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Abstract: The frequency-modulated interrupted continuous waveform (FMICW) has been widely
used in remotely sensing sea surface states by high-frequency ground wave radar (HFGWR). How-
ever, the radar cross section model of the sea surface for this waveform has not yet been presented.
Therefore, the first- and second-order cross section models of the sea surface about this waveform are
derived in this study. The derivation begins with the general electric field equations. Subsequently,
the FMICW source is introduced as the radar transmitted signal to obtain the FMICW-incorporated
backscattered electric field equations. These equations are used to calculate range spectra by Fourier
transforming. Therefore, Fourier transformation of the range spectra calculated from successive
sweep intervals gives the Doppler spectra or the power spectral densities. The radar cross section
model is obtained by directly comparing the Doppler spectra with the standard radar range equation.
Moreover, the derived first- and second-order radar cross section models for an FMICW source
are simulated and compared with those for a frequency-modulated continuous waveform (FMCW)
source. Results show that the cross section models for the FMICW and FMCW cases have different
analytical expressions but almost the same numerical results.

Keywords: high-frequency ground wave radar; radar cross section of sea surface; general scat-
tered electric field; frequency-modulated continuous waveform (FMCW); frequency-modulated
interrupted continuous waveform (FMICW); sea surface states sensing

1. Introduction

High-frequency ground wave radar (HFGWR) can be used to monitor ocean surface
sea states with high spatial and temporal resolution [1–3]. The working frequency of the
HFGWR is in the high-frequency (HF) band (3–30 MHz). Radio signals within this fre-
quency band strongly interact with the ocean surface waves [4]. Moreover, these radio
signals can propagate along the ocean surface to ranges well beyond 200 km due to the high
conductivity of the ocean water [5]. The backscattered signals contain significant informa-
tion about the ocean surface sea states [6]. To extract the sea states from the backscattered
signals, a scatter model or cross section model of the ocean surface for the HFGWR is
crucial theoretical basis.

So far, the derivation of the HFGWR cross section model of the ocean surface has been
studied for over four decades. Seminal studies by Barrick [7] first presented a HFGWR cross
section model. Later, Walsh and his colleagues addressed the cross section model based on a
generalized function theory with the assumption of a dipole source [8,9]. This approach also
has been extended to develop models for some complex scenes, such as bistatic HFGWR
system [10,11], receiving and transmitting antennas on a floating platform [12,13], an
antenna on a floating platform for bistatic HFGWR system [14,15], and shipborne HFGWR
system [16]. All of these models are developed specifically for pulsed waveform HFGWR.
However, in pulsed radar system, the competing relationship between range resolution
and detectable range results in a trade-off between achieving long range and increasing
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range resolution. Compared to this, frequency-modulated continuous waveform (FMCW)
radar can achieve high range resolution and long detection range, as the FMCW has a 100%
duty cycle and its bandwidth can be configured freely. Consequently, FMCW has been
widely used in HFGWR and the corresponding cross section models also have been studied.
Walsh et al. [17] presented the first- and second-order monostatic radar ocean surface cross
sections for an FMCW source. Furthermore, a bistatic HFGWR ocean surface cross section
model for an FMCW source with an antenna on a floating platform has been established
and simulated [18]. Moreover, the FMCW HFGWR cross section model for mixed-path
ionosphere–ocean propagation has been developed in [19]. However, when the transmitter
and receiver are collocated, the transmitted FMCW signal will overwhelm the HFGWR
receiver due to the simultaneous running of the transmitter and receiver. Thus, a frequency-
modulated interrupted continuous waveform (FMICW), which consists of a gating signal
and an FMCW signal, has been designed for HFGWR to handle this problem [20]. Just like
the FMCW, such FMICW can also provide high sensitivity, range, and Doppler information,
and avoid aliasing and ambiguities. Because of these characteristics, the FMICW has been
widely used throughout the HFGWR remote sensing community. However, the HFGWR
cross section model for ocean surface about the FMICW source has not yet been presented.

In this paper, we derive the HFGWR cross section model of the ocean surface for
the FMICW source. In Section 2, the electric field equations related to the FMICW source
are first deduced, and the power spectral density (PSD) of the received electric field is
obtained. Then, the first- and second-order cross section models are also derived in this
section. Section 3 provides simulation and discussion about the derived cross section
model. Section 4 gives a summary of the paper.

2. Derivation of the Cross Section
2.1. General First- and Second-Order Electric Field Equations

For a general vertically polarized HF source, the general equations for the scattered
electric field from rough sea surface have been developed by Walsh and Gill [9]. The
first-order scattered electric field for a monostatic radar in frequency domain, E1(ω), can
be written as

E1(ω) =
kC0

(2π)3/2 ∑
~K

P~K
√

K
∫
ρ

F2(ρ)

ρ3/2 e−jπ/4ejρ(K−2k)dρ (1)

Here, C0 = ∆lk2 I(ω)
jωε0

is the dipole constant for a dipole of length ∆l carrying a current I(ω)

whose radian frequency is ω and whose wave number is k in a space with permittivity
of ε0. P~K denotes the Fourier coefficient of the scattering surface whose wave vector is ~K
with a magnitude of K and a direction of θK (i.e., ~K = (K, θK)). ρ represents the distance
between the radar and the scattering patch. F(ρ) is the Sommerfeld attenuation function.
Correspondingly, the second-order scattered electric field for a monostatic radar, E2(ω),
can be expressed as

E2(ω) =
−kC0

(2π)3/2 ∑
~K1

∑
~K2

P~K1
P~K2

√
KSΓP ×

∫
ρ

F2(ρ)

ρ3/2 e−jπ/4ejρ(K−2k)dρ (2)

This expression accounts for the total electric field originating from a single scatter from
second-order ocean waves and a twice scatter by a rough patch surface. ~K1 and ~K2 are
the two first-order ocean wave vectors forming a second-order ocean wave for the single
scatter case and are the first and second scattering wave vectors for the twice scatter case.
These two wave vectors satisfy the constraint ~K1 + ~K2 = ~K in these two cases. P~K1

and P~K2

are the Fourier coefficients associated with ~K1 and ~K2, respectively. SΓP is the total coupling
coefficient, which is defined as SΓP = EΓP − HΓP, where EΓP and HΓP, respectively, are the
electromagnetic coupling coefficient and the hydrodynamic coupling coefficient.



J. Mar. Sci. Eng. 2021, 9, 427 3 of 12

Here, both Equations (1) and (2) are different from their counterparts presented in
Walsh and Gill [9]. The term containing factors of ejπ/4e−jρ(K+2k) has been omitted from the
integrals in both Equations (1) and (2). Moreover, the antenna gain has been replaced with
constant 1. However, Equation (1) is exactly the same as Equation (6) in Walsh et al. [17].
Equation (2) is derived from the analysis in Walsh and Gill [11] and also consisting with
the equations in Walsh et al. [17].

2.2. The FMICW Source

A typical example of an FMICW signal is shown in Figure 1. The FMICW can be
treated as an FMCW times a gate function. The FMCW signal, c(t), in this study, only the
up-sweep is considered. Therefore, c(t) for one sweep interval can be given as

Figure 1. Example of (a) frequency-time plot for frequency-modulated continuous waveform (FMCW)
signal, (b) gate function, and (c) frequency-time plot for frequency-modulated interrupted continuous
waveform (FMICW) signal. f1 and f2 are the starting and ending frequencies, respectively. Tr is the
frequency sweep interval. Tm and Te are the period and the time width of the gate function, respectively.

c(t) = I0ej(ω0t+απt2)
{

h
[

t +
Tr

2

]
− h
[

t− Tr

2

]}
(3)

where I0 is the peak current, ω0 is the center radian frequency, α is the frequency sweep rate,
and h is the usual Heaviside function. Referring to Figure 1, we have ω0 = ( f2 + f1)× π
and α = ( f2 − f1)/Tr. Besides, the gate function, g(t), within one sweep interval (Tr) can
be expressed as
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g(t) =
N−1

∑
n=0

[
h
(

t +
Tr

2
− nTm

)
− h
(

t +
Tr

2
− nTm − Te

)]
(4)

where N = Tr/Tm represents the number of periods of the gate function within one sweep.
Thus, the FMICW signal, i(t), within one sweep interval can be cast as

i(t) = c(t) · g(t) = I0ej(ω0t+απt2)
N−1

∑
n=0

[
h
(

t +
Tr

2
− nTm

)
− h
(

t +
Tr

2
− nTm − Te

)]
(5)

2.3. Electric Field Equations Incorporating the FMICW Source

Following a similar analysis as in [17–19], Equation (1) can be inversely Fourier-
transformed to give the received electric field in the time domain as

E1(t) = F−1[E1(ω)] = 1
(2π)3/2 ∑

~K
P~K
√

K
∫

ρ
F2(ρ)
ρ3/2 ejKρF−1

[
kC0 · e−j2kρ

]
e−jπ/4dρ (6)

where F−1 represents the inverse Fourier transformation. The transformation in this
equation can be expressed as

F−1
[
kC0 · e−j2kρ

]
= F−1

t

[
kC0 · e−j2ωρ/c

]
= F−1

t (kC0)
t∗ δ

(
t− 2ρ

c

)
(7)

where
t∗ indicates a time convolution and δ(·) is the Dirac delta function. Using

c =
√

1/(µ0ε0), where µ0 is permeability of the free space, η0 =
√

µ0/ε0, and the FMICW
source in Equation (5), the inverse Fourier transform of kC0 is given by

F−1[kC0] = j
η0∆l

c2
∂2i(t)

∂t2 ≈ −jI0
η0∆lω2

0
c2 ej(ω0t+απt2)

×
N−1

∑
n=0

[
h
(

t +
Tr

2
− nTm

)
− h
(

t +
Tr

2
− nTm − Te

)] (8)

Here, the leading and trailing edge impulse terms in the derivative of Equation (5)
are neglected. Similar neglect is extensively used in related open literature, such as
in [17–19,21]. Besides, the approximation in Equation (8) is permissible because ω0 � 2παt.
Using Equations (7) and (8) in Equation (6), we can obtain

E1(tr) = −
jI0η0∆lk2

0

(2π)
3
2

∑
~K

P~K
√

Ke−j π
4 ×

∫ ∞

0

F2(ρ)

ρ
3
2

ej(ω0tr+απt2
r )ej(K−2k0)ρe−j 4παρ

c tr ej 4παρ2

c2

×
N−1

∑
n=0

[
h
(

tr +
Tr

2
− 2ρ

c
− nTm

)
− h
(

tr +
Tr

2
− 2ρ

c
− nTm − Te

)]
dρ (9)

where k0 = ω0/c, and t has been renamed to tr for emphasizing that the time is within the
interval of (−Tr/2, Tr/2).

At this stage, the received electric field signal is demodulated for further processing.
This demodulation involves coherently mixing the acquired signal with an FMCW signal,
which contains the same linear frequency ramp with the transmitted original FMICW
signal (details can be found in [20]), and low-pass filtering the outcome. Consequently, the
factor involving ej(ω0tr+απt2

r ) will be eliminated, the phase terms will be replaced by their
complex conjugate, and the other factors remain the same. Equation (9) becomes



J. Mar. Sci. Eng. 2021, 9, 427 5 of 12

ED
1 (tr) = −

jI0η0∆lk2
0

(2π)
3
2

∑
~K

P~K
√

Kej π
4 ×

∫ ∞

0

F2(ρ)

ρ
3
2

e−j(K−2k0)ρe−j 4παρ2

c2 ej 4παρ
c tr

×
N−1

∑
n=0

[
h
(

tr +
Tr

2
− 2ρ

c
− nTm

)
− h
(

tr +
Tr

2
− 2ρ

c
− nTm − Te

)]
dρ (10)

where ED
1 (tr) represents the demodulated version of E1(tr).

The next step within the process is to Fourier transform the demodulated electric field
with respect to tr to obtain the so-called “range transform”, which is denoted as ED

1 (ωr)
with ωr being the frequency variable. On the other hand, in Equation (10), only the last
two terms are a function of tr. Therefore, the Fourier transformation only performs on the
last two terms to obtain ED

1 (ωr), which is given as

ED
1 (ωr) =

−jI0η0∆lk2
0Te

(2π)3/2 ∑
~K

P~K
√

Kej π
4

∫
ρ

F2(ρ)

ρ3/2 e−j(K−2k0+2kr)ρej 4πα
c2 ρ2

×
N−1

∑
n=0

ej( 4παρ
c −ωr)(nTm+ Te

2 −
Tr
2 )Sa

[
Te

2

(
ωr −

4παρ

c

)]
dρ (11)

where Sa(x) = sin x/x and kr = ωr/c. Defining a range ρr as ρr = cωr
4πα and a range

variable ρs as ρs = ρ− ρr, we have dρ = dρs and

ED
1 (ωr) =

−jI0η0∆lk2
0Te

(2π)3/2 ∑
~K

P~K
√

Kej π
4 e−j(K−2k0+kr)ρr

∫
ρs

F2(ρr + ρs)

(ρr + ρs)
3/2

× e−j(K−2k0)ρs ejkrρ2
s /ρr ej(ke−kB)ρs ×

N−1

∑
n=0

ejωrnTmρs/ρr Sa(keρs)dρs. (12)

where ke = 2παTe/c and kB = 2παTr/c. We also should note that

N−1

∑
n=0

ejωrnTmρs/ρr = ej N−1
N kBρs

sin(kBρs)

sin( 1
N kBρs)

. (13)

Here, the factor sin(kBρs)
sin(kBρs/N)

performs a “band-pass” sampling of the variable ρs, which
obviously is similar to a beam pattern formed from a uniform linear antenna array in
sampling bearing domain. Consequently, most of the return is from the values of ρs = 0
within the main lobe of this sampling factor. In other words, the most of the contribution
to the integral about ρs in Equation (12) should come from ranges in a neighborhood of the
peak (ρs = 0, ρ = ρr). One way to stipulate this is to specify the values of ρs as

−π

2
< kBρs <

π

2

− π

2kB
< ρs <

π

2kB
(14)

Therefore, a convenient and common definition of range resolution (∆ρ) can be ex-
pressed as

∆ρ =
2π

2kB
=

c
2B

(15)
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where B = αTr. On the other hand, in the physical sense, it can be assumed that ρr � ∆ρ/2.
This will be true generally when the scattering patch is a few kilometers from the radar.
Besides, it has been proved that the factor containing the exponent of ρ2

s in Equation (12)
can be neglected as small in [17]. Thus, Equation (12) can be written as

ED
1 (ωr) ≈

−jI0η0∆lk2
0Te

(2π)3/2 ∑
~K

P~K
√

Kej π
4 e−j(K−2k0+kr)ρr

F2(ρr)

(ρr)
3/2

×
∫ ∆ρ/2

−∆ρ/2
e−j(K−2k0)ρs ej(ke−kB)ρs ×

N−1

∑
n=0

ejωrnTmρs/ρr Sa(keρs)dρs

=
−jcI0η0∆lk2

0F2(ρr)

2α(2πρr)3/2 ∑
~K

P~K
√

Kej π
4 e−j(K−2k0+kr)ρr ×

N−1

∑
n=0

Sm(K, ke, kB, n, ∆ρ) (16)

where Sm(K, ke, kB, n, ∆ρ) is defined as

Sm(K, ke, kB, n, ∆ρ) =
1
π

{
Si
[
(K− 2k0 + kB − nωrTm/ρr)

∆ρ

2

]
−Si

[
(K− 2k0 + kB − nωrTm/ρr − 2ke)

∆ρ

2

]}
, (17)

and the Si is the sine integral

Si(x) =
∫ x

0

sin(t)
t

dt. (18)

By direct comparison with the corresponding first-order backscatter analysis, the
second-order field appearing in Equation (2) becomes

ED
2 (ωr) =

jcI0η0∆lk2
0F2(ρr)

2α(2πρr)3/2 ∑
~K1

∑
~K2

P~K1
P~K2 SΓP

×
√

Kej π
4 e−j(K−2k0+kr)ρr ×

N−1

∑
n=0

Sm(K, ke, kB, n, ∆ρ) (19)

2.4. Cross Section for the FMICW Source

It is assumed that the scattered fields from successive sweeps (chirps) are collected
and the scattering surface has a slow time variation. To account for this, a factor, ejωt,
should be introduced into the representations of the first- and second-order electric field
equations. Consequently, we have

E1(ωr, t) =
−jcI0η0∆lk2

0F2(ρr)

2α(2πρr)3/2 ∑
~K

P~K
√

Kej π
4 e−j(K−2k0+kr)ρr ejωt

×
N−1

∑
n=0

Sm(K, ke, kB, n, ∆ρ) (20)

and

E2(ωr, t) =
jcI0η0∆lk2

0F2(ρr)

2α(2πρr)3/2 ∑
~K1

∑
~K2

P~K1
P~K2 SΓP

×
√

Kej π
4 e−j(K−2k0+kr)ρr ejωt ×

N−1

∑
n=0

Sm(K, ke, kB, n, ∆ρ). (21)
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Note that the variable t in here is the sweep-to-sweep time, and it is different from the t in
Sections 2.2 and 2.3.

An approach similar to that in [11,17–19] is used to derive the cross section from
the received electric field equations. The approach first calculates the autocorrelation
functions of the electric field equations. Then, it performs Fourier transformation on the
autocorrelation functions to obtain power spectral density (PSD). Finally, it derives the
cross section models from comparing the normalized PSD with the standard radar range
equation.

The autocorrelation function,R(τ), is defined as [17]

R(τ) = Ar

2η0

1
(NTe)2 〈E(t + τ)E∗(t)〉 (22)

where τ is time shift, 〈·〉 denotes statistical or ensemble average, ∗ represents complex
conjugation, and Ar refers to the effective aperture of the receiving antenna. Substituting
Equation (20) into this definition, we have

R1(τ) =
Arη0 I2

0 ∆l2k4
0F4(ρr)∆ρ2T2

r
2N2T2

e (2πρr)3

×
〈

∑
~K

P~K ∑
~K′

P∗~K′
√

KK′e−j(K−2k0+kr)ρr ej(K′−2k0+kr)ρr

×ejω(t+τ)e−jω′t
N−1

∑
n=0

Sm(K, ke, kB, n, ∆ρ)
N−1

∑
n=0

Sm(K′, ke, kB, n, ∆ρ)

〉
(23)

=
Arη0 I2

0 ∆l2k4
0F4(ρr)∆ρ2T2

r
4N2T2

e (πρr)3

× ∑
m=±1

∫ π

−π

∫ ∞

0
S(m~K)e−jm

√
gKτK2

[
N−1

∑
n=0

Sm(K, ke, kB, n, ∆ρ)

]2

dKdθK

Here, g is gravitational acceleration, and S(m~K) is the directional ocean wave spectrum for
wave vectors m~K, with m = ±1.

Now, the first-order PSD P1(ωd) can be derived from the Fourier transformation; that
is, P1(ωd) = F [R1(τ)], where ωd is the Doppler frequency. After operating the Fourier
transformation, we have

P1(ωd) =
Arη0 I2

0 ∆l2k4
0F4(ρr)∆ρ2T2

r

8N2T2
e
√

gπ2ρ3
r

× ∑
m=±1

∫ π

−π
S(m~K)K2.5

[
N−1

∑
n=0

Sm(K, ke, kB, n, ∆ρ)

]2

dθK (24)

This equation accounts for the first-order electric field returns scattered by a range cell that
is dictated by a width or range resolution ∆ρ at range ρr. Therefore, the scattering area
normalized first-order PSD, PN

1 (ωd), can be expressed as

PN
1 (ωd) =

P1(ωd)∫ π
−π ρr∆ρdθK

=
Arη0 I2

0 ∆l2k4
0F4(ρr)∆ρT2

r

8N2T2
e
√

gπ2ρ4
r

× ∑
m=±1

S(m~K)K2.5

[
N−1

∑
n=0

Sm(K, ke, kB, n, ∆ρ)

]2

(25)

On the other hand, the standard monostatic radar range equation takes the form
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PS
1 (ωd) = η0 I2

0 ∆l2k2
0 Ar

F4(ρr)∆ρ

2(4π)3ρ4
r

σ1(ωd) (26)

where σ1(ωd) is the first-order cross section. Thus, direct comparison of Equation (26) with
Equation (25) gives the first-order cross section for the FMICW source as

σ1(ωd) =
16πk2

0T2
r

N2T2
e

∑
m=±1

S(m~K)K2.5g−1/2∆ρ

[
N−1

∑
n=0

Sm(K, ke, kB, n, ∆ρ)

]2

(27)

where ωd = −m
√

gK, and the direction of the wave vector ~K is the radar look angle.
Similarly, using Equation (21) in Equation (22), we can obtain the autocorrelation

function for second-order electric field. Then, we perform Fourier transformation to
calculate PSD. By comparing the scattering-area normalized PSD with radar equation, the
resulting second-order cross section for the FMICW source is

σ2(ωd) =
8πk2

0T2
r

N2T2
e

∑
m1=±1

∑
m2=±1

∫ ∞

0

∫ π

−π

∫ ∞

0
× S(m1~K1)S(m2~K2)

∣∣∣SΓP

∣∣∣2K1K2∆ρ

× δ
(

ωd + m1
√

gK1 + m2
√

gK2

)
×
[

N−1

∑
n=0

Sm(K, ke, kB, n, ∆ρ)

]2

dK1dθK1 dK (28)

Here, θK1 is the direction of ~K1, and the four possible combinations of m1 and m2 correspond
to four different Doppler frequency regions [22].

3. Simulation Results and Discussion

To illustrate the newly derived models, the radar cross section was calculated based
on Equations (27) and (28). Moreover, we also intend to illustrate the differences in the
cross section between the FMICW and FMCW [17] source cases. To calculate the radar
cross section, a Pierson–Moskowitz (PM) ocean wave spectral model [23] with a cardioid
directional spreading function was selected, as this model only needs the sea surface
wind information.

Figure 2 illustrates the smoothed versions of the first-order cross section for the
FMCW and FMICW sources when the central operating frequency is 25 MHz. The sweep
interval, Tr, is chosen as 0.39 min with the sweep bandwidth of 100 kHz. Accordingly, the
corresponding range resolution, ∆ρ, is 1.5 km. The wind speed in this simulation is 15 m/s
with a direction perpendicular to the radar look direction. These parameters are shared for
these two waveform cases, but Te and Tm are extra set for FMICW source. Te and Tm are,
respectively, set as 0.2 ms and 0.6 ms in this simulation.

Figure 2. First-order cross section for FMCW and FMICW sources with a operating frequency of 25 MHz.
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From Figure 2, we can see that there are two narrow and sharp peaks at ±
√

2gk0,
which are classically referred to as the Bragg frequencies [7]. These two peaks, which
are indicative of scatter from two ocean waves with one traveling toward and the other
traveling away from radar, are the usual first-order peaks in the radar received sea echoes,
and they are first experimentally observed by Crombie [4]. Note that the cross section
displayed in Figure 2 is symmetrical about zero Doppler frequency, but this is not always
the case. When the wind direction is not perpendicular to the radar look direction, this
symmetry will not occur. Actually, the asymmetry cases have been discussed in [17], where
first-order cross sections for FMCW waveform case with wind directions of 60◦, 30◦, and
0◦ relative to the radar look direction have been discussed. Besides, the effect of the sea
surface currents on the first-order cross section was not taken into consideration in this
study. Fortunately, existing literature has studied the effect of the sea surface currents. The
sea surface currents result in Doppler frequency shifts of these two first-order peaks, and
they have no effect on the amplitude [22]. These Doppler frequency shifts resulting from
sea surface currents have been well modeled and used to extract ocean surface current
velocity. On the other hand, Figure 2 also shows that the cross sections for the FMCW
and FMICW waveforms are almost the same. According to the work in [17], the first-order
cross section for the FMCW waveform is

σFMCW
1 (ωd) = 16πk2

0 ∑
m=±1

S(m~K)K2.5g−1/2∆ρSm2(K, kB, ∆ρ) (29)

where k0, ~K, K, g, ∆ρ, and kB are defined in Section 2; Sm(K, kB, ∆ρ) is defined as

Sm(K, kB, ∆ρ) =
1
π

{
Si
[
(K− 2k0 + kB)

∆ρ

2

]
− Si

[
(K− 2k0 − kB)

∆ρ

2

]}
(30)

with Si(·) defined in Equation (18). Comparing Equation (27) with Equation (29) suggests
that these two models are obviously different. However, these two models are numerically
almost the same. It is verified numerically that the intrinsic cause for the cross sections of
these two waveforms to be almost numerically identical is

Sm2(K, kB, ∆ρ) ≈ T2
r

N2T2
e
×
[

N−1

∑
n=0

Sm(K, ke, kB, n, ∆ρ)

]2

. (31)

On the other hand, note that the FMCW is a special case for the FMICW with a duty
cycle of 100 percent. Thus, the cross section model for the FMICW implicitly includes
the FMCW cross section case. It is easily known that Equation (27) can be simplified to
Equation (29) for the case of Te = Tm, which is just the FMCW source case.

Just like the first-order cross section model, the difference between the second-order cross
section models for the FMCW source and the FMICW source also is Sm2(K, kB, ∆ρ) being

replaced with T2
r

N2T2
e
×
[
∑N−1

n=0 Sm(K, ke, kB, n, ∆ρ)
]2

. This difference can be easily verified
from comparing Equation (28) with the FMCW model in [17]. Considering Equation (31), we
can infer that the second-order cross sections for FMCW and FMICW cases are numerically
almost the same.

To simulate the second-order cross section for the FMICW source, a similar technique
used in [11,17] was adopted. Figure 3 illustrates the second-order cross section calculated
from Equation (28) with all the waveform and sea states (or wind) parameters being the
same as the before-mentioned first-order cross section displayed in Figure 2. Figure 3
illustrates that there are relative maxima of the second-order cross section adjacent to the
positive and negative Bragg frequencies (±0.51 Hz). These maxima result from the fact
that ωd being very close to ±

√
2gk0 will lead to K1 or K2 nearing zero. On the contrary,
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ωd being far away from ±
√

2gk0 will result in K1 or K2 being a large value. In the PM
ocean wave spectral model, both large and small wave numbers have a low spectral energy,
which leads to the term S(m1~K1)S(m2~K2) in Equation (28) being small, while medium
wave numbers have relative large spectral energy, meaning that S(m1~K1)S(m2~K2) has a
relative large value. Moreover, there are local peaks at frequency positions of ±0.721 and
±0.858. These frequency positions are equal to the theoretical singular peaks at ±2

√
gk0

and the “corner reflector” peaks at ±23/4
√

2gk0. The singular peaks originate from the
case of K1 = K2, and the “corner reflector” peaks stem from the case of ~K1 · ~K2 = 0. Similar
discussions for these “corner reflector” peaks and singular peaks about FMCW source can
be found in [17], and those about the pulsed waveform with bistatic configuration can be
found in [11].

Figure 3. Second-order cross section for FMICW source with a operating frequency of 25 MHz.

4. Conclusions

The development of a new HF radar cross section model of the ocean surface has
been presented for the case of an FMICW source. The derivation process of our model
begins with the general received electric field equations derived in [9]. Subsequently, the
FMICW source is introduced as the radar transmitted signal. Then, the derivation carries
out the development of the temporal field equations, followed by the calculation of the PSD
functions, and, finally, the derivation of the first- and second-order cross section models. A
similar derivation process also can be found in [17] where an FMCW source is considered.
In particular, the differences between the current work and that presented earlier in [17] is
that the FMICW source considered in this work has a more complicated structure and more
parameters than the FMCW source. Thus, the new model is more complex with some other
specific parameters to the FMICW source. Based on the new cross section model, numerical
computation is performed for comparing the cross sections for the FMICW source with
that for the FMCW source. It is found that the cross section models for the FMICW and
FMCW sources are numerically almost the same. Therefore, inversion schemes used to
determine sea states from the radar signal for the FMCW radar can also be used for the
FMICW radar.

This work gives solid evidence demonstrating the relationship between the cross
section model for the FMICW case and that for the FMCW case. Using the conclusion
derived from this work, we need only to know one of the cross section models for FMCW
and FMICW sources and we can deduce the other one. For example, based on the models
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for the bistatic FMCW radar with an antenna on a floating platform [18] and the mono-
static FMCW radar for mixed-path ionosphere-ocean propagation [19], we can directly
give the counterparts for the FMICW radar which have not been presented in existing
literatures. To be more precise, the analytical expression for the FMICW radar cross sec-
tion model in the above-mentioned two scenes can be given by replacing Sm(K, kB, ∆ρ)
with Tr

NTe
∑N−1

n=0 Sm(K, ke, kB, n, ∆ρ). Thus, this work can contribute to extend the available
models for the FMCW waveform case to the FMICW waveform case. Moreover, the cross
section model presented in this paper can improve our understanding of using FMICW
radar to remotely sense the ocean surface and provide a theoretical basis for the application
of the FMICW HFGWR in ocean surface sensing.
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