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Abstract: To meet the increasing sailing demand of the Northeast Passage of the Arctic, a daily
prediction model of sea ice concentration (SIC) based on the convolutional long short-term memory
network (ConvLSTM) algorithm was proposed in this study. Previously, similar deep learning
algorithms (such as convolutional neural networks; CNNs) were frequently used to predict monthly
changes in sea ice. To verify the validity of the model, the ConvLSTM and CNNs models were
compared based on their spatiotemporal scale by calculating the spatial structure similarity, root-
mean-square-error, and correlation coefficient. The results show that in the entire test set, the single
prediction effect of ConvLSTM was better than that of CNNs. Taking 15 December 2018 as an example,
ConvLSTM was superior to CNNs in simulating the local variations in the sea ice concentration in
the Northeast Passage, particularly in the vicinity of the East Siberian Sea. Finally, the predictability
of ConvLSTM and CNNs was analysed following the iteration prediction method, demonstrating
that the predictability of ConvLSTM was better than that of CNNs.

Keywords: SIC daily prediction; ConvLSTM; CNNs; predictability; arctic

1. Introduction

The Arctic is covered by sea ice throughout the year, which plays an important role in
global climate regulation [1]. However, in recent decades, the area covered by sea ice in
the Arctic has been declining. An increase in temperature causes the sea ice to melt, which
then causes the sea surface albedo to decrease and solar radiation absorption to increase,
and the temperature to continue to rise [2,3]. Changes in sea ice coverage affect the global
transportation industry. For example, with the reduction of sea ice coverage, the possibility
of navigation in the Arctic is gradually increasing. In particular, the Northeast Passage is
becoming navigable in summer [4].

The potential utilization of the Arctic natural resources highlights the urgent need
of sea ice prediction. Taking the waterway as an example, sea ice impedes the normal
voyage of ships and the accurate prediction of sea ice is thus the premise of the safe
navigation. However, due to the limitations of observational data and the highly non-linear
dynamic changes of sea ice, sea ice prediction is still a difficult task. In addition, the sea ice
prediction contains many factors. From the perspective of navigation in Arctic area, sea ice
concentration (SIC) has a greater impact on ship safety [5]. Therefore, this study focuses on
the prediction of SIC.

Both modeling and statistical studies are good tools for current sea ice prediction.
For model simulation, the mainstream sea ice models, such as the Los Alamos sea ice
model (CICE) and the Louvain-la-Neuve sea ice model (LIM) [6,7], are based on the known
physical processes. Both thermodynamic and dynamic processes of sea ice evolution are
considered, including temperature, salinity, melting pool, boundary layer momentum
exchange, and sea ice ridging and rafting, etc.
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Through the clear laws of physical change and considering a variety of factors that
affect sea ice changes, the model prediction can give assimilation results with stable errors
and strong interpretability. Most current large-scale sea ice processes are well analysed and
sketched intuitively in the model [8]. However, some important details of sea ice dynamics
and deformation have not been well portrayed, especially in small scales [8–10]. The
development of the sea ice models mainly focuses on: (1) a more accurate description of the
microstructure evolution and anisotropy of sea ice, (2) topics of study include biological
and chemical species, (3) representation of thickness changes at the sub-grid scale, and (4) a
redistribution mechanism that transforms thinner ice into thicker ice under deformation [8].

In addition, since the fifth assessment report of the Intergovernmental Panel on
Climate Change (IPCC), a high-level understanding of the physical drivers of local changes
in Arctic sea ice has been recognized. According to studies conducted by researchers, a
variety of factors contribute significantly to the local sea ice cover such as temperature
changes [11], humidity transport [12], wind field model [13], cloud cover [14], and ocean
heat flux [15], etc. The main direction of the sea ice models development is how to use
models to better describe these physical processes and to better couple them with the
atmospheric and ocean models.

However, statistical prediction is based on the data itself without prior linear or
nonlinear variation, which can make up for the deficiency of model prediction to some
extent. A vector autoregressive model (VAR) was used to statistically predict the sea ice
concentration in the Arctic during summer (May to September) [16]. However, to reduce the
degree of freedom and calculation cost, the considered SIC spatial resolution is insufficient
to use in practical applications, such as Arctic trajectory planning. The VAR and vector
Markov models were used to establish a weekly SIC prediction model based on multiple
sea ice, oceanic, and atmospheric factors [17]. The model could predict SIC for 3–6 weeks
well; however, the root-mean-squared-error (RMSE) in summer was continuously high,
at approximately 20%. Moreover, the conventional statistical algorithms can only build
point-wise models, ignoring the interaction between neighboring points (so-called spatial
correlation hereinafter).

In recent years, deep learning (DL) has been gradually applied to sea ice prediction
and achieved certain results due to its excellent nonlinear fitting effect. A variety of DL-
based works focus on improving the point-wise prediction. A monthly SIC prediction
model based on a long short-term memory network (LSTM) that performed monthly
autoregressive prediction based on the change law of the SIC itself [18]. The predictive
effect of the model had been improved by incorporating information of the time dimension.
A multi-model ensemble prediction method based on deep neural network, and used
various climatic factors for SIC regression prediction [19]. Similar to conventional VAR
algorithm, spatial correlation was not considered in the above two works. This problem was
partly circumvented by [20], which included the “global information” into the point-wise
DL model.

In fact, the spatial correlation can be well considered through the convolutional
operation. CNNs was used to predict the SIC in the Gulf of St. Lawrence based on the
observations of a synthetic aperture radar (SAR) [21]. Lawrence based on the observations
of a synthetic aperture radar (SAR). Based on the SIC and other meteorological and oceanic
factors, monthly CNNs was established to predict the SIC of the next month [22]. The
main problem of CNNs lies in that the SIC of given time (t) is totally determined by (t-1).
The “nearsightedness” of CNNs underscores the defect of conventional CNN in tackling
temporal variation.

To the best of our knowledge, the application of DL technology in SIC prediction is
mainly annual or monthly predictions. There has been little use of DL technology in daily
prediction of SIC. However, the monthly prediction cannot meet the requirements of prac-
tical scientific or commercial operations. For example, it takes about 15 days for vessels to
complete the Arctic voyage, which is in urgent demand of the daily predictions to evaluate
and adjust daily routes [23]. Different from the monthly prediction, the daily prediction
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sets a formidable challenge for the statistical algorithms since the spatial correlation and
temporal variation are much more highlighted in daily SIC.

Therefore, the aim of this study was to construct a reliable model of daily SIC pre-
diction. The accuracy of daily SIC prediction was improved by introducing convolution
calculation and considering the spatiotemporal variation of SIC. The remainder of this
paper is structured as follows: Section 2 describes the data used, Section 3 describes the
method and design of the experiment, Section 4 describes the results of the experiment,
and Section 5 summarizes the whole paper.

2. Data
2.1. NSIDC Data

The SIC data used in this study were obtained from the National Snow and Ice Data
Centre (NSIDC) and consisted of horizontally gridded data provided daily. The NSIDC
data were synthesized by the Scanning Multichannel Microwave Radiometer (SMMR) of
the Nimbus-7 satellite and Special Sensor Microwave/Imager (SSM/I) of the US Defense
Meteorological Satellite Program (DMSP) [24]. This dataset provided researchers with the
daily and monthly SIC in the Arctic and Antarctic regions, with a horizontal resolution of
25 × 25 km. After quality control and data correction of NSIDC, the value of SIC had been
standardized to between 0 and 100%, except for missing values such as land.

NASA’s sea ice calculation team determines SIC based on the Climate Data Record
(CDR) algorithm [25]. The output of this algorithm is a rule-based combination of ice
concentration estimates from two well-established algorithms: the NASA Team (NT) algo-
rithm [26] and the NASA Bootstrap (BT) algorithm [27]. The errors of the two algorithms
are not the same. In winter when the temperature is very low, the results of the BT algorithm
tend to underestimate the value of SIC [28]. While, in the winter when the temperature is
relatively mild, the results of the NT algorithm tend to be lower [29]. Therefore, the final
result of CDR algorithm is to take the maximum of the two algorithms [30]. According to
research by NASA’s sea ice algorithm team, the accuracy of the SIC data in this dataset
can reach ±5% in winter and ±15% in summer. The accuracy is highest when the sea ice
thickness exceeds 20 cm [31].

In this study, data of the Northeast Passage region were selected from the SIC data of
NSIDC, the SIC data from 2008 to 2017 were used as the training set, and the SIC data of
2018 were used as the true value to test the prediction effect of the subsequent models.

2.2. Data Preprocessing

SIC data from Nimbus-7 SMMR and DMSP SSM/I-SSMIS version 3 were used in this
study. As this work focuses on the Northeast Passage, the selected SIC spatial coverage
ranges were 65◦ N–83◦ N, 0◦–180◦ E, and 165◦ W–180◦ W. In addition, 3653 days of data
from 2008 to 2017 were used for model training, and 365 days of data for 2018 were used
for model testing and effect verification. The research area was shown in Figure 1.

During the training of the CNNs and convolutional long short-term memory network
(ConvLSTM), rather than processing the whole picture at once, the picture was divided
into multiple small blocks to allow the convolution kernel to better detect the edge features
of each patch when processing the image. This can also aid in regularization role, allowing
fewer estimated parameters to be used to achieve better training results. Therefore, the
study area was divided into 20 patches, and the original 205× 188 dataset was divided into
41 × 47 × 20 before being used for the subsequent convolution neural network calculation.
Additionally, as there can be no singular value in the convolution calculation, we set the
Nan value of land as 0 in model training; therefore, the SIC was 0.

This study focused on the autoregression of SIC. CNNs and ConvLSTM were used to
learn the changing law of SIC for short-term prediction, and the prediction effects of the
two models were compared.
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Figure 1. Schematic diagram of the sea area of the Northeast Passage (15 December 2018). Gray 
represents land, blue represents open water, and white represents sea ice. 
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Figure 1. Schematic diagram of the sea area of the Northeast Passage (15 December 2018). Gray
represents land, blue represents open water, and white represents sea ice.

3. Methods

In this study, the most suitable model for daily SIC prediction was selected by com-
paring the prediction effect of the CNNs and ConvLSTM. The main factors are shown in
Figure 2.
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3.1. Convolutional Neural Networks (CNNs)

CNNs are a class of neural networks that include convolution calculations and have
a deep structure, which were first proposed by [32]. CNNs were initially used for text
recognition in documents, and with the development and improvement of networks, CNNs
have been widely used in image recognition and classification [33,34].

CNNs can handle multi-dimensional data. The input layer of a one-dimensional
network receives a one-dimensional or two-dimensional array, while the input layer of
a two-dimensional network receives a two- or three-dimensional array. The CNNs used
in this study were two-dimensional convolution calculations, and the input array was a
three-dimensional array, i.e., height × width × channel (41 × 47 × 20).

The neurons in the adjacent convolution layer are not fully connected but are con-
nected to multiple nearby neurons in the upper layer. The size of the connection area
depends on the size of the convolution kernel; therefore, the size of the convolution kernel
is also known as “receptive field” [35]. The convolution layer contains several convolution
kernels, and the function of the convolution layer depends on the convolution kernel. The
main parameters of the convolution kernel are the weight coefficient and bias vector. When
the convolution kernel works, it regularly scans the input features. In the receptive field,
the input features are multiplied by matrix elements, and the deviation is added. The
two-dimensional convolution kernel is calculated as follows:

Zl+1(i, j) =
[
Zl ⊗wl+1

]
(i, j) + b =

Kl
∑

k=1

f
∑

x=1

f
∑

y=1

[
Zl

k(s0i + x, s0 j + y)wl+1
k (x, y)

]
+ b

(i, j) ∈ {0, 1, . . . Ll+1} Ll+1 =
Ll + 2p− f

s0
+ 1

(1)

The summation part of the above formula can be understood as the solution of a
cross-correlation, where b is the deviation; Zl and Zl+1 represent the convolution input and
output of the l + 1 layer, also known as the feature map, respectively; Ll+1 is the size of
Zl+1, assuming that the height and width of the feature map are the same; Z(i, j) is the pixel
grid of the feature map; K is the number of channels in the feature map; and f , s0, and p are
convolutional layer parameters, which are also hyperparameters of CNNs that correspond
to the size of the convolution kernel, convolution stride, and padding, respectively.

When the size of the convolution kernel is f = 1, stride is s0 = 1, and the filled unit
convolution kernel is not included, the cross-correlation calculation in the convolution layer
is equivalent to matrix multiplication, and a fully connected network can be constructed
between the convolution layers. The calculation method was as follows:

Zl+1 =
Kl

∑
k=1

L

∑
i=1

L

∑
j=1

(
Zl

i,j,kwl+1
k

)
+ b = wT

l+1Zl+1 + b, Ll+1 = L (2)

This convolution layer was used to replace the full connection layer in the traditional
convolution neural network and generate a two-dimensional characteristic map of the SIC.

The hyper-parameters of the CNNs include the kernel, stride, and padding, which
together determine the output size of the convolution layer. The specified size of the kernel
can be any value smaller than the size of the input image. The larger the size of the kernel,
the more complex the input features that can be extracted; however, more parameters
would need to be trained in the corresponding kernel. The stride defines the distance
between the positions of the kernel when it scans the feature map twice. When the stride is
1, the kernel will scan the elements of the feature map individually. The padding is typically
divided into valid and the same padding. For valid padding, no padding is used, and the
kernel only allows access to the position of the feature map that contains the complete
receptive field; however, the size of the output feature map will gradually decrease. The
same padding refers to the use of sufficient padding to keep the output and input feature
maps at the same size. For this type of padding, the size of the feature map will not be
reduced. The CNNs constructed in this study only used this padding method.
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3.2. Convolutional Long-Short Term Memory Network (ConvLSTM)

ConvLSTM was initially developed from long short-term memory (LSTM). LSTM is a
time-loop neural network based on recurrent neural networks (RNNs), and it is specially
designed to solve the long-term dependence problem of general RNNs. RNNs and LSTM
are mainly used in fields such as speech recognition, language modelling, text translation,
and spatiotemporal positioning [36]. RNNs can learn to use previous information to predict
subsequent information but can only consider information with a short time interval. As
the time interval increases, RNNs lose their ability to learn distant information; thus, LSTM
has improved in this regard [37].

LSTM can decide to remove or add information to a cell through a carefully designed
“gate”, which is a selective information passing method, usually a sigmoid neural network
layer. The output of this layer is a value between 0 and 1 that describes how much of
each part can pass. A value of 0 means that no information can pass, and 1 means that all
information can pass. LSTM usually contains three gate structures:

1. Input gate, which decides how much information is inputted into the network. The
inputted information is composed of the inputs at the previous moment and this
moment.

2. Output gate, which decides how much information is outputted to the next layer.
3. Forget gate, which is the most critical gate and determines how much of the previous

information is forgotten. This gate consists of the state value at the previous moment,
input at this moment, and output at the previous moment.

The main calculation process of LSTM is as follows:

it = σ(Wxixt + Whiht−1 + Wci ◦ ct−1 + bi)

ft = σ
(

Wx f xt + Wh f ht−1 + Wc f ◦ ct−1 + b f

)
ct = ft ◦ ct−1 + it ◦ tanh(Wxcxt + Whcht−1 + bc)

ot = σ(Wxoxt + Whoht−1 + Wco ◦ ct + bo)

ht = ot ◦ tanh(ct)

(3)

where i is the input gate, f is the forget gate, o is the output gate, c is the memory cell,
h is the hidden state, W is the weight, x is the input data, b is the deviation, and ◦ is the
Hadamard product.

ConvLSTM adds convolution operations based on LSTM; therefore, it is more suitable
for application in image processing, and particularly the prediction and classification of
two-dimensional spatiotemporal fields [38]. As the traditional full connection means that
the information of the whole image is directly multiplied by a value, it cannot perform
feature extraction on the spatiotemporal information. The main calculation process for
ConvLSTM is as follows:

it = σ(Wxi ∗ Xt + Whi ∗ Ht−1 + Wci ◦ Ct−1 + bi)

ft = σ
(

Wx f ∗ Xt + Wh f ∗ Ht−1 + Wc f ◦ Ct−1 + b f

)
Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗ Xt + Whc ∗ Ht−1 + bc)

ot = σ(Wxo ∗ Xt + Who ∗ Ht−1 + Wco ◦ Ct + bo)

Ht = ot ◦ tanh(Ct)

(4)

The difference between this formula and Formula (3) is that the partial product
operation was changed to the convolution operation (∗). Additionally, to ensure that the
output c and h maintain the same dimension as the input x, padding was required in the
convolution calculation [39].

The hyper-parameters of ConvLSTM are similar to those of CNNs, including the
kernel, stride, and padding. However, unlike CNNs, the time sequence is used as the input
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data of ConvLSTM, and it can consider historical data from multiple moments in the past
to predict the output at the current moment.

3.3. Research Flow

In this study, based on the Keras API of Tensorflow2.2 [40], two convolutional neural
networks, i.e., CNNs and ConvLSTM, were constructed to predict the daily short-term SIC.

The CNNs constructed in this study are shown in Figure 3. During training, CNNs
update the weights in the kernel through the gradient descent algorithm to achieve the
best fitting effect. In SIC prediction, the first layer of CNNs detects edge features from
the previous SIC data (t−1) and transmits the generated feature map to the subsequent
convolution layer. In the second and third layers, higher-level features are detected based
on the feature map extracted from the previous layer. As the depth of the network increases,
the extracted features can reflect the SIC change law [21]. In the final layer of CNNs, based
on the higher-level feature maps extracted from the first three layers, the convolutional layer
with a kernel of f = 1 and stride of s0 = 1 is used to predict the SIC at the next moment (t).
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Figure 3. Schematic diagram of convolutional neural networks (CNNs) network structure. The
yellow square represents the convolution kernel, and the gray square represents the feature map
extracted by the convolution kernel.

The dimension in Figure 3 is sequence × height × width × channel. Based on the SIC
data of the previous moment (t−1), the feature map of the next moment (t) is extracted by
a three-layer convolution calculation. The first three layers contain 128, 128, and 64 filters,
respectively, while the output layer contains 20 filters, which is the same as the number of
input data patches. The kernel size of the first two convolutional layers is 5, and that of
the third layer is 3; i.e., the faster changes are extracted first, and the subtle changes are
then learned [22].

All convolutional layers in CNNs use the Rectified Linear Unit (ReLU) activation
function, with a batch size of 64 and 100 epochs. The optimizer uses Adam, which is
an effective random optimization method. This method combines the advantages of
AdaGrad and RMSProp optimization algorithms, requires only a first-order gradient, has
high computational efficiency, and requires a small amount of memory [41]. The learning
rate was set to decay with the number of epochs, with a learning rate of 0.001 for the first
50 epochs, and 0.0001 for the final 50 epochs.

The ConvLSTM constructed in this study is shown in Figure 4. The first layer of
the model was the ConvLSTM layer. The input of this model was a four-dimensional
tensor added to the time sequence dimension, which predicts subsequent changes based
on multiple historical moments. In this model, the first layer took the SIC at the first two
moments (t− 2, t−1) as the input, extracted the feature map at the next moment (t), and
outputted the result to the subsequent convolutional layer. The latter two layers were
similar to the convolutional layer of CNNs. Based on the feature map extracted from the
previous layer, more advanced features were extracted by a convolution operation. Finally,
the output layer formed a fully connected network that matched the predicted feature
map with the SIC at time t. In addition, the reason why the prediction was based on two
historical moments will be explained in the Appendix A.
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Figure 4. Convolutional long short-term memory network (ConvLSTM) network structure diagram.
The meanings of each color in this figure are the same as those in Figure 3.

In Figure 4, based on the SIC data of the previous two moments (t− 2, t−1), the
feature map of the next moment (t) is extracted through ConvLSTM. The ConvLSTM layer
had 128 filters, and the last two convolution layers had 128 and 64 layers, respectively.
The kernel size of the ConvLSTM layer was 5, and the kernel sizes of the remaining two
layers were 5 and 3, respectively. The remaining parameter settings were similar to those
in CNNs.

The main parameters of the CNNs and ConvLSTM are shown in Table 1.

Table 1. CNNs and ConvLSTM network parameters.

Input Filters Kernel Size Activation Function Batch Size Epochs Optimizer

CNNs 1 × 41 × 47 × 20 (128, 128, 64) (5, 5, 3) ReLU 64 100 Adam
ConvLSTM 2 × 41 × 47 × 20 (128, 128, 64) (5, 5, 3) ReLU 64 100 Adam

To our best knowledge, this study is the first to evaluate the effectiveness of CNNs and
ConvLSTM in the short-term prediction of daily SIC and to compare them. The daily SIC
data of 2018 were introduced to the trained model for testing. By comparing the prediction
results to the actual SIC, the SSIM, CC, and RMSE of daily SIC prediction showed that the
prediction effect of ConvLSTM was better than that of CNNs.

The SSIM was calculated as follows:

SSIM(X, Y) =
(2uXuY + C1)(2σXY + C2)(

u2
X + u2

Y + C1
)(

σ2
X + σ2

Y + C2
) (5)

where uX and uY represent the mean value of the two images, σXY represents the covariance
of the two images, σ2

X and σ2
Y represent the variance of the two images, and C1 and C2 are

constants, usually C1 = (K1 ∗ L)2 and C2 = (K2 ∗ L)2, respectively. Typically, K1 = 0.01,
K2 = 0.03, and L = 255 (L is the dynamic range of pixel values). However, the maximum
SIC considered in this study was 100; therefore, L = 100. By comparing the SSIM, we can
compare the differences in the spatial structure between the predicted SIC and true value
and compare the similarity of the two spatial structures.

The anomaly, CC, and RMSE were calculated as follows:

anomaly = predictedSIC− actualSIC (6)

CC(X, Y) =
cov(X, Y)√

Var(X)Var(Y)
(7)

RMSE =

√
mean

[
(predictedSIC− actualSIC)2

]
(8)

where cov is the covariance, and Var is the variance. By calculating the RMSE and CC at
different moments, the accuracy of the prediction results of different models in the temporal
dimension can be compared, and the accuracy of the prediction results at a specific location
can be compared by calculating the anomaly and RMSE at a fixed grid point.
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Additionally, as the East Siberian Sea is the key sea area of the Northeast Passage,
almost all channels must pass through this sea area; therefore, the accuracy of sea ice
prediction in this sea area must be high. Therefore, this study focuses on comparing the
accuracy of the two models in the vicinity of the East Siberian Sea area.

The model construction process and comparison process of the subsequent prediction
results are shown in Figure 5.

J. Mar. Sci. Eng. 2021, 9, 330 11 of 22 
 

 

ConvLSTM model

CNNs model

Anomaly
Comparison of 
prediction anomaly 
on the test data

SSIM and CC
Comparison of 
prediction SSIM and 
CC on the test data

RMSE
Comparison of 
spatial RMSE and 
daily RMSE on the 
test data

Predictability
Comparison of 
prediction accuracy 
for 10 days 
iteratively

Time sequence
 Impact of input 
sequence length

 
Figure 5. Model and research flow. 

4. Results 
4.1. SSIM and CC 

In this study, the prediction accuracy of the two models was evaluated by comparing 
the daily SSIM from 3 January to 31 December. During the initial operation of ConvLSTM, 
the data of 1 January and 2 January should be input to predict 3 January. Therefore, the 
earliest start time of the prediction is from 3 January. The calculated SSIM is shown in 
Figure 6. 

Figure 5. Model and research flow.



J. Mar. Sci. Eng. 2021, 9, 330 10 of 20

4. Results
4.1. SSIM and CC

In this study, the prediction accuracy of the two models was evaluated by comparing
the daily SSIM from 3 January to 31 December. During the initial operation of ConvLSTM,
the data of 1 January and 2 January should be input to predict 3 January. Therefore, the
earliest start time of the prediction is from 3 January. The calculated SSIM is shown in
Figure 6.
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The SSIM value is between 0 and 1. The closer it is to 1, the better the prediction
effect. Overall, the prediction effect of ConvLSTM was better than that of CNNs for the
entire test set. Seasonally, the prediction effect of ConvLSTM in winter and spring was
better than that of CNNs. The SSIM of ConvLSTM reached approximately 0.977, while that
of the CNNs reached approximately 0.957. During autumn, the prediction effect of both
models fluctuated; however, the fluctuation of the CNNs was greater. Because CNNs can
only consider the SIC of one previous moment, whereas ConvLSTM can consider multiple
moments (two of which were considered in this model). Therefore, the prediction effect of
ConvLSTM was more accurate.

During the summer, the prediction accuracy of the CNNs and ConvLSTM decreased
significantly; however, the accuracy of ConvLSTM remained higher than that of the CNNs.
The decrease in the SIC prediction accuracy during the summer may have been due to the
influence of melt ponds. During the summer, sea ice is in a melting state. Owing to the
difference between melting and freezing, melting pools form in the Arctic sea area [42]. As
the Arctic seas have different sea ice forms and melting pools of different sizes during the
summer, the albedo also greatly varies, which greatly influences the satellite observation
results [43–45]. As the dataset was not accurate for the summer observations, the CNNs
and ConvLSTM will also have errors when learning daily changes based on summer
data, resulting in a general reduction in the summer prediction accuracy. Even so, the
accuracy of ConvLSTM remained higher than that of the CNNs. The minimum SSIM of
ConvLSTM was approximately 0.874, while the minimum SSIM of the CNNs decreased
to approximately 0.860. From this viewpoint, the daily prediction of SIC by ConvLSTM
was superior to that by the CNNs. As shown in Table 2 below, the overall spatial structure
similarity of the ConvLSTM prediction results was better than that of the CNNs.

Figure 7 shows the CC of the CNNs and ConvLSTM for the 363 days. The overall CC
of ConvLSTM exceeded that of the CNNs. The CC of ConvLSTM reached approximately
0.999 during the winter, while the highest CC of the CNNs was 0.997. During the summer,
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the CC of ConvLSTM was lowest, at approximately 0.987, and the lowest CC of the CNNs
was approximately 0.986. Table 3 below shows the maximum, minimum and average CC
of ConvLSTM and CNNs.

Table 2. Comparison of the SSIM between the CNNs and ConvLSTM.

SSIM Max Min Mean

CNNs 0.957 0.860 0.915
ConvLSTM 0.977 0.874 0.940
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Table 3. Comparison of the CC between the CNNs and ConvLSTM.

CC Max Min Mean

CNNs 0.997 0.986 0.994
ConvLSTM 0.999 0.987 0.996

4.2. Anomaly

The necessity of daily prediction lies in the significant variation of SIC within one month.
The error of a qualified daily prediction model should be at least lower than the direct
utilization of monthly climatology. The month December is selected as an example since the
navigable period Northeast Passage is usually between August and December [46].

The anomalies between different results and the NSIDC SIC of 15 December 2018
were calculated in the way of monthly average minus NSIDC, CNNs daily prediction
minus NSIDC, and ConvLSTM daily prediction minus NSIDC. The results are depicted in
Figure 8 for December.

As shown in Figure 8, the significant extreme value of the monthly average indicated
that SIC had significant variability in the current month. There were clear low-value areas
near the Bering Strait and in the waters near Novaya Zemlya, and significantly higher
values were observed near the Novosibirsk Islands. Therefore, it is not feasible to replace
daily SIC prediction with monthly average data. The prediction results of the CNNs were
significantly better than the monthly average prediction values, and there was no high-
value area that deviated from the actual value across a large range. The overall anomaly
remained between −10% and 10%. The prediction result of ConvLSTM was the most
accurate, and its anomaly was smaller than that of the CNNs, with the overall anomaly
remaining between −5% and 5%.
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Figure 8. Comparison of the anomalies between different results, namely, monthly average (a), CNNs
daily prediction (b), and ConvLSTM daily prediction (c) w.r.t the National Snow and Ice Data Centre
(NSIDC) sea ice concentration (SIC) on 15 December 2018. The gray in the figure represents the land,
and the blue/red represent the underestimation/overestimation of SIC. The area marked by the blue
dotted line is the key contrast area in the following.

The prediction accuracy of the two models in the vicinity of East Siberia was mainly
compared, which was the area marked by the blue dotted line in Figure 8. The anomaly
contrast chart of the sea area is shown in Figure 9.
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Figure 9. Comparison of the anomalies between different results, namely, monthly average (a), CNNs
daily prediction (b), and ConvLSTM daily prediction (c) w.r.t the NSIDC SIC near the Eastern Siberia
sea area. The meanings of each color in this figure are the same as those in Figure 8.

As shown in Figure 9, the anomaly of ConvLSTM was the smallest of the three, and the
value was relatively stable. Although the prediction results of the CNNs were better than
the monthly average results, the overall anomaly exceeded that of ConvLSTM, particularly
in the vicinity of Novosibirsk.

4.3. RMSE

Figure 10 compares the daily RMSE between the CNNs and ConvLSTM for 363 days.
To remove the influences of open water and land, the land and point where the SIC is
0 were eliminated. The prediction results of the CNNs, ConvLSTM, and test data were
compared and calculated for the entire spatial field, and the results were as follows:

As shown in Figure 10, the ConvLSTM prediction results were better than those of the
CNNs, and the RMSE of both were lower during the winter and spring and higher during
the summer. During the spring, the RMSE of ConvLSTM was below 5%, while that of the
CNNs was approximately 6%. During the summer, the RMSE of both increased due to the
influence of the melting pools; however, the RMSE of ConvLSTM remained lower than
that of the CNNs. Table 4 below shows the maximum, minimum, and average RMSE of
ConvLSTM and CNNs.
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Table 4. Comparison of the RMSE between the CNNs and ConvLSTM.

RMSE Max Min Mean

CNNs 13.134% 5.547% 8.058%
ConvLSTM 12.235% 4.174% 6.942%

To compare the distribution of the RMSE of the monthly average, CNNs, and ConvL-
STM on the spatial field, the RMSE of the three in December was calculated grid by grid,
as shown in the Figure 11.
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Figure 11. Comparison of the monthly average (a), CNNs (b), and ConvLSTM (c) RMSEs of the
Northeast Passage during December. The gray in the figure represents the land, and the red represents
the RMSE of each model in December. The area marked by the blue dotted line is the key contrast
area in the following.

The RMSEs of the monthly average, CNNs, and ConvLSTM are shown in Figure 11.
As shown, the RMSEs of the CNNs and ConvLSTM across the Northeast Passage were
significantly smaller than the monthly average results, and the RMSE of ConvLSTM was
generally less than that of the monthly average data and the CNNs. The blue dotted line
in the figure indicates the sea area near Eastern Siberia, and the RMSE of this sea area is
compared in Figure 12.

Figure 12 shows that the prediction accuracy of the CNNs in this sea area was better
than the monthly average result, and the overall RMSE was below 4%, while ConvLSTM
has the best accuracy, with an overall RMSE below 2%.
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4.4. Predictability

To compare the predictability of the CNNs and ConvLSTM, the iterative prediction
from 11 to 20 December was taken as an example of 10 d of continuous prediction to test
the stability of the two continuous predictions. The data for 10 December were inputted
into the CNNs, and the data for 9 and 10 December were inputted into ConvLSTM to
obtain a prediction result for 11 December, and the result was used as the input for the
prediction of the next moment in iterative prediction. Finally, the prediction results from 11
to 20 December were obtained. The SSIM and RMSE are shown in Figures 13 and 14.
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Figure 13 compares the SSIMs for ten consecutive days. The figure shows that the
spatial structure similarity of the CNNs and ConvLSTM changed in the same manner, but
ConvLSTM was always better than the CNNs. The SSIM of the CNNs decreased to 0.9 on
the fourth and fifth days, while the SSIM of ConvLSTM remained above 0.91.

Figure 14 compares the RMSEs for ten consecutive days. The figure shows that the
RMSE of ConvLSTM was always lower than that of the CNNs. During the first five days,
the growth in the RMSE of ConvLSTM was relatively low, while that of the CNNs was
faster, and the difference between the two could reach approximately 3.5. During the
following five days, the RMSE growth rate of ConvLSTM accelerated; however, the overall
rate remained lower than that of the CNNs. The average SSIM and RMSE of CNNs and
ConvLSTM iterative prediction are shown in Table 5 below.
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Table 5. Average SSIM and RMSE of the CNNs and ConvLSTM.

SSIM RMSE

CNNs 0.898 13.799%
ConvLSTM 0.923 11.238%

From the above results, the SSIM and RMSE of ConvLSTM in the iterative prediction
were smaller than those of CNNs, which proved the superiority of ConvLSTM. According
to [23], SIC was generally divided into different grades every 20%. By the tenth day, the
RMSE of CNNs had reached about 18%, and there was a risk of greater grade deviation. In
contrast, the RMSE of ConvLSTM was maintained at about 15%, which basically guaranteed
that the SIC would not deviate by more than one grade. Moreover, within the allowable
range of error, the longer the model can predict, the wider the sea area that can be used for
trajectory planning. This can reduce the possibility of the path planning algorithm falling
into a local optimum [47]. From the above perspective, ConvLSTM can basically meet the
needs of navigation safety.

5. Discussion

The advantage of ConvLSTM over the CNNs is that it can consider data at multiple
historical moments and learn more accurate time changes. The above results have demon-
strated the robustness of ConvLSTM in the daily prediction of SIC, however future works
are stilled need to improve the capability of daily prediction models.

For example, when the input historical time sequence is too long, gradient explosion
or disappearance will still occur; that is, ConvLSTM is not ideal for long-term prediction
based on long-term sequences [48]. Therefore, in the follow-up work of this study, we will
consider establishing a multi-day prediction model to improve the application value of
the research results. Second, when processing the data in this study, the missing value
and land were both set to 0; however, the physical meaning of the two was not the same.
Interpolation methods could be used to resolve the gaps in missing measured values
and improve the accuracy of the original data and ConvLSTM predictions. Third, a self-
prediction SIC model was established in this study, which used the daily changes in SIC to
predict subsequent time periods. In the future, a multi-factor SIC daily prediction model
can be established by considering other meteorological and ocean element information,
which may produce more accurate prediction results [22].
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In addition, the temporal and spatial distribution of melt pond is not considered in
this study. At present, the researches on melt pond mainly focus on the identification
of melt pond [49,50], the depth of melt pond [51] and the factors affecting the coverage
area [52]. Only in small areas such as the Canadian Arctic Archipelago has the literature
studied the evolution of the melt pond [53]. Therefore, in future work, if there is the law of
the time evolution of the melt pond in different sea areas of the Northeast Passage, some
specific SIC prediction models may be established for the years or areas with significant
impact of melt pond.

6. Conclusions

To our best knowledge, this study is the first to apply CNNs and ConvLSTM to
short-term daily SIC prediction. To investigate the superiority of two models, the results
were compared based on the SSIM, anomaly, RMSE, CC, and other indicators at differ-
ent spatiotemporal scales. Furthermore, the predictability of the CNNs and ConvLSTM
was compared through iterative predictions. The main conclusions were summarized as
follows:

1. In the 2018 test data, the SSIM of ConvLSTM always exceeded that of the CNNs
(Figure 6). The highest SSIM of ConvLSTM was 0.977, the lowest was 0.874, while the
highest SSIM of the CNNs was 0.957, and the lowest was 0.860. The CC of ConvLSTM
was always higher than that of the CNNs (Figure 7). The highest CC of ConvLSTM
was 0.999, the lowest was 0.987, while the highest SSIM of the CNNs was 0.997, and
the lowest was 0.986. The spatial structure similarity and correlation of ConvLSTM
for the tested 363 days were also higher than those of the CNNs.

2. Taking the prediction results on 15 December as an example. Across the study area,
the anomalies of ConvLSTM and CNNs were lower than the monthly average results
(Figure 8). The anomality of the CNNs was higher than that of ConvLSTM, and
that of the whole northeast channel was between −10% and 10%. The anomality of
ConvLSTM was the lowest among the three methods, and the overall anomaly was
between −5% and 5%. According to the comparison result, the monthly average
result could not be used to replace the daily prediction of SIC.

3. The RMSEs of the CNNs and ConvLSTM for the tested 363 days are compared in
Figure 10. The RMSE of ConvLSTM was always lower than that of the CNNs. The
highest RMSE of ConvLSTM is was 12.235%, and the lowest was 4.174%; the highest
RMSE of the CNNs was 13.134%, and the lowest was 5.547%. The spatial distribution
map of the RMSE in the Northeast Passage also showed that the monthly average
results were the worst among the three, and ConvLSTM had the best prediction
accuracy, particularly in the vicinity of the East Siberia Sea area.

4. In this study, the predictability of the CNNs and ConvLSTM was compared, and the
SSIM and RMSE of the two were calculated through ten consecutive days of iterative
prediction (Figures 13 and 14). The average SSIM of the CNNs in these 10 d was 0.898,
and the RMSE was 13.799%, while the average SSIM of ConvLSTM was 0.923, and
the RMSE was 11.238%. According to the comparison results, the predictability of
ConvLSTM was significantly better than that of the CNNs.

We proposed a 1-d SIC prediction model based on ConvLSTM. The daily SIC predic-
tion results of ConvLSTM can provide valuable information that can be used in various
decision-making processes, such as arctic track planning [5]. In addition, ConvLSTM may
be applied to the daily prediction of sea ice thickness and other elements in future work.
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Appendix A

ConvLSTM can predict the SIC using data at multiple historical moments; however,
this does not mean that the prediction results are more accurate with a longer input time
sequence. From the perspective of deep learning, the training effect of the network was
generally better when the input time sequence was similar to the output time sequence.
For example, the input time sequence in this study was two days, and the output time
sequence was one day.

To test the relationship between the length of the input and output time sequences,
relevant experimental verification was conducted in this study. Considering the two
historical moments above, the ConvLSTM model was trained with one, three, and four
historical inputs, respectively, and these four ConvLSTM models were compared with
CNNs. By calculating the SSIM and RMSE of the five models based on the 2018 test set, the
conclusions are as follows:

Figures A1 and A2 show the comparison of SSIM and RMSE of five models based on
the test set under different input sequence lengths. It can be seen that when the input time
series were both 1 day, the difference between ConvLSTM and CNNs was not significant,
probably because neither took information of the time dimension into account. When the
input sequence of ConvLSTM was 2, 3, and 4 days, the prediction effects of these three
models were relatively better. This indicated that the prediction effect of these models
was improved after the information of time dimension was added. In addition, from the
perspectives of SSIM and RMSE, the prediction effect of the model based on two historical
moments was slightly better than other models. As shown in Figures A1 and A2 below.
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