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Abstract: The training of a deep learning model requires a large amount of data. In case of sidescan
sonar images, the number of snippets from objects of interest is limited. Generative adversarial
networks (GAN) have shown to be able to generate photo-realistic images. Hence, we use a GAN
to augment a baseline sidescan image dataset with synthetic snippets. Although the training of a
GAN with few data samples is likely to cause mode collapse, a combination of pre-training using
simple simulated images and fine-tuning with real data reduces this problem. However, for sonar
data, we show that this approach of transfer-learning a GAN is sensitive to the pre-training step,
meaning that the vanishing of the gradients of the GAN’s discriminator becomes a critical problem.
Here, we demonstrate how to overcome this problem, and thus how to apply transfer-learning to
GANs for generating synthetic sidescan snippets in a more robust way. Additionally, in order to
further investigate the GAN’s ability to augment a sidescan image dataset, the generated images are
analyzed in the image and the frequency domain. The work helps other researchers in the field of
sonar image processing to augment their dataset with additional synthetic samples.

Keywords: deep learning; generative adversarial networks; transfer-learning; sidescan sonar;
synthetic sonar images

1. Introduction

Collecting a dataset of sidescan sonar images from objects underwater is a cumber-
some task since the location of the objects is, on principle, not known in advance. As
an alternative, manually placing objects on the seafloor and capturing images with a
sidescan sonar mounted on an autonomous underwater vehicle (AUV) is very time- and
cost-intensive, especially if a high variability in the dataset is desired. Thus, simulating
sonar data has been part of research efforts for several years [1–3]. The simulated data
can be used to enrich the real dataset in order to improve the automatic analysis of sonar
images, e.g., by having a larger dataset for the training of a deep-learning-based classi-
fier. In recent years, generative adversarial networks (GAN) [4] have become a successful
algorithm for generating synthetic images. Their field of application ranges from face-
generation [5,6] to image translation tasks [7]. Much research work regarding GANs has
been done in designing architectures and training methods which leverage the quality of
the generated images, as in StyleGAN2 [6], which uses a special style-based generator to
produce high-resolution images. A comprehensive review of state-of-the-art GANs for
various image processing tasks can be found in [8].

Recently, GANs have been applied to the field of underwater acoustic imaging [9–12].
By generating synthetic high-quality sonar images, the necessity of a large database of real
images may be reduced. However, the training process of a GAN also requires training
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data, and a small training dataset may increase the probability of the occurrence of mode
collapse [13]. In the case of mode collapse, the GAN generator produces the same image
regardless of the input noise, and is not able to recover from this. Several approaches have
been developed in recent years to improve the training of a GAN when only few data
are available [14–19]. In [19], the so-called stochastic discriminator augmentation is used to
artificially increase the amount of training data and prevent the generator from learning these
augmentations. However, thousands of images are still required to train a high-resolution
GAN like StyleGAN2. In addition to data augmentation, the current research focuses on
transfer-learning methods for GANs in cases with few data samples [14–17]. During the
transfer-learning in [16,17] the first layers of the discriminator, the discriminator and
generator, are kept fixed. Zhao et al. propose an adaptive filter modulation to further adapt
the weights in the fixed layers of the discriminator and generator [17]. Both methods show
good results when applied to natural images, even if fewer than 1.000 images are used for
transfer-learning. However, these approaches are based on transferring knowledge from a
large dataset of natural RGB images to other natural RGB images. Since the characteristics of
sidescan sonar images are fundamentally different from those natural images, most features
learned in the pre-training, suhc as ones based on color or specific shapes, are useless.

In most approaches that use GANs for generating sonar images, the GANs are trained to
learn an image-translation from low-complexity ray-traced images to real sonar images [9,10].
These approaches use hundreds of real sonar images from an object, which seems few
compared to other large deep-learning datasets. However, several sea trials are required to
capture this amount of real sonar data. Having fewer real sonar images can be a critical
factor in the image-translation, since many ray-traced images would be mapped to only a
few real samples. In [12], ray-traced snippets of tires are used in a pre-training phase of a
GAN so that it can learn to generate the geometric properties. Afterwards, a subsequent
fine-tuning step is used to make this GAN generate realistic sidescan sonar snippets. This
procedure of transfer-learning has been shown to decrease the occurrence of mode collapse.

We expand our previous work [12] and show that while the problem of mode collapse
is reduced, the pre-training makes the GAN very sensitive to the input distribution. On
the training dataset for the fine-tuning step, the gradient of the discriminator of the GAN
vanishes, i.e., the gradient, becomes zero, leaving the GAN unable to learn. Several
experiments are conducted to find the best way to prevent the discriminator’s gradient
from vanishing. The result is a robustification of the transfer-learning process of a GAN.
Afterwards, additional analyses of the generated images are carried out to investigate the
quality and variability of the generated data as well as the quality in the frequency domain.

In summary, the main contributions of this paper are:

• An in-depth analysis of the generation of sidescan sonar image snippets using transfer-
learning in GANs;

• A solution to the problem of the vanishing gradient when fine-tuning the discriminator;
• An analysis of the generated sidescan sonar snippets which shows that this transfer-

learned GAN can slightly improve the classification accuracy of a convolutional neural
network (CNN) on an unbalanced dataset.

The remainder of this paper is structured as follows: Section 2 describes the real
and simulated data used in this work. Furthermore, the GAN used for generating the
synthetic sonar snippets and the procedure of transfer-learning this GAN is explained.
In Section 3, the vanishing of the discriminator’s gradient and ways to deal with this
problem are analyzed. Later in this section, the generated images are used to augment a
dataset for classification purposes. Additionally, by clustering the generated images, the
variability in the images is analyzed. Finally, in Section 4, the main findings of this work
are summarized and discussed.
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2. Materials and Methods
2.1. Real Sidescan Sonar Image Data

Over the course of several sea and harbor expeditions, sidescan sonar data were
collected with an Edgetech 2205 sidescan sonar mounted on a SeaCat AUV (ATLAS ELEK-
TRONIK GmbH, Bremen, Germany). The sidescan sonar operates at a center frequency of
850 kHz, with a bandwidth of 45 kHz. An experimental signal-processing chain produces
gray-scaled images in a waterfall manner, i.e., the individual signals of each ping period are
consecutively stacked on top of each other. These waterfall images have a pixel resolution
of 10 cm in along and across the track direction. Figure 1 shows an example of a processed
waterfall image.

Figure 1. Example of a waterfall sidescan sonar image.

Several different object classes were manually labeled in these sidescan images. This
work focuses on the objects of class Tire, due to their well-defined geometric properties,
which are required when modelling the object in the ray-tracer. Since some trials were
carried out in the same area, multiple snippets from the same object exist. The snippets are
split nearly 50/50 between training and test sets, with snippets from the same tire being
either all in the training or all in the test set. In Table 1, an example of the snippets and the
number of samples in the training and test dataset are listed. As one can see, the number
of samples of the class Tire is very limited. However, Steiniger et al. showed that, using
transfer-learning, a GAN can be trained with such a small dataset [12].

Table 1. Labeled classes and division into training and test set.

Object Class Example Snippet Number in Training Set Number in Test Set

Tire 18 17

All pixels in the waterfall images are clipped to the interval [0.1, 5], in order to increase
the contrast in the image. Prior to extracting the object snippets, the pixel values are linearly
mapped to the interval [−1, 1]. The extracted snippets are rescaled to 64× 64 pixels using
bicubic interpolation. Images from the port-side sonar are flipped such that the shadow
of an object always lies on the right side of the object. During training, the dataset is
augmented using horizontal flipping, since vertical flipping would cause the shadow to lie
on the left side of the object again. The histogram of the pixel values from all tire snippets
after the aforementioned processing steps is shown in Figure 2.
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Figure 2. Histogram of the sidescan sonar snippets’ pixel values.

2.2. Ray-Traced Sonar Snippets

For the pre-training step of the TransfGAN, explained in Section 2.3, ray-traced images
from tires are used. Similar to [10,12], the ray-tracer Povray is used to generate synthetic
sidescan sonar snippets. Those images can be calculated quickly and in different scenarios,
e.g., distance from the AUV to the object. A Python script is used to automatically adapt
the Povray simulation, run it and extract the snippet. When extracting the snippet from the
whole simulated scene, a small random shift is applied, such that the position of the object
in the snippet varies slightly. This reflects the process of manual labeling and extracting
real snippets. The parameters vary, and their value-ranges in the simulation are given in
Table 2. The resolution is set such that it matches the one from the sonar processing.

Table 2. Parameters varied in the ray-tracing simulation.

Parameter Range

sinking depth 0 m–0.15 m
flight height 2 m–6 m

across track distance 5 m–30 m
outer tire radius 0.5 m–0.6 m
inner tire radius 0.26 m–0.3 m

In total 10,000 slightly different snippets were generated. They were split into training
and test sets, with a ratio of 2:1. Figure 3 shows three examples of ray-traced tires. When
used in the pre-training, the snippets are rescaled to 64× 64 pixels, again using bicubic
interpolation. The histogram of the ray-traced images is displayed in Figure 4. Compared
to the real sidescan snippets, a characteristic of the simulation becomes visible, which is that
no structure is applied to the object or the background. One the one hand, this makes the
ray-tracing step as simple as possible but on the other hand, it means that each simulated
image mainly consists of three different pixel values, which does not reflect a common
distribution in sonar images. The strong peak in the histogram at −0.4 arises from the fact
that the intensity of the highlight and background varies with the distance from the AUV to
the object but the intensity of the shadow stays the same.Since the histogram is calculated
from all simulated snippets, the variation in highlight and background intensity is averaged
out. Furthermore, a shift between the two histograms can be observed, indicating a brighter
background in the ray-traced snippets. Thus, the main purpose of the ray-traced snippets
is to give the GAN information about the geometric shape of the highlight and shadow
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regions in the image. Adapting the pixel distribution in the ray-traced snippets to better
match the real data is a task for future work.

Figure 3. Examples of ray-traced tires.

Figure 4. Histogram of the ray-traced snippets pixel values.

2.3. Training a GAN with Transfer-Learning

A GAN is a combination of a generator and a discriminator network which are trained
alternately so that the generator learns to map a noise distribution onto a distribution given
by the input data. The discriminator’s task is to reject samples created by the generator,
forcing the generator to produce better images, which are more difficult to distinguish from
the real data. A common problem when training a GAN is the so-called mode collapse [20],
where the generator produces the same image regardless of the input noise. Transfer-
learning has shown to improve the training of a GAN and to reduce the occurrence of mode
collapse [12,17]. The TransfGAN described in [12] is in a first pre-training step trained with
ray-traced images, which should help the generator to learn the geometric shape of the
object. In a second step, the pre-trained GAN is fine-tuned with the real sidescan snippets.
Figure 5 shows the individual training steps of the TransfGAN.

For the structure of the generator and discriminator network, the ones from [12],
where an auxiliary classifier GAN (ACGAN) [21] is used, are adapted. An ACGAN uses
the class of an object as an additional input to the generator, and as an additional output
to be predicted by the discriminator. This has been shown to increase the quality of the
generated images and is a way to condition the GAN to generate images for a given
class. However, in this work, only one class is considered, which makes the auxiliary
loss introduced by the ACGAN needless. Thus, our networks have no conditional class
input and the discriminator has only one fully connected output layer to predict if the
sample it receives is real or fake. The configurations of both networks are shown in Tables
3 and 4, respectively. The generator network G takes a latent vector z as an input and
generates a synthetic image G(z). Transposed convolutional layers are used to upsample
the latent vector to the required image size of 64× 64 pixels. The input to the discriminator
network D is either a real image x or a generated one. For each image, this network
outputs a probability that the image is real, i.e., for a perfect discriminator D(x) = 1 and
D(G(z)) = 0.
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Figure 5. Training process of the TransfGAN. (a) The initial TransfGAN is generating noise and will be trained with ray-
traced images. (b) The pre-trained TransfGAN produces images containing basic geometric features. (c) In the fine-tuning
step, the discriminator needs to distinguish between the generated ray-traced images and the real sidescan sonar snippets.
(d) Finally, the generator produces images similar to the real data.

Table 3. Generator of the TransfGAN.

Layer Neurons Kernel Size Stride Padding Activation Function Feature Map Dimension

Input - - - - - 100× 1
Dense 3456 - - - relu 3456× 1

Reshape - - - - - 3× 3× 384
Conv2DTranspose 384 6× 6 (1, 1) - relu 8× 8× 384

BatchNormalization - - - - - 8× 8× 384
Conv2DTranspose 192 5× 5 (2, 2) (2, 2) relu 16× 16× 192

BatchNormalization - - - - - 16× 16× 192
Conv2DTranspose 96 5× 5 (2, 2) (2, 2) relu 32× 32× 96

BatchNormalization - - - - - 32× 32× 96
Conv2DTranspose 1 5× 5 (2, 2) (2, 2) tanh 64× 64× 1
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Table 4. Discriminator of the TransfGAN.

Layer Neurons Kernel Size Stride Padding Activation Function Feature Map Dimension

Input - - - - - 64× 64× 1
Conv2D 32 3× 3 (2, 2) (1, 1) leaky relu 32× 32× 32
Dropout - - - - - 32× 32× 32
Conv2D 64 3× 3 (1, 1) (1, 1) leaky relu 32× 32× 64
Dropout - - - - - 32× 32× 64
Conv2D 128 3× 3 (2, 2) (1, 1) leaky relu 16× 16× 128
Dropout - - - - - 16× 16× 128
Conv2D 256 3× 3 (1, 1) (1, 1) leaky relu 16× 16× 256
Dropout - - - - - 16× 16× 256

Dense (real/fake) 1 - - - sigmoid 1× 1

The TransfGAN is pre-trained for 500 epochs with a batch size of 100 using the Adam
optimizer [22], with a learning rate of 0.0002 and an exponential decay rate for the 1st
moment estimates of 0.5. Both networks are trained alternately, where the discriminator is
set to minimize

lD = −E[log(D(x))]− E[log(1− D(G(z)))] (1)

and the generator to minimize

lG = −E[log(D(G(z)))]. (2)

The latent vector contains 100 samples of a uniform distribution. Some generated
samples from the pre-trained TransfGAN are shown in Figure 6.

Figure 6. Examples of images by the pre-trained TransfGAN.

After pre-training, the TransfGAN is fine-tuned with the real sidescan data. The fine-
tuning takes place for 200 Epochs and a batch size of 36, so one iteration covers all real and
augmented tire snippets. The learning rates for the generator λG and discriminator λD are se-
lected using a grid search over the values (λG, λD)

T ∈ {0.005, 0.001, 0.0005, 0.0001, 0.00005}2,
while the exponential decay rate for the 1st momentum estimates is kept at 0.5.

3. Results
3.1. Analysis of the Vanishing Gradient

During the fine-tuning step of the TransfGAN, the loss behaves as shown in Figure 7.
The loss of the discriminator remains constant while the loss of the generator increases.

Looking at the training process of a neural network, the weights are updated using
the gradient of a loss function with respect to the individual weights. In the very basic
stochastic gradient descent, the update follows the rule

wi+1 = wi − λgi with gi = ∇wl|w=wi , (3)

where wi are the weights from the i-th iteration, λ is the learning rate, l is the loss function
and all calculations are taken element-wise. Using the Adam optimizer [22] the update
rule modifies to

wi+1 = wi − λm̂i+1/(
√

v̂i+1 + ε), (4)

where
m̂i+1 = mi+1/(1− βi+1

1 ) with mi+1 = β1mi + (1− β1)gi (5)
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and
v̂i+1 = vi+1/(1− βi+1

2 ) with vi+1 = β2vi + (1− β2)g2
i , (6)

where β1, β2 ∈ [0, 1) are hyperparameters. Here, the gradient g of the loss function with
respect to the weights is used again. The exponential moving averages of the gradient
m and the squared gradient v are initialized with a value of zero. Consequently, if this
gradient is zero, no update to the weights is made. Figure 8 shows the gradients of the
discriminator over the first four epochs for the real sidescan snippet (red) and the fake
images generated by the TransfGAN’s generator (blue). It becomes clear that the gradient of
the TransfGAN’s discriminator vanishes when it is trained with the real sidescan snippets.
Due to the chain rule of calculus used in the back-propagation algorithm for training a
neural network, a vanishing gradient in the last layer of the network leads to a gradient
of zero in the remaining ones. Furthermore, the GAN is not able to recover from this
vanishing gradient problem and will stay in this stage in all consecutive epochs.

Figure 7. Training and test loss of the generator and discriminator for the first four epochs.

In order to explain the occurrence of the vanishing gradient in the discriminator,
Figure 9 displays the predictions of the discriminator before updating the weights for the
first four epochs. For the real sidescan snippets (sample 0–35), the discriminator classifies
all images as fake. The right sub-figure in Figure 9 shows the output of the dense layer prior
to processing by the sigmoid function. For the real samples, the sigmoid function saturates.
Note that a sigmoid(−40) is already 4.3× 10−18. This reveals a fundamental problem in the
transfer-learning of the GAN. During the pre-training, the discriminator sees ray-traced
images as real images. These ray-traced images often consist of only a few pixel values, as
shown in the histogram in Figure 4. This makes it likely that the discriminator will reject all
samples which differ from this pixel-value distribution. In the fine-tuning step, the sidescan
sonar snippets become the real images, but due to the pre-training, the discriminator will
reject them. This problem remains if, in the pre-training step, a small portion of noise is
added to the ray-traced images in order to disturb the pixel value distribution. However,
the effect of adjusting the pixel distribution in the highlight, shadow and background
regions of the ray-traced snippets according to a more realistic distribution still needs to be
investigated. In the following section, experiments are conducted to investigate possible
solutions to this vanishing gradient problem.
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Figure 8. Gradients of the discriminators dense layer during fine-tuning.

Figure 9. Predictions of the discriminator during fine-tuning.

3.2. Experimental Study

Since the vanishing gradient in the discriminator only becomes visible in the fine-
tuning step, this would make it necessary to re-initialize the GAN and to repeat the
pre-training. A more convenient way of doing this would be to make the fine-tuning
step more robust, so that it can deal with the vanishing gradient. Two slightly different
approaches are analyzed in this study. In Experiment “All”, the weights of all layers in
the discriminator are re-initialized prior to the fine-tuning step. Only the generator keeps
the information from the pre-training step, while the discriminator is trained from scratch.
This, however, would delete already learned features of the discriminator, which may
still be useful for classifying the sidescan snippet into real or fake, e.g., basic geometric
features. Therefore, in the Experiment “Last”, the re-initialization of only the last layer
of the discriminator, i.e., the fully connected layer, will be analyzed. Here, the features
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learned by the convolutional layers in the discriminator (see Table 4) are used in the
fine-tuning step.

For both experiments, a grid-search over the learning rate is carried out to determine
its optimum value. The learning rate for the generator and for the discriminator is allowed
to differ since the (partial) re-initialization of the discriminator may give the generator a
head start in the fine-tuning phase. For the same reason, training only the discriminator
for a few epochs before fine-tuning the whole GAN is analyzed as well. During the grid
search, the learning rates are set to (λG, λD)

T ∈ {0.005, 0.001, 0.0005, 0.0001, 0.00005}2. In
all experiments, the TransfGAN is fine-tuned for 200 epochs. This number of epochs is
sufficient to see if the applied method is able to train the TransfGAN without vanishing
gradient. All experiments are conducted three times to account for the randomness in the
re-initialization. While reporting the results of all 300 experiment runs (52, grid search
combinations, with and without extra training of the discriminator for both experiments
with three runs per setup, i.e., 52 × 2× 2× 3 = 300), is beyond the scope of this article;
the main findings are presented.

One outcome from the previous analysis of the vanishing gradient is that the loss of
the discriminator stays constant if its gradient vanishes. Thus, a decaying loss indicates a
success in countering the vanishing gradient. However, this criterion alone does not allow
for direct statements about the quality of the generated images. A qualitative analysis of
the images generated by the TransfGAN after fine-tuning will be carried out to rate the
success of the two approaches “All” and “Last”. The criteria for sufficient quality of the
generated images are:

• Physically meaningful highlight and shadow;
• Shadow connected to the right side of the object;
• Realistic pixel value distribution in highlight, shadow and background regions;
• No mode collapse.

As expected in most cases, both re-initialization approaches solve the problem of the
vanishing gradient. Only for a discriminator learning rate of λD = 0.005 does the problem
remain. Since a gradient of zero means no update in the discriminator, the extra training
also does not help in these learning rate configurations. The learning rate is too high for
the discriminator to converge to a minimum.

For all configurations of the experiments, the quality of the generated images is rated
according to the criteria defined above. If all criteria are satisfied, a value of one is manually
assigned to this configuration and a zero otherwise. Figures 10 shows the rating quality of
the images for the grid search configurations when re-initializing the last layer (Experiment
“Last”). Because the training is done three times per experiment, the quality rating can be
averaged over these three runs. A dark green value indicates that, in all three runs, the
quality was good according to the criteria, and the light green indicates that only two of the
three trained TransfGANs produce good images. The orange field encodes one TransfGAN
which produces good images, and the red one indicates that all images lack one or all
quality characteristics.

In Experiment “Last”, the images for λD = 0.005 lack quality because they are not
showing a realistic pixel distribution due to the remaining presence of the vanishing
gradient. For low generator learning rates (λG = 0.00005) and higher discriminator
learning rates, the generator is not able to generate good images and a noisy pattern is
visible. Examples of bad-quality images are given in Figure 11. This pattern remains visible
if the TransfGAN is trained for an additional 300 epochs.

If the generator learning rate is large (λG = 0.005), it can move into some regions in
the loss-space where no highlight and shadow are generated. An example for this failure is
shown in Figure 12. This type of error occurs with and without the extra training of the
discriminator and for all discriminator learning rates.
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(a) (b)
Figure 10. Quality of the generated images when re-initializing the discriminators last layer. (a) No extra training of the
discriminator. (b) With extra training of the discriminator.

Figure 11. Noise pattern in the generated images.

Figure 12. Generated images without object and shadow visible.

When all layers of the discriminator are re-initialized (Experiment “All”), the Transf-
GAN is not able to learn to generate realistic sidescan snippets, as can be seen in Figure 13.
Since, in this experiment, only the generator is able to benefit from the pre-training, the re-
sults indicate that the number of training samples is not enough to train the whole discrim-
inator from scratch.

(a) (b)
Figure 13. Quality of the generated images when re-initializing all layers of the discriminators. (a) No extra training of the
discriminator. (b) With extra training of the discriminator.



J. Mar. Sci. Eng. 2021, 9, 239 12 of 17

Besides the noisy pattern or cases in which no object at all is generated, another error
arising using this approach is that the images look blurry. Figure 14 shows some examples
of this type of error, which occurs mostly for larger λG in combination with smaller λD.
In addition, the presence of mode collapse can be observed in these examples, since all
images look the same but were generated by a different noise vector. Mode collapse
happened in multiple runs in different learning rate combinations in Experiment “All”, but
not in Experiment “Last”, where only the last layer of the discriminator was re-initialized.
This again indicates that it is essential to keep information from the pre-training in the
discriminator during fine-tuning when the number of training samples is limited.

Figure 14. Blurry generated images with mode collapse visible.

3.3. Generated Image Analysis

In order to analyze the quality of the generated images from the TransfGAN, of which
only the last layer was re-initialized, three additional experiments are carried out. First,
besides the qualitative analysis from the previous section, the ability of the generated
images to serve as an augmentation dataset for a deep learning classifier is analyzed. In
addition, the diversity in the generated samples is investigated. Finally, an analysis of the
frequency domain of the images is carried out.

For the first experiment, a CNN is used to classify sidescan sonar snippets into the
classes Tire, Rock and Background. The number of samples in each class is given in Table 5,
where an imbalance between the number of samples of class Tire and Rock or Background
can be seen. The structure of the CNN is taken from [12] and shown in Table 6.

Table 5. Labeled classes for the classification task and division into training and test sets.

Object Class Number in Training Set Number in Test Set

Tire 18 17
Rock 36 210

Background 36 210

Table 6. CNN used for classification.

Layer Neurons Kernel Size Stride Padding Activation Function Feature Map Dimension

Input - - - - - 64× 64× 1
Conv2D 16 3× 3 (1, 1) (1, 1) relu 64× 64× 16

BatchNormalization - - - - - 64× 64× 16
Conv2D 16 3× 3 (1, 1) (1, 1) relu 64× 64× 16

BatchNormalization - - - - - 64× 64× 16
MaxPooling - 2× 2 (2, 2) - - 32× 32× 16

Conv2D 32 3× 3 (1, 1) (1, 1) relu 32× 32× 32
BatchNormalization - - - - - 32× 32× 32

MaxPooling - 2× 2 (2, 2) - - 16× 16× 32
Dropout - - - - - 16× 16× 32

Dense 100 - - - relu 100× 1
Dropout - - - - - 100× 1

Dense 3 - - - softmax 3× 1
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This CNN is trained once with the training set specified in Table 5, and once with an
additional 18 tire samples generated by a TransfGAN. Figure 15 illustrates this augmenta-
tion scheme.

Noise Generator

Training
Data

Synthetic
Data

CNN

Tire

Background

Rock

Figure 15. Augmentation of a CNN with samples generated by the trained TransfGAN.

Following the results from the previous experiment, re-initialization of the last layer
of the discriminator was applied to the TransfGAN. Three different configurations of the
TransfGAN, which have been shown to generate good images, are compared:

• λG = 0.0001, λD = 0.0001, no extra training of the discriminator prior to the fine-tuning
• λG = 0.00005, λD = 0.00005, no extra training of the discriminator prior to the

fine-tuning
• λG = 0.0005, λD = 0.0005, with extra training of the discriminator prior to the

fine-tuning

The balanced accuracy

ACCbal =
1
|C| ∑

c∈C
recall(c) (7)

and the macro F1 score

F1macro =
1
|C| ∑

c∈C
F1(c) =

1
|C| ∑

c∈C

2 · precision(c) · recall(c)
precision(c) + recall(c)

(8)

with C = {Tire, Rock, Background} are used as performance measures. The classification
experiments were carried out ten times to account for the random initialization of the CNN.
Table 7 reports the mean and standard deviation of the two metrics over these ten runs.

The results show a slight improvement in balanced accuracy and in the macro F1 score
of 1% when the training dataset is augmented with generated snippets. Only a negligible
difference is seen between the performance achieved from using different TransfGANs.
Compared to the results from [12], the performance of the baseline CNN without synthetic
augmentation is worse, which can be explained by differences in the sonar data themselves.
The increase in classification performance due to the synthetic augmentation is not as large
either. Since the variability of the data used for augmentation is a critical factor for potential
performance increase, the ability of the TransfGANs used in the classification experiment
to generate different images is further investigated.
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Table 7. Experiments for the synthetic augmentation of the training dataset with the TransfGAN.

Experiment ACCbal F1macro

no GAN 0.6230 ± 0.0153 0.6238 ± 0.0134
λG = 0.0001, λD = 0.0001, no extra training 0.6322 ± 0.0173 0.6316 ± 0.0141

λG = 0.00005, λD = 0.00005, no extra training 0.6367 ± 0.0249 0.6351 ± 0.0208
λG = 0.0005, λD = 0.0005, with extra training 0.6368 ± 0.0227 0.6349 ± 0.0180

To measure the variability in the generated images, 1000 snippets are generated and
clustered by use of the pixel-wise Euclidean distance

d(Ip, Iq) =

√√√√ M

∑
m=1

N

∑
n=1

(Ip(m, n)− Iq(m, n))2 (9)

between two M× N images Ip and Iq, where, for the generated snippets, M = N = 64.
This distance measure is sensitive to translation, i.e., if the same tire was generated by
the TransfGAN but placed at different locations inside the snippet, the distance would be
large. Since translation can be seen as a type of additional augmentation, it should not
harm the variability measure. The pixel-wise Euclidean distance is calculated between all
pairs of the 1000 images. Starting with the first image, all other images with a distance
smaller than a certain threshold form a cluster to this image. The next not-already-clustered
image is then taken as the starting point for the next cluster. Finally, the number of clusters
can be seen as the number of different images generated by the TransfGAN, or, in other
words, as a measure for image variability. All three TransfGANs from the classification
experiment are analyzed in this way. Figure 16 displays the number of clusters for different
thresholds. The black line indicates the mean distance between all images as a reference. If
the distance threshold for calculating the clusters is set too high, it can be observed that
the resulting images, which serve as the center of each cluster, still look very similar. From
this observation, the threshold can be set to 0.001 in order to give a reasonable number of
different images. For this threshold, the number of clusters is 12, 18 and 21, respectively.
When generating the 18 snippets for the augmentation dataset, the probability of generating
a very similar image multiple times is high, which may explain the only slight increase in
classification performance.

Figure 16. Number of cluster for different thresholds.

Finally, the generated images are analyzed in the frequency domain. The work of [23]
has shown that images generated by a GAN often contain artifacts in the frequency domain
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which make these images easy to detect as fake when they are processed in the frequency
domain. The images from the previous experiment are transformed using the 2D discrete
cosine transformation, as is done in [23]. The mean spectra over the 1000 images for the
three TransfGANs are displayed in Figure 17 together with the mean spectrum for the real
tire images. The upper left corner of the images indicates the low-frequency components
and the lower right corner the high-frequency components, respectively. The spectra are
displayed in a logarithmic scaling.

(a) (b) (c) (d)
Figure 17. Mean spectra of the images from (a) TransfGAN with λG = 0.0001, λD = 0.0001, no extra training, (b) TransfGAN
with λG = 0.00005, λD = 0.00005, no extra training, (c) TransfGAN with λG = 0.0005, λD = 0.0005, with extra training,
(d) the real sidescan dataset.

All three spectra of the generated images look more noisy compared to the one of
the real sidescan snippets, but do not show the artifacts described in [23]. The authors
of [23] argue that the artifacts arise due to the upsampling methods used in the generator
of the GANs which they have studied. They focus on GANs which were trained on the
celebA and LSUN bedrooms datasets, containing images with more details compared to
sidescan snippets. Moreover, the resolution of the images is 128× 128 larger than the one
of the sidescan snippets with 64× 64, which results in one fewer upsampling operation.
Consequently, the effect from the upsampling on the spectra is smaller.

4. Discussion and Conclusions

This work has contributed to the field of generating synthetic sidescan sonar data by
giving an in-depth analysis of a transfer-learning procedure to train a GAN with limited
sonar data. The vanishing of the gradient of the discriminator has been shown to be a
general problem when applying transfer-learning to GANs, since, in the pre-training, the
discriminator may converge into a region where it will reject real samples in the fine-tuning
step. This may not be as critical for applications other than imaging sonar, where more
complex data can already be used in the pre-training step. However, with the idea in
mind that the data in the pre-training should be simple in order to quickly create this data
and to learn simple features in this step, finding a way to deal with the vanishing of the
discriminator’s gradient becomes necessary. Our presented solution of re-initializing the
discriminators last layer prior to the fine-tuning step has shown to make the training of
the TransfGAN more robust. No vanishing gradient or mode collapse is present in this
case. However, the increase in the performance of a classifier CNN when augmented
with synthetic data from this GAN is small. Due to the re-initialization, some information
from the pre-training is lost. Furthermore, the training set is very small, leading to a low
variability in the images generated by the TransfGAN. A larger dataset may improve the
generation capability of the TransfGAN, and thus the performance of a classifier even
further. In addition, some information about the pixel-value distribution in sonar images
can also be drawn from background images in which no object is present. Such snippets can
easily be extracted from a sidescan sonar image. Extracting and feeding this information
into the fine-tuning process of the TransfGAN may improve the quality and variability of
the generated images. Moreover, adapting the pixel distribution in the highlight, shadow
and background regions of the ray-traced images according to a more realistic distribution
for sidescan sonar images and its effect on the transfer-learning needs to be investigated.



J. Mar. Sci. Eng. 2021, 9, 239 16 of 17

Finally, future work will also focus on additional ways to train a CNN for the classification
of a small sidescan sonar image dataset. Transferring knowledge from well-known CNNs
like EfficientNet [24], pre-trained on natural images, to the sonar domain, e.g., by training
on a gray-scaled version of the Imagenet dataset or other data more similar to sonar images,
will be investigated.
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