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Abstract: Geological structure changes, including deformations and ruptures, developed in shallow
marine sediments are well recognized but were not systematically reviewed in previous studies.
These structures, generally developed at a depth less than 1000 m below seafloor, are considered
to play a significant role in the migration, accumulation, and emission of hydrocarbon gases and
fluids, and the formation of gas hydrates, and they are also taken as critical factors affecting carbon
balance in the marine environment. In this review, these structures in shallow marine sediments are
classified into overpressure-associated structures, diapir structures and sediment ruptures based
on their geometric characteristics and formation mechanisms. Seepages, pockmarks and gas pipes
are the structures associated with overpressure, which are generally induced by gas/fluid pressure
changes related to gas and/or fluid accumulation, migration and emission. The mud diapir and
salt diapir are diapir structures driven by gravity slides, gravity spread and differential compaction.
Landslides, polygonal faults and tectonic faults are sediment ruptures, which are developed by
gravity, compaction forces and tectonic forces, respectively. Their formation mechanisms can be
attributed to sediment diagenesis, compaction and tectonic activities. The relationships between the
different structures, between structures and gas hydrates and between structures and authigenic
carbonate are also discussed.

Keywords: shallow marine structures; cold seep; pockmark; gas chimney; mud volcano; polygo-
nal fault

1. Introduction

Shallow marine structures are sediment deformations and ruptures developed in a
shallow environment less than 1000 m below the seafloor (mbsf) due to many kinds of
driving forces such as overpressure, differential gravity, compaction forces, tectonic forces,
etc. Berton and Vesely [1] identified comet pockmarks on acoustic profiles and suggested
that they are formed by gas flows and modified by the bottom currents. Shakhova et al. [2]
detected pockmarks using multi-beam sonar backscatter data and proposed that gas
release causes the pockmarks. Chen et al. [3] identified gas chimneys on seismic profiles
and indicated that they are related to thermogenic gas migration. Matsumoto et al. [4]
identified gas pipes on seismic profiles and suggested that they are induced by thermogenic
gas migration. Chen et al. [5] identified mud diapirs and mud volcanoes on seismic profiles
and indicated that their formation mechanisms are related to an ample discharge of gas-
bearing fluids. Ho et al. [6] studied the morphology of pipe structures and polygonal faults
and suggested that they are formed by overpressured gases and fluids. Previous studies
show that shallow marine structures are generally considered as pathways for gas and
fluid migration. In recent years, the structures related to gas hydrate accumulation have
increasingly attracted researchers’ attention.

Gas hydrates have been intensively studied as a potential clean energy source in the
last decades [7–9]. They are stable under relatively low temperature and high pressure
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conditions, and are generally located in sediments several hundred meters deep or even
deeper below the seafloor [10–13]. Massive gas hydrate dissociation can release vast
amounts of methane into seawater and enhance ocean acidification, which is a significant
process affecting the carbon balance in the marine environment [14–16]. The accumulation
and distribution of gas hydrates are closely related to the gas and fluid migration which is
primarily controlled by the structures in shallow marine sediments [17–21]. Wang et al. [22]
studied three cold seeps in the Taixinan Basin and found massive gas hydrate and chimney
structures associated with these cold seeps. Lu et al. [23] studied a mature pockmark in the
Zhongjiannan Basin and indicated that the pockmark creation was induced by methane
consumption. Natalia and Soledad [24] recognized gassy sediments, pockmarks and gas
plumes in the Ria de Vigo in Spain and indicated that the underlying gassy sediments
are the gas sources of the pockmarks. Berton and Vesely [1] identified mud volcanoes
and underlying chimney structures on the continental margin of southeastern Brazil.They
suggested that gas seeps occur along with the chimney structures. Taylor et al. [25]
recognized salt diapirs and associated faults at the Blake Ridge Diapir, indicating that the
gas and fluid might migrate upward through these faults. Lastras et al. [26] recognized
shallow slides and pockmarks in the Eivissa Channel and suggested that the pockmarks
occur near the slide headwall scars that reveal fluid escaping. Alrefaee et al. [27] studied
polygonal faults and associated fluid migration in the Northern Carnarvon Basin and
indicated that the polygonal fault systems can act as pathways for the fluid migration.
Gasperini et al. [28] studied the tectonic fault in the Sea of Marmara and suggested that gas
and fluid emissions increase along the tectonic fault system after an earthquake.

As introduced above, these structures are closely related to each other, and the struc-
tures are closely associated with gas and fluid migration. However, the characteristics,
formation mechanisms and effect of the structures are not systematically reviewed. This
article aims to provide a systematic summary of the current knowledge about the shallow
structures developed in shallow sediments, to classify the shallow marine structures, iden-
tify their characteristics and explore the mechanisms of the structures, and discuss their
relationships with gas and fluid migration.

2. The Classification of the Structures

The structures are generally driven by different geological forces, including overpres-
sure, gravity, compaction forces and tectonic forces.

Overpressure is widely developed in many hydrocarbon basins, and its building,
transfer, and release generally induce different structures. A seepage occurs during the
overpressure release (Figure 1A), a gas chimney develops during the overpressure build-
ing and transfer (Figure 1C), and a pockmark is a seafloor mark of the overpressure
release site (Figure 1B). Therefore, seepages, pockmarks and gas chimneys are classified as
overpressure-associated structures. Seepage may be referred to as a natural phenomenon
rather than a geological structure. However, seepage is an active gas and fluid release
process, and the gas chimney indicates the process of gas and fluid accumulation and
migration; they make up an integrated overpressure system. Therefore, the seepage is
classified as an overpressure-associated structure.

Diapir structures are soft-sediment deformations driven by differential gravity and
compaction [29–32]. The soft plastic layers such as mud layers and salt layers easily extrude
into overlying layers because of differential forces. Therefore, the mud diapir (Figure 1D)
and the salt diapir (Figure 1E) are classified as diapir structures. The mud volcano and
mud mound are also included in shallow marine structures in this study. The overpressure
of the gas- and fluid-rich mud sediment is a critical driving force for their formation. In this
study, we classify mud volcanoes and mud mounds as mud diapirs. The two structures are
regarded as the later stage of the mud diapir. When the mud diapir reaches the seafloor, a
conic-like structure formed is termed a mud volcano, and a dome-like structure is termed a
mud mound.
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Figure 1. The classification of the structures developed in shallow marine sediments. (A) Seepage
from bathymetry image, Vestnesa Ridge, west Svalbard margin, Norway (modified from Goswami
et al. [33]); (B) Pockmark from bathymetry image, Zhongjiannan Basin, western margin of the South
China Sea, China (modified from Lu et al. [23]); (C) Gas chimney from the seismic image, Cascadia
margin, off the coast of Vancouver Island, Canada (modified from Wood et al. [34]); (D) Mud diapir
from the seismic image, Lower Fangliao Basin, offshore SW Taiwan (modified from Hsu et al. [35]);
(E) Salt diapir from the seismic image, upper Atlantic margin, SE Brazil (modified from de Mahiques
et al. [36]); (F) Landslide from bathymetry image, Pearl River Mouth Basin, the northern slope of
South China Sea (modified from Chen et al. [3]); (G) Polygonal fault from the seismic image, offshore
Uruguay (modified from Turrini et al. [37]); (H) Tectonic fault from the sea-bottom picture, Tekirdag
Basin, Sea of Marmara (modified from Armijo et al. [38]).

Landslides (Figure 1F), polygonal faults (Figure 1G), and tectonic faults (Figure
1H) are driven by gravity, compaction forces and tectonic forces, respectively. All these
structures have one or multiple prominent rupture surfaces; therefore, they are classified
as sediment ruptures. The structural characteristics are usually different because they are
not driven by a single force. The rupture surface is a reasonable connection that strings
together the landslide, the polygonal fault, and the tectonic fault. In addition, the “shallow
marine structure” is not restricted to a depth of less than 1000 mbsf due to the following
considerations. First, the shallow marine structures are generally distributed in shallow
unconsolidated marine sediments. Their structural characteristics are various and are
easily influenced by many unpredictable factors. Second, some structures are developed in
shallow and deep environments, and some structures are developed in a deep environment
but extend into a shallow environment.

3. Overpressure-Associated Structure

Overpressure is generally induced by hydrocarbon generation, differential compaction,
hydrothermal pressurization, clay mineral dehydration, and tectonic compaction [39]. The
combination of temperature changes, pressure drop from water unloading, rapid burial
by salt deposition, pressure increases during the following water loading, and relative
sea level-rise play a fundamental role in overpressure development and release in the
underlying evaporites sediments [40–44]. During the overpressure building, transfer, and
release, the gas and fluid accumulation, migration, and release generally occur, resulting in
pore pressure changes and associated structures [45,46].
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3.1. Seepage

Marine seepages, also called “methane seeps” and “cold seeps”, are active structures
on the seafloor caused by gas and fluid release (Figure 2A). These structures were first
reported in 1958 [28]. A seepage system generally consists of a gas and fluid source, a pipe-
like pathway and a leaking structure [47]. Seepages are recognized as gas flares/flames on
bathymetry image and as gas bubbles in sea-bottom photographs and they are widely found
in the South China Sea, the Gulf of Mexico, off the Costa Rica shore, off Svalbard in Norway,
the Hydrate Ridge of America, off the shores of Ireland and New Zealand, the eastern
Black Sea, the eastern Mediterranean, and the Cascadia margin [13,22,42,48–54]. A gas flare
as high as 750 m was reported in offshore NW-Svalbard [55], and numerous gas bubbles
were reported in the northern South China Sea [56]. Seepages are generally distributed
over marine or lacustrine hydrocarbon sediment basins [57] and are possibly related to salt
diapirs and tectonic faults [57–59]. In addition, seepage is considered as the previous stage
of pockmarks since active seepages are widely discovered above pockmarks [60,61].
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The gas sources of seepages are generally composed of deep thermogenic gas and
shallow biogenic gas [28,62–66]. Deep thermogenic gas migrates upward from a deep
source layer along the interface between a salt diapir and the surrounding sediments and
the fault plane of an active fault [28,67,68]. When gases and fluids migrate through the
evaporite layer, salt dissolves in the fluid and is transported to the seafloor. The density
of the salt-rich fluid is higher than that of seawater; as a result, the salt-rich fluid deposits
around the leaking site, and then forms a brine pool [40,67,69,70]. Shallow biogenic gas
migrates upward through gas pipes to form a seepage [64]. The driving force of the
seepage is considered to be overpressure, and the overpressure is generally induced by the
continuous accumulation of gases and fluids. In the Hydrate Ridge, the accumulated gas
and fluid in shallow layers opens micro-fractures to migrate through [51,58,71–73]. In the
Cascadia subduction zone, methane seepage was induced by the collision between ocean
crust plates [74].

In addition, gas hydrate and authigenic carbonate possibly exist as trap layers result-
ing in gas and fluid accumulation and overpressure development. The seepage intensity
is supposed to be dominated by the pressure of the accumulated gas and fluid. High gas
pressure induces strong gas ejection flares on the seafloor, up to 750 m high [55,75,76].
Therefore, trap sealing is supposed to cause overpressure development and eruption [77].
During overpressure eruption, the gas hydrate mass and authigenic carbonate mass are
blown out to the seafloor and form the gas hydrate outcrops and carbonate stacks, respec-
tively [68,70,78–81]. Seepages are discovered along with the fractures in the carbonate reef,
indicating that the fractures exist as the pathway for seepages [58,82]. In the north Gulf
of Mexico, carbonate crusts gradually form in the sediment sealing the seepage simulta-
neously [83]. The authigenic carbonates are different from the autochthonous carbonates,
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which were deposited in shallow-water environments and transported to the outer shelf
due to the gravitational collapse of the platform margin [45].

The overpressure is the primary driving force to form a seepage. A strong overpressure
leads to a vigorous seepage, and a weak overpressure leads to a gentle seepage. Seepage is
a part of the overpressure-associated system that occurs during the overpressure release.
The system is also composed of a source and a pipe structure during the overpressure
accumulation and transfer, respectively (Figure 2B).

Geochemical analysis of the sediment samples, pore water, and gas bubbles collected
in the seepage areas indicate that the gas hydrate disassociation probably provides the
seepage gas source [63,64,84,85]. In the Taixinan basin in the South China Sea, newle
formed seepages are discovered next to paleo-seepage sites. Gas hydrates formed in the
paleo-seepage site seal the migration pathway of the gases and fluids. As a result, the
gases and fluids migrate through a new pathway and leak from a new seepage site [22].
The cases indicate that seepages are considered significant indicators of gas hydrate reser-
voirs [19,51,52,64,74,75]. Geochemical analysis of the gas seepage can help estimate the gas
source and determine whether the seepage is active or not [48,65,85–87].

Authigenic carbonates are good markers of methane seepage and environmental
conditions [13,48,49,85,88,89], which generally exist as thick tight crusts and scattered
multi-hole reefs [13,90]. The nodular high-Mg carbonate forms under low methane con-
tent conditions, and the aragonite carbonate crust forms under high methane or high
Ca content conditions [48,82]. Microbial mats and benthos are discovered beside the
active seepage [38,60,74,82,91], related to anaerobic oxidation of methane and sulfate
reduction [48,79,82,92], which make a significant contribution to the formation of the
authigenic carbonates.

Seepages are mostly discovered above pockmarks, with gentle or vigorous gas leakage,
leaving crater-like depressions on the seafloor [90]. Gas pipes are also found below the
seepages, considering as the pathways of gas and fluid migration [33]. In some cases,
polygonal faults also exist as pathways for the seepages [20]. The structures show a close
relationship with each other and the gas and fluid migration.

3.2. Pockmarks

Pockmarks are seafloor depressions firstly reported in the Emerald Basin in Canada [93].
Pockmarks are generally recognized as V- and U-shaped structures on acoustic profiles
(Figure 3A) [1,62,84,94–101]. Pipe-like structures beneath pockmarks are usually discov-
ered, indicating the migration of the gas and fluid, which can help to confirm if the
pockmarks are active or not [20,36,63,64,75,76,84,85,90,94,97,102–109].

Pockmarks are divided into three types based on their diameter, including unit pock-
marks (<10 m), normal pockmarks (10–1000 m), and mega-pockmarks (>1000 m) [97,107].
In map views, the pockmarks appear as circular, near-circular, elliptical, linear, and crescen-
tic geometries [23,36,99,110,111]. In vertical views, pockmarks show as U-shapes, V-shapes
and asymmetric shapes (Figure 3B) [67,78,104,109–119]. The nascent pockmark is possibly
conic, modified by the bottom current, sliding activity, and pelagic sedimentation [107,120].
The mature pockmark is generally composed of an outer trough, a middle ridge, and a
middle crater [23]. Regular and gentle gas and fluid flow usually lead to symmetrical and
crater-like pockmarks; however, overpressure eruption and sediment collapse usually lead
to asymmetry pockmarks (Figure 3) [84].

Pockmarks are seafloor marks generally induced by gas and fluid releases. In shallow
marine sediments, continuous gas and fluid accumulation lead typically to a pore pressure
increase. When the overpressure exceeds the limit of the overlying layers, the gases and
fluids erupt into seawater, leaving a pockmark on the seafloor. The eruption model of
gases and fluids was firstly proposed by Hovland [121] and is widely accepted by many
researchers [2,20,90,106,122].
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Many factors can lead to overpressure releases. Periodic sea level changes, glaciation
and deglaciation, gas hydrate formation and disassociation, tidal and storm wave activity,
rapid sedimentation and tectonic activity are supposed to break the balance between pore
pressure and overburden pressure, inducing the leakage of the pore fluid and gas, leaving
pockmarks on the seafloor [59,63,98]. Tidal cycles are considered the driving force of the
gas and fluid accumulation and overpressure, and the overpressure eruption is triggered by
storm waves [98,105,117,121]. Periodic sea level variation leads to the episodic eruption of
the pore fluid and gas [63,75,94,123,124]. Meanwhile, overpressure eruption can be induced
by deglaciation and earthquake activity [59,100,122,125]. In addition, a high sediment rate
generally leads to overpressure. The sediment burial depth increases rapidly, causing a
large amount of pore fluid in the sediment pore space, and the pore pressure increases
quickly. The gas and fluid are driven along with the lithological interface, fault plane, and
salt surface to release on the seafloor. In that case, pockmarks are prominent indicators of
overpressure [59,95,112].

Gas hydrate disassociation can be induced by sea level drops and deglaciation, and
the process can lead to pockmark formations [63,100]. When hydrocarbon gases and
fluids migrate upward to the gas hydrate stability zone (GHSZ), the gas hydrate forms
to seal the migration pathway, and the free gas accumulates below the GHSZ to build
overpressure. The gas, fluid, sediment, and gas hydrate are blown out to the seafloor when
an overpressure eruption occurs and a pockmark forms [78]. Strong gas flares are widely
discovered above pockmarks, which indicate that overpressure eruptions exist above the
pockmarks [13,33,54,55,64,68,76,105,126].

Carbonate ridges and stacks are found beside pockmarks, and many researchers
have indicated that authigenic carbonates occur as trap layers, leading to overpressure
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eruptions [79,87]. The authigenic carbonates are considered as products related to methane
oxidation and sulfate reduction [63] that are import indications of hydrocarbon gas and
fluid migration. Geochemical analysis of the sediment samples, pore water, and carbonate
from the pockmark area can help predict the gas and fluid sources [85,90,98,100].

However, the gas and fluid flow in shallow marine sediments is still unclear because
the process is hard to monitor [109]. Active pockmarks with an overlying active seepage
and dormant pockmarks with an underlying gas pipe are widely discovered indicators of
shallow gas accumulation [107,118]. Pockmarks are generally distributed above the hydro-
carbon reservoir and fault system, indicating the location of the reservoir and migration
pathway [20,68,104,111,122,127–129].

3.3. Gas Chimney

Gas chimneys are also reported as “gas pipes” induced by gas and fluid percolation
and migration in shallow marine sediments. The structures are generally considered as
gas and fluid migration pathways. On seismic profiles, “gas plumes” or “gas clouds” are
recognized as the indicators of gas pipes, which appear in a columnar geometry or a conic
geometry (Figure 4A) [130]. According to the comprehensive literature investigation, the
gas chimney geometries are divided into pipe-like, conic-like, corona-like, and cloud-like
shapes (Figure 4B). Gas chimneys are supposed to be driven by adequate gas accumulation,
composed of deep thermogenic gas and shallow biogenic gas [3]. Gas chimneys are
recognized as acoustic blank zones, turbulent zones, ambiguous zones and pull-down
reflections. The acoustic blank zone generally indicates gas-rich sediments [131], and the
pull-down reflection possibly indicates free gas occurrence [132]. However, in other cases,
researchers have recognized high amplitude pull-down reflections in the Lower Congo
Basin. They interpreted them as stacked paleo-pockmarks [133], and the pull-up reflection
can be induced by gas hydrate or carbonate occurrence [20].
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Previous studies have proposed that free gas is supposed to be sealed by the capillary
force of the sediments. When the overpressure exceeds the sealing force, free gas starts
to migrate upward along the gas pipe. During the migration, the overlying pore fluid in
the pipe is expelled out, and the underlying pore fluid is pumped into the pipe. When the
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gas releases into seawater, the underlying free gas is sealed again by the capillary force
produced by the pore fluid in the gas pipe [103]. The process of gas migration and emission
is episodic.

In offshore SW Taiwan, extensive gassy sediments exist [134], which indicate the gas
migration in shallow marine sediments. Gas percolation generally induces gas accumu-
lation and overpressure, which results in dome structures on the lithological interface.
Continuous gas accumulation leads to overpressure increase and small fracture forma-
tion [50]. The gas migrates upward along the small faults and forms a gas chimney. The
geometries of gas pipes are possibly related to the gas pressure and sediment lithology. The
pipe-like gas chimney is inclined to form in high gas pressure conditions and muddy sedi-
ments, and the cloud-like gas chimney is inclined to form in low gas pressure conditions
and sandy sediments (Figure 4B).

In many cases, the gas chimneys are located above the bottom simulating reflectors
(BSRs), below the BSRs, and through the BSRs, which indicate a good relation with gas
hydrates [22,33,34,55,132,133,135]. Gas pipes are also found below pockmarks and seep-
ages, indicating vertical pathways for pockmarks and seepages [127]. The gas migrates
upward along salt tectonic faults and forms gas pipes at the upper end of the faults. The gas
and fluid then migrate to the seafloor through the gas pipes [20]. When the gas migrates
along faults and accumulates below the GHSZ, small fractures form due to overpressure,
and periodic earthquakes drive the gas release along with the fractures [125]. Therefore,
gas chimneys are supposed to record the multi-active seepage controlled by earthquake
activities [122]. Deep thermogenic gas migrates along the deep faults and forms gas pipes
that extend to the seafloor in the central North Sea [64]. In the Lower Congo Basin, re-
searchers have recognized gas pipes located above the triple junction of the polygonal
faults, indicating a close relationship between them [65].

When a gas pipe extends through the GHSZ, gas hydrates then form in the pipes [20].
When the gas hydrates disassociate to free gas, the free gas then migrates upward to form
a gas pipe [13,136], therefore, gas pipes can help locate free gas reservoirs and the gas
hydrate layers.

4. Diapir Structures

Mud and salt diapirs have been extensively studied previously. Mud and salt layers
are soft plastic layers and are easily deformed by differential gravity and compaction forces.
In many gas hydrate studies, the two structures are recognized and facilitate gas and
fluid migration.

4.1. Mud Diapirs

Mud diapirs are also reported as “mud volcanos” in the Olimpi diapiric field in the
Mediterranean Ridge [137–139] and as “mud mounds” in the mud volcano area in the
Gulf of Cadiz [140] (Figure 5A). The structures are focused and widely studied regarding
gas and fluid migration [141–143]. The mud layers (Figure 5(B1)) saturated with gas
and fluid move upward and form diapirs along with fractures or faults (Figure 5(B2)).
When they erupt on the seafloor, the gas and fluid escape into the seawater, leaving the
muddy sediment deposited.The conic-like mud structures are termed mud volcanoes
(Figure 5(B3)) [81,144,145]. The mud diapirs are considered as the previous stage of mud
volcanoes, indicating that the overpressure exists in muddy sediments before the mud
volcano eruption [134]. Mud diapirs are mainly recognized as dome-like structure on and
beneath the seafloor [12,18,146,147]. A previous study proposed that the deep hydrocarbon
fluid migrated upward with liquified muddy sediments, solid blocks and shallow biogenic
gas, and then erupted on the seafloor [70]. The slope angle of the mud volcano is possibly
related to the viscosity of the muddy sediment [5]. The mud volcano is recognized as the
bull-eye shape in map views [83]. On the seismic profile, the up-warp diapir geometry is
recognized as a mud diapir [35]. Mud volcano outcrops are observed in Azerbaijan, with a
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methane emission volume of as much as 800 m3 per year [148,149]. Similar outcrops are
observed in Diglipur Island, India [150], northern Italy [151], and Indonesia [152].
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Previous researchers have proposed the following mud volcano formation mechanism.
Firstly, the deep gas percolates upward to the upper plastic clay layer, and the pore spaces
are filled with gas, resulting in gravity instability and sediment deformation [29]. Secondly,
continuous gas accumulation induces a buoyancy increase, and a mud diapir initially forms
in the weakness zone [116,153]. Thirdly, when the mud diapir extrudes into the seafloor,
the gas and fluid eject into the seawater, and as muddy sediment is deposited around the
ejection site, a mud volcano forms a conic-like shape [146].

The mud volcano formation is associated with the muddy sediment eruption [1,134].
Previous researchers found related evidence by AUV surveys in the Nile Deep Sea Fan [154].
Tectonic activity is supposed to be the primary trigger force driving the mud extrusion
under the pre-condition of overpressure [5,29,140,141,143,145,150]. In other cases, the
muddy flow driven by overpressure migrates upward through hydraulic fractures to form
a mud volcano [130].

Deep heat flows are a possible driving force and fluid source for mud volcanoes [143].
In offshore SW Taiwan, heat flows are measured around the mud diapirs area. The results
reveal that higher heat flow values exist above the mud diapirs, indicating that the heat
flows migrate upward in the mud diapirs [155]. In the Barbados accretionary wedge, heat
fluid roots from the underlying accretionary wedge or adjacent oceanic crust. With the tem-
perature increase, the smectite-illite transformation is accelerated and releases quantities of
water [156]. This process possibly promoted overpressure and undercompaction.

Periodic activities such as tectonic activity, overpressure, and heat flow eruption
possibly result in biconic mud volcanoes. A buried mud volcano with biconic geometry
was discovered in the South Caspian Basin. The South Caspian crust subducts into North
Caspian crust, inducing the upper compressed mud layer migrates upward episodically,
leading to the biconic geometry [157].

Gas hydrates are discovered within mud volcano areas, indicating that large quantities
of methane gas and mud flow migrate upward to the shallow sediments [156]. When the gas
and fluid migrate through the GHSZ, free gas is supposed to percolate into the surrounding
sediments and form a gas hydrate [145]. Mud diapirs extrude through the gas hydrate zone,
and this phenomenon is discovered in offshore Norway [158], the Barbados accretionary
wedge [156], SW Taiwan [35,134], and the Indian Andaman islands [150], which show a
good relationship between mud volcanos and gas hydrates. The gas and fluid flow are also
identified above the mud diapirs.
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Brine pools are discovered located on the mud volcanoes in the Mediterranean Ridge,
indicating salt occurrence [69,70,159]. When a mud flow migrates through a salt layer the
salt dissolves in the fluid and migrates to the seafloor. Due to its larger density, salt-rich
fluid deposits in a crater created by the mud volcano and forms a brine pool. Authigenic
carbonate is found around the brine pool, indicating that the hydrocarbon gas and fluid
possibly share the mud volcano pathways [70]. Carbonate outcrops are observed in the
Nile Deep Sea Fan [154] and eastern Mediterranean mud volcanoes [160]. Carbonate
chimneys filled with soft clay in the pipes are discovered in the South China Sea [82]
and Mediterranean Ridge [70], indicating that the carbonate forms during the upward
migrations of the soft clay.

4.2. Salt Diapirs

Salt diapirs is salt tectonics forms that generally present an up-warp geometry caused
by the inherent instability of the salt (Figure 6A). Salt is mostly composed of halite which
may contain various amounts of evaporites [161]. Salt layers are considered to be mechan-
ically weak, incompressible, less dense, and fluid-like [162]. These characteristics make
salt layers inherently unstable and are usually deformed by differential sediment loading
and gravity spread [30–32]. The salt diapir generally induces many extensional faults that
the gas and fluid can migrate through (Figure 6B) [36]. In the Ionian Basin, salt-tectonic
structures play a critical role in creating migration pathways (both lateral and vertical) and
remobilizing overpressured fluids [163]. The low sediment porosity and permeability in
the Ionian zone imply fluid migration through “fracture macro-permeability conduits” in
the vicinity of faulted and highly deformed zones [44,45,163].
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Critical slope angle is a significant factor that triggers salt tectonic activity [165,166]. In
an oblique slope, salt layers are supposed to occur as a brittle-ductile layer which generally
leads to differential loading, which is thought to initiate the diapir reactivation [32,167].
Salt layers generally exist as detachment layers. The overlying sediments can slide along
the salt layers under the influence of gravity and then form salt diapirs [168,169]. Intense
transform-fault activity can also lead to salt diapirs [170]. In that case, the basement faults
and the basement steps are thought to control the salt evolution [171–173]. In addition,
episodic sedimentation in the depocenter is considered to change local pressure gradients
that generally lead to salt diapir [174].

Gravity spread and gravity glide can induce salt diapirs [165]. In the Angolan margin,
related salt diapirs are thought to be caused by compressional deformation of the gravity
spreading system [175–177]. The salt diapirs in the northern Gulf of Mexico are dominated
by gravity gliding [178].

The activities of the salt diapirs induce potential pathways for gas and fluid. Many
pockmarks are found located above the faults in the eastern Mediterranean. The faults
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caused by salt diapirs possibly provide conduits for gas and fluid migration [179]. During
the salt diapir extrusion, radial faults develop around the top of the diapir and dramatically
modify the geometry of the polygonal faults [180]. When the fluid migrates through the
salt layers, the salt is transported to the seafloor and then forms a brine pool [69,70,159].

5. Sediment Ruptures

Landslides, polygonal faults and tectonic faults are driven by gravity, compaction
forces and tectonic forces. The structures have one or multiple prominent rupture surfaces
that can provide a conduit for gas and fluid migration.

5.1. Landslides

Submarine landslides generally develop in shallow marine sediments on the conti-
nental slope, caused by sediments sliding along continental slopes under gravity, with
sediments transported from the slope to the deep seafloor (Figure 7A) [181]. The largest
documented submarine slide is the Storegga Slide in Norway [182]. The landslide is com-
posed of head-scarp, sliding surface (basal shear surface/basal glide surface), slide-body,
and toe-scarp (Figure 7B) [3]. Landslides are considered as mass-transport depositions, and
the scales generally range from centimeters to hundreds of kilometers [183,184]. Submarine
landslides are soft-sediment deformations with apparent slide surfaces and offsets, which
develop in sediment layers with high sedimentation rates, low permeability, and low shear
strength [185,186]. Landslide research can estimate the hazards and risks [187], including
seabed infrastructure destruction, coastal area collapse, and destructive tsunamis [188–190].
The landslide deposits can help deduce paleo-geological conditions and tectonic activities.
Stacked submarine landslide deposits seen in the northern South China Sea are probably
induced by multi-period sliding and erosion [191,192]. The canyons are eroded by turbidity
currents induced by a landslide, the turbidites deposit in the canyons [193], which reveal
the northeastward bottom current. The multi-period landslide deposits are also recognized
in the southern Scotia Sea, which are considered as evidence of paleo-earthquakes [194].
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Most submarine slopes are inherently stable, and usually require external factors
to trigger landslides [188,196]. Climate-induced stress variation, including glaciation
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succession, eustatic sea level, rapid sediment load, bottom flow temperature variation,
and gas hydrate disassociation, significantly changes the slope stability [197,198]. The
Storegga Slide located off the Norwegian margin is the largest submarine landslide in
the world [158]. The landslide is thought to respond to climatic variability. The Storegga
Slide is also a result of rapid loading with excess pore pressure, reducing the effective
shear strength of the underlying clays [188,199]. Field measurements show that extra pore
pressure still exists in the adjacent areas [200].

Salt layers are mechanically weak and flow like fluids [162], which leads to resid-
ual friction decreases. As a result, submarine landslides are readily initiated above salt
layers. Submarine landslides are observed on the continental slope in the southeastern
Mediterranean, whereb they are supposed to interact with a group of step-faults induced
by extensional salt tectonic activity [201].

Submarine landslides are probably related to earthquakes and high fluid pressure [183,
196,202], and excess pore pressure is considered the primary pre-condition, and earth-
quakes trigger the landslides [190,203]. High fluid pressure is generally caused by rapid
sedimentation and gas and fluid migration. During lower sea level periods, the shallow
gas exsolution induces buoyancy increases, leading to pore pressure increases and slope
instability [193,204]. In addition, the fluid accumulation leads to sediment liquidation
and pore pressure increases. As a result, shallow sediments flow more easily and form
shear failures [26,205].

Submarine landslides are generally caused by slope instability, and many factors
collectively make significant contributions to slope instability [189,206]. As presented
above, the pre-condition including soft plastic layers (clay or salt), excess pore pressure,
gas-rich sediments, and liquified sediments. The main trigger factors are considered to
be earthquakes and storm waves. Submarine slope failures mostly occur on very gentle
slopes with gradients of less than 5◦ [205], indicating that slope gradients are probably not
the dominant factor of the landslide.

Numerous submarine landslides are close to pockmarks and mud volcanoes linked by
fluid accumulation [197]. Pockmarks are recognized on the seafloor induced by fluid escape
that is probably derived from the underlying mass transport deposits [195]. In addition,
pockmark fields are developed adjacent to landslide areas, indicating a close relationship
between them in the US continental slope [207] and western Mediterranean Sea [26].

5.2. Polygonal Faults

Polygonal faults are generally distributed in passive continental margins [208–211],
which develop in fine-grained marine sediments less than 1500 mbsf [37,208,210–223].
Polygonal faults are layer-bound extensional normal faults with an offset of less than 100 m.
The fault planes arrange in polygonal patterns in map view (Figure 8A) and as extended
layer-bound faults in vertical view (Figure 8B) [208,213–221,223–228].

Polygonal faults are recognized on 2D seismic profiles as block faults [229], extensional
faults [230], and layer-bound faults [214]. Polygonal cell-bound faults were first recognized
as polygonal patterns on 3D seismic profiles in the North Sea. The faults cut strata into
many irregular blocks (Figure 8C) [215]. In recent years, polygonal faults are widely studied
in the North Sea [180,213–217,225,227,231–233], the Eromanga Basin [234–236], the South
China Sea [237–242], and the Lower Congo Basin [65,133,243].

According to a comprehensive literature investigation, we summarize three formation
mechanisms of polygonal faults [244].

Density inversion is a significant mechanism [211,215,216,229,236]. Rapid sedimen-
tation generally forms fluid-rich clays. The pore fluid in the upper clay migrates into
overlying coarse-grained layers. The pore fluid in the lower clay migrates into underlying
coarse-grained layers sealing the pore fluid in the middle clay layer. As compaction contin-
ues, the middle pore fluid is difficult to extrude, so that the middle clay density becomes
lower than that of the upper clay. This state is termed density inversion and generally leads
to gravity instability and shear strength decreases. When the pore fluid pressure exceeds
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the limit, fractures form, and the pore fluid is released. The density inversion indicator
is probably the wave-like lithological interfaces induced by differential overpressure and
buoyancy accumulation.
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Syneresis fracture is another mechanism [218,226,232,245–248]. During the early
burial, the shallow marine sediments exist in a colloidal state. The fine-grained particles
tend to arrange closer to each other under the influence of interparticle attractive forces.
As a result, the pore fluid is extruded, and the sediments become more consolidated. The
process is suggested to begin at the interface between the seawater and seafloor [243]. As
the burial depth increases, the vertical sediments shrink showing normal compaction, and
the lateral shrinkage apprears as fractures. The syneresis happens randomly and induces
irregular trends and strikes of the polygonal faults.

Shear failure is another mechanism [208,210,214,217,220,226,246,249,250]. Researchers
proposed to use the Mohr-Coulomb Law to explain the formation of polygonal faults.
The shear strength of water-saturated sediments is weaker than that of rock; therefore,
these sediments more comfortably form shear failures. In the Mohr Circle, shear failure
forms when the Mohr Circle contacts the Mohr-Coulomb Failure Envelopes. Two factors
make contributions to the location and size of the Mohr Circle. First, lateral extensional
stress induced by compaction increases as the burial depth increases, inducing a minimum
principal stress decrease and the radius of Mohr Circle increases. When the Mohr Circle
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contacts the Mohr-Coulomb Failure Envelopes, shear failures form. Second, continuous
pore pressure increases lead to a decrease of the maximum principal stress and the mini-
mum principal stress. The Mohr Circle shifts leftward and contacts the Mohr-Coulomb
Failure Envelopes, and shear failures form. In addition, the coefficient of friction in fine-
grained sediments is thought to be exceptionally low, and fractures more easily form under
the mechanical compaction induced by gravity [210,220,251].

Fine-grained sediments are considered as the sealing layers in the marine environ-
ment [223,246], but the occurrence of polygonal faults substantially improves the per-
meability of fine-grained layers [252]. Therefore, polygonal faults are the relief pathway
of pore fluid pressure and the migration pathway of the deep hydrocarbon gases and
fluids [212,222,239,253,254]. For one thing, polygonal faults improve the permeability of
the fine-grained layers and have a negative influence on the burial of CO2 and nuclear
waste under seafloor [223,246,249]. For another thing, the permeability increase positively
influences the upward migration of hydrocarbon gas and fluid that migrate through the
polygonal faults to the GHSZ and form gas hydrates [208].

Pockmarks and gas pipes are recognized off the shore of Norway. Most of them are
distributed above polygonal faults, indicating that the gas and fluid migrated through the
polygonal faults and was released at the pockmarks [255]. Some polygonal faults extend to
the seafloor with pockmarks above them, and some gas pipes are distributed at the top
end of the polygonal faults [107,123,243].

5.3. Tectonic Faults

Tectonic faults are generally developed around the plate boundaries in both conti-
nents and oceans. An active submarine fault is one of the tectonic faults used to describe
repeat fault activities in recent geological time, indicating periodic tectonic activities such
as earthquakes [28,38,256–260]. Tectonic faults are generally recognized by reflector de-
formation, offset, and divarication (Figure 9A). Submarine active faults connect the deep
underlying strata with the seafloor, providing effective pathways for deep thermogenic
gases and fluids [28]. Therefore, the faults can help to estimate the hydrocarbon gas and
fluid sources. Submarine active faults are mainly studied in the Sea of Marmara (Figure
9B) [28,38,256,258,261–268], the eastern Mediterranean Sea [269,270], the Aegean Sea [271]
and the Japan Sea [272–274].
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Figure 9. The (A) seismic characteristics (modified from Géli et al. [264]) and (B) descriptive sketch
(modified from Géli et al. [264]) of tectonic fault.

The North-Anatolian Fault (NAF) is taken as an example. The NAF is a continental
transform fault distributed along the boundary of the Anatolian plate and Eurasian plate,
which is thought to induce devastating earthquakes. The fault splays into three branches,
and two branches make up the boundary of the Sea of Marmara [28]. The NAF is induced
by Anatolia-Aegean block westward escape because of the Arabia plate subduction into
the Eurasia Plate [256]. As a result, deep thermogenic hydrocarbon gases and fluids
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migrate upward along the fault planes and form cold seepages on the seafloor [263].
Authigenic carbonate and microbial mats are also observed on the seafloor along the
fault segment [28,263]. The faults are characterized by creep deformation and abrupt
deformation, and any abrupt deformation is generally produced by earthquakes. Previous
studies indicated that most earthquakes are reactive along the initial active faults [257–259].

Acoustic anomalies indicating the gas venting are recognized on acoustic profiles. The
anomalies are distributed along NAF in the Sea of Marmara, revealing a close relationship
between gas seepage and fault activities [264]. Active seepage is observed above the NAF,
which is considered as a conduit for the gas seepage [28].

6. Summary and Perspectives

Shallow marine structures are developed in shallow sediments at depths of less than
1000 mbsf. According to their characteristics and formation mechanisms, these structures
are classified into three groups: overpressure-associated structures, diapir structures and
sediment ruptures.

The overpressure-associated structures are mainly induced by pore pressure changes
related to gas and fluid accumulation, migration and release, including seepages, pock-
marks and gas chimneys. Diapir structures are primarily driven by differential loading and
gravity spread in plastic layers and include mud diapirs and salt diapirs. The sediment
ruptures are associated with gravity, compaction forces and tectonic forces, and including
landslides, polygonal faults and tectonic faults. In general, each structure would not be
induced by a single mechanism, and many external factors might have been involved.

These structures can be paths for gas and fluid migration. The tectonic faults (Figure 10H)
generally cut into deep hydrocarbon reservoirs and extend laterally a long distance, being
the primary pathways for deep thermogenic gases. Some tectonic faults vertically extend
into shallow horizons and act as shallow gas pathways. The polygonal faults (Figure 10G)
are generally formed in deep and shallow fine-grained sediment layers that enhance the
sediment permeability. The deep polygonal faults are suggested to play a role as pathways
for the gas and fluid migration and the shallow ones form as reservoirs. Abundant gas
and fluid accumulation in fine-grained sediments can decrease the sediment density and
shear strength, making the layers easy to deform and offset by differential forces. As a
result, the deeply buried layers form mud diapirs (Figure 10D), and the shallow layers form
landslides (Figure 10F). The mud diapirs with high gas and fluid saturation erupt at the
seafloor and form mud volcanoes (Figure 10D), releasing gases and fluids into the seawater.
When the mud diapirs extrude through a salt diapir (Figure 10E) area, the salt dissolves and
is carried to the seafloor to form a brine pool. However, the mud diapirs with low gas and
fluid saturation extrude to the seafloor and form mud mounds (Figure 10D). When the gas
and fluid accumulate in shallow layers and form an overpressure, pre-existing or after-born
gas chimneys are the preferential migration pathways. Some gas chimneys (Figure 10C)
extend vertically into the seafloor to release the overpressured gases and fluids. A strong
overpressure can form a vigorous seepage (Figure 10A), and a weak overpressure forms a
gentle seepage. The sediments around the seepage site are disturbed by the gas and fluid
flow, leaving a pockmark (Figure 10B) on the seafloor. A regular and continuous flow can
form a circular pockmark, and the irregular and episodic ones form irregular pockmarks.

These shallow structures have significant impacts on the gas hydrate and authigenic
carbonate distribution. Gas hydrates are formed at relatively low temperatures and high
pressures by hydrocarbon gases and water that is widely found in shallow marine sed-
iments. The gas source is generally composed of deep thermogenic gases and shallow
biogenic gases. The gases migrate upward along the pathways provided by the structures
to the GHSZ and sulfate-methane interface (SMI) and form gas hydrates and authigenic
carbonates, respectively. However, gas hydrates and authigenic carbonates are tight layers
that generally seal the pathway and induce overpressures beneath them. With the increase
in overpressure, a new pathway breaks through or bypasses the sealing area driven by
pressure. The new pathway is generally a new gas chimney that extends to the seafloor and
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forms a seepage. In some cases, the sealing layers are developed at a very shallow depth,
and the gas hydrates and authigenic carbonates are blown out to the seafloor and deposit
around the seepage site. Some bacterial species can feed on methane and take part in the
methane and sulfate geochemical cycle, so sometimes gas hydrates, authigenic carbonates
and bacterial communities occur associatively around a seepage site.
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