Prediction (41010) (b) LSTM : True vs. Prediction (41010)

Figure 4. Comparison of LSTM models on dataset 41010.
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(a) GRU-SCA : True vs. Prediction (41010) (b) GRU : True vs. Prediction (41010)

Figure 5. Comparison of GRU models on dataset 41010.

(a) VRNN-SCA : True vs. Prediction (41040) (b) VRNN : True vs. Prediction (41040)

Figure 6. Comparsion of VRNN models on dataset 41040.

(a) LSTM-SCA : True vs. Prediction (41040) (b) LSTM : True vs. Prediction (41040)

Figure 7. Comparison of LSTM models on dataset 41040.
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(a) GRU-SCA : True vs. Prediction (41040) (b) GRU : True vs. Prediction (41040)

Figure 8. Comparison of GRU models on dataset 41040.

(a) VRNN-SCA : True vs. Prediction (41043) (b) VRNN : True vs. Prediction (41043)

Figure 9. Comparison of VRNN models on dataset 41043.

(a) LSTM-SCA : True vs. Prediction (41043) (b) LSTM : True vs. Prediction (41043)

Figure 10. Comparison of LSTM models on dataset 41043.
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(a) GRU-SCA : True vs. Prediction (41043) (b) GRU : True vs. Prediction (41043)

Figure 11. Comparison of GRU models on dataset 41043.

(a) VRNN-SCA : True vs. Prediction (41060) (b) VRNN : True vs. Prediction (41060)

Figure 12. Comparison of VRNN models on dataset 41060.

(a) LSTM-SCA : True vs. Prediction (41060) (b) LSTM : True vs. Prediction (41060)

Figure 13. Comparison of LSTM models on dataset 41060.
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(a) GRU-SCA : True vs. Prediction (41060) (b) GRU : True vs. Prediction (41060)

Figure 14. Comparison of GRU models on dataset 41060.

The graphs give a clear point of view that experiments of the proposed models for
all four datasets compared to the original models have more accurate prediction with
minimum loss values. The datasets have different sizes and different variations of numbers
in each year. The metrics used to evaluate the performance and prediction accuracy are
MSE, RMSE, and MAE. As the experiments have been run in the interval of 10 epochs,
we notice that every stop point has different values. These values improve as the epochs
number increases. The best values for every metric in the table is highlighted in bold for
each dataset.

7.4. Significance Analysis

The one-way analysis of variance (ANOVA) test was used to assess the statistical
significance of the differences between the resulting MSE obtained by proposed models
versus other models. The findings of this analysis indicate whether the findings of the
experiments are independent. No significance difference between the MSE of the proposed
models and other models is assumed by the null hypothesis. The null hypothesis is
accepted at state level greater than 0.05 and rejected at state level less than 0.05. ANOVA is
an effective analysis technique as it accepts more than two groups to find the significance
differences, and because we have six groups, the ANOVA test is selected. The procedures
of this analysis are adopted from in [80].

In dataset 41010, the obtained p-value, as can be seen in Table 14, is 0.000003, which is
less than 0.05, and we can thus reject the null hypothesis and indicate there is a significant
difference between the proposed models and the original models. Figure 15 shows the
boxplot of the differences between the proposed models and benchmarking models.

Similarly, in dataset 41040, the obtained p-value, as can be seen from Table 15, is
0.000001, which strongly indicates that there is a significance difference between the
proposed models and original models. Figure 16 illustrates the boxplot of the differences
between the proposed models and original models on this dataset.

Table 14. ANOVA table results on dataset 41010.

Source SS df MS F p-Value

Groups 14.6488 5 2.92975 8.91 0.000003
Error 17.7537 54 0.32877
Total 32.4025 59
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Figure 15. Boxplot differences on the 41010 dataset.

Table 15. ANOVA table results on the dataset 41040.

Source SS df MS F p-Value

Groups 0.21364 5 0.04273 8.91 0.0000001
Error 0.24003 54 0.00445
Total 0.45368 59

VRNN-SCA LSTM-SCA GRU-SCA VRNN LSTM GRU
0.0

0.1

0.2

0.3

0.4

Figure 16. Boxplot differences on the 41040 dataset.

For dataset 41043, there is a slight difference, and, as can be seen from Table 16, the
obtained p-values is 0.0183, which still less than state level 0.05. Figure 17 demonstrates
these difference as a boxplot.

Finally, in dataset 41060, the obtained p-value, as shown in Table 17, is 0.0006, which
demonstrates a strong indication of the superiority of the proposed models. Figure 18
illustrates the boxplot differences on this dataset.

Table 16. ANOVA table results on dataset 41043.

Source SS df MS F p-Value

Groups 0.23861 5 0.04772 3 0.0183
Error 0.85785 54 0.01589
Total 1.09646 59
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Figure 17. Boxplot differences on the 41043 dataset.

Table 17. ANOVA table results on dataset 41060.

Source SS df MS F p-Value

Groups 0.01017 5 0.00203 5.18 0.0006
Error 0.02118 54 0.00039
Total 0.03135 59

VRNN-SCA LSTM-SCA GRU-SCA VRNN LSTM GRU
0.00
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Figure 18. Boxplot differences on the 41060 dataset.

8. Conclusions and Future Work

This paper proposed an enhanced weight-optimized recurrent neural network based
on the sine cosine algorithm for predicting with high accuracy the wave heights. The
proposed models’ structures were first configured with optimal hyperparameters using
grid search technique. The grid search is used to find the best values for learning rate. Three
models are proposed, namely VRNN-SCA, LSTM-SCA, and GRU-SCA, by integrating the
sine cosine algorithm. The results proved that the proposed models have the capability
of improving waves prediction and producing better results than original models. The
results of the proposed models demonstrate much better results comparing the original
ones, for example, the best averages MSE on 41010 datasets were 0.0003, 0.0005, and 0.0008
for GRU-SCA, LSTM-SCA, and VRNN-SCA, respectively, whereas the best average RMSE
was 0.0165, 0.0205, and 0.0269 for GRU-SCA, LSTM-SCA, and VRNN-SCA, respectively.
Similarly, the best average MAE for GRU-SCA, LSTM-SCA, and VRNN-SCA was 0.0113,
0.0130, and 0.0133, respectively.

The integration of SCA has helped the simple architectures of RNNs to generate
weights that are adaptable to the selected data set and models structures. In traditional
training of RNN, the initialization of weights happens randomly, ignoring the datasets
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size. This increases the possibility of the model vanishing, exploding, or becoming trapped
in local optima. Therefore, our technique utilized the advantages of SCA by generating
adaptive weight values that can adapted with the model’s parameters and the datasets
simultaneously. The proposed VRNN-SCA, LSTM-SCA, and GRU-SCA models are effec-
tive tools in forecasting wave height and can be recommended to solve other prediction
problems. In future work, according to the “No Free Lunch” theorem, other optimization
algorithms such as gray wolf optimizer or dragonfly algorithm could be investigated to
optimize the weight of recurrent neural networks. Besides, the proposed models could
be investigated on other domains such as forecasting air pollution, flood prediction, and
wind speed forecasting. Another future direction is to use different evaluation indices to
validate the performance of models such as Moving Average, Weighted MA, or Exponential
smoothing.
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