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Abstract: The dinoflagellate genus Scrippsiella is a common member of phytoplankton and their cysts
are also frequently reported in coastal sediments worldwide. However, the diversity of Scrippsiella in
Korean waters has not been fully investigated. Here, several isolates of Scrippsiella precaria collected
from Korean waters and germinated from resting cysts were examined using light and scanning
electron microscopy. The resting cysts were characterized by pointed calcareous spines and one or
two red accumulation bodies, and the archeopyle was mesoepicystal, representing the loss of 2–4′ and
1–3a paraplates. Rounded resting cysts were found in culture, and an increase in spine length was
observed until 8 days of development. Korean isolates of S. precaria had the plate formula of Po, X, 4′,
3a, 7′′, 6C, 4S, 5′ ′′, 2′′ ′′. There were differences in the cell size and location of the red body between
Korean isolates and previously described cells of S. precaria. In addition, the Korean isolates of S.
precaria had two types of the 5′′ plate that either contacted the 2a plate or not. Molecular phylogeny
based on internal transcribed spacer (ITS) and large subunit (LSU) rDNA sequences revealed that
the Korean isolates were nested within the subclade of PRE (S. precaria and related species) in the
clade of Scrippsiella sensu lato, and that the PRE subclade had two ribotypes: ribotype 1 consisting
of the isolates from Korea, China, and Australia, and ribotype 2 consisting of the isolates from Italy
and Greece. Lineages between isolates of ribotype 1 were likely to be related to the dispersal by
ocean currents and ballast waters from international shipping, and the two types of spine shapes and
locations of the 5′′ plates may be a distinct feature for ribotype 1.

Keywords: Scrippsiella; resting cyst; intercalary plate; precingular plate; ribotype

1. Introduction

The dinoflagellate genus Scrippsiella Balech ex A.R.Loeblich belongs to the family
Thoracosphaeraceae and was established by Balech, with Scrippsiella sweeneyae Balech as
the type species [1]. Scrippsiella species share the consistent plate pattern of Po, X, 4′, 3a,
7′′, 6C, 5S, 5′ ′′, 2′′ ′′ [1–5], and based on morpho-molecular features, including the plate
pattern and phylogenetic position [6], approximately 30 species are currently assigned
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to the genus Scrippsiella, which includes some previously recorded Calcigonellum Deflan-
dre species [6–11]. Most of the Scrippsiella species produce resting cysts with distinctive
calcareous ornaments [12], but some Scrippsiella species, such as Scrippsiella donghaiensis
H.Gu and Scrippsiella enormis H.Gu, produce noncalcareous resting cysts [13,14]. Recently,
the morphological features of calcareous ornaments have been used to classify Scrippsiella
species [13,15,16].

In previous studies, Scrippsiella sensu lato (s.l.) was identified based on internal tran-
scribed spacer (ITS) sequences and large subunit ribosomal DNA (LSU rDNA) [13,15,17,18].
As Scrippsiella s.l. includes not only common Scrippsiella species but also several cyst-
based genera, such as Calciodinellum, Pernambugia Janofske & Karwath, and Naiadinium
polonicum (Woloszynskia) S. Carty, which is a freshwater species [15,18], Scrippsiella s.l.
is not fully resolved, either phylogenetically or taxonomically. Consequently, the mor-
phological and genetic diversity of Scrippsiella species from many coastal areas requires
additional exploration. However, most studies on the classification of Scrippsiella species
using morphological and genetic approaches have focused on the Mediterranean and At-
lantic diversities [18,19]. Gu et al. [13,20] and Luo et al. [15] recently reported the diversity
of Scrippsiella species from Chinese coastal areas, and the morphology and phylogeny of
several Scrippsiella species from Korean coastal areas, such as Scrippsiella lachrymosa and
Scrippsiella masanensis, have been described [21,22].

S. precaria Montresor & Zingone was originally described from established cultures
in coastal waters of the Gulf of Naples [23], where cyst formation of this species was also
reported [24]. Gu et al. [19] later provided the morphological details and elucidated the
phylogenetic relationships of S. precaria collected from Chinese coastal waters. Cysts of S.
precaria have also been reported in Japanese coastal waters [25,26]; however, vegetative
cells and resting cysts of S. precaria have not yet been reported from Korean coastal areas.
According to Montresor and Zingone [23] and Gu et al. [20], S. precaria share three anterior
intercalary plates with Scrippsiella ramonii and Scrippsiella irregularis, and these species
form a clade phylogenetically. However, the clade also includes N. polonicum, which has
two anterior intercalary plates. This indicates that the arrangements of adjacent plates,
possibly including precingular plates, can vary depending on the number and arrangement
of anterior intercalary plates in the group, and thus, this character may be useful for the
classification of species that are members of this clade.

During a study of marine dinoflagellates and resting cysts from Korean coastal areas, a
Scrippsiella-like species and calcareous resting cysts were found. The cultures were success-
fully established based on the incubation of the collected vegetative cell and germination
experiments. These cultures were examined using light and scanning electron microscopy,
and ITS and LSU rDNA were sequenced. The results indicated that the cultures belonged to
S. precaria. In the present study, we established the morphological details and phylogenetic
positions of the Korean cultures of S. precaria, and then we compared them with those
previously reported in other studies.

2. Materials and Methods
2.1. Sample Collection and Culture

Sediment samples were collected from a station at Jinhae-Masan Bay (34◦59′36′′ N,
128◦40′33′′ E) in July 2013 using a gravity corer. The top 2 cm of the core samples was sliced
and then stored in dark and cool conditions at 4 ◦C prior to further analysis. Sample analysis
was conducted using the panning method of Matsuoka and Fukuyo [27]; approximately
2 g of each sample was placed in a beaker, rinsed with filtered seawater, and sonicated for
approximately 30 s. The sediment suspension was sieved using stainless steel screens with
125 and 10 µm mesh opening sizes. The residue on the 10 µm mesh was washed into a
watch glass. By panning on the watch glass, cysts and light particles were separated from
heavier sand grains and were sieved again onto the 10 µm sieve and concentrated into a
final sample volume of 10 mL. To observe the cysts, 1 mL of the sample was placed in a
Sedgewick Rafter chamber (Pyser-SGI, Edenbridge, Kent, UK), and the cysts of Scrippsiella
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species characterized by numerous calcareous spines were photographed using a digital
camera and then isolated under an inverted microscope.

The isolated cysts were inoculated into individual wells of 96-well tissue culture plates
filled with f/2-Si culture medium (Marine Water Enrichment Solution, Sigma-Aldrich,
Saint Louis, MO, USA) via micropipetting using a capillary pipette and cultured at 20 ◦C
and ≈100 µmol photons m−2 s−1 cool-white illumination under a 14L:10D photocycle.
Germinated cells were transferred into the wells of six-well tissue plates. After sufficient
growth, the cells in the six-well tissue plates were transferred to a 30 mL culture flask
containing 25 mL sterile f/2-Si medium. A monoclonal culture of the germinated cells
was successfully established and deposited as strain LMBE-C28 in the Library of Marine
Samples, Korea Institute of Ocean Science and Technology, Republic of Korea; however,
the strain is currently not available.

On 15 March 2019, plankton samples were collected at a station in the Jinhae-Masan
Bay, Korea (35◦00′38′′ N, 128◦34′03′′ E) using a 20 µm mesh plankton net. In the laboratory,
a single cell of Scrippsiella species was isolated from the samples using a capillary pipette.
The isolated cell was inoculated into a well of a 48-well tissue culture plate filled with f/2-Si
culture medium and cultured at a temperature of 20 ◦C and ≈100 µmol photons m−2 s−1

cool-white illumination under a 12L:12D photocycle. The cultured cell was transferred into
the wells of six-well tissue plates. After sufficient growth, the cells in the six-well tissue
plates were transferred to a 30 mL culture flask containing 25 mL sterile f/2-Si medium. A
monoclonal culture of Scrippsiella species was successfully established and deposited as
strain LIMS-PS-2799 in the Library of Marine Samples, Korea Institute of Ocean Science
and Technology, Republic of Korea.

2.2. Light Microscopy

Vegetative cells were examined and photographed at ×400 magnification using an
ultra-high-resolution digital camera (DS-Ri2, Nikon, Tokyo, Japan) on an upright micro-
scope (ECLIPSE Ni, Nikon, Tokyo, Japan). For fluorescence microscopy, approximately 1
mL of culture strain LIMS-PS-2799 was transferred to a 1.5 mL microcentrifuge tube and
SYTOX® Green Nucleic Acid Stain (Molecular Probes, Eugene, OR, USA) was added at a
final concentration of 1.0 µM. The cells were incubated in the dark at room temperature for
30 min and then observed using a Zeiss Filterset (emission: BP 450–490; beam splitter: FT
510) and photographed using an AxioCam MRc digital camera on an upright microscope
(Axio Imager 2, Zeiss, Jena, Germany).

To observe changes in the morphology of the resting cyst, a round resting cyst pro-
duced from the culture strain LIMS-C28 was isolated and inoculated into Petri dishes
(50 × 15 mm; SPL, Pocheon, South Korea) containing 10 mL of f/2-Si culture medium
with a salinity of 32. The cyst was incubated on a live-cell observation system (Zeiss) at
20 ◦C under 100 µmol photons m−2 s−1 cool-white illumination in a 24L:0D photocycle.
Time-lapse sequences were captured at ×400 magnification with an AxioCam MRm digital
camera on an Axio Imager 2 upright microscope (Zeiss) using bright field illumination.

2.3. Scanning Electron Microscopy (SEM)

For the SEM, the cells were fixed with Lugol’s solution for 4 h at room temperature. The
fixed cells were deposited on polycarbonate membrane filters (2.0 µm pore size; Millipore,
Billerica, MA, USA). The filters were rinsed twice with deionized water and dehydrated in a
graded ethanol series (10–99.9% in eight steps) for 10 min per step. Filters were then critical
point dried (CPD) using a critical point drying apparatus (Spi-DryTM Regular Critical Point
Dryer, SPI Supplies, West Chester, PA, USA) and liquid CO2. After they were CPD, the
filters were mounted on stubs. Finally, the samples were coated with platinum-palladium
and examined using a field emission scanning electron microscope equipped with X-ray
energy dispersive spectroscopy (EDS) (JSM 7600F, JEOL, Tokyo, Japan).
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2.4. DNA Extraction and Sequencing

Genomic DNA was extracted from 1 mL of exponentially growing cultures using the
DNeasy® Plant Mini Kit (QIAGEN Inc., Valencia, CA, USA). The ITS1-5.8S-ITS2 sequences
for two strains LIMS-PS-2799 and LMBE-C28 were amplified using the primer pairs ITSFor
and ITSRev [28]. Part of the LSU region sequence for strain LIMS-PS-2799 was amplified
using the primer pairs 25F1 and R2 [29]. Polymerase chain reaction (PCR) was conducted
using a thermoblock (T100TM Thermal Cycler; Bio-Rad, Hercules, CA, USA) using the
following protocol: 95 ◦C for 4 min; 30 cycles of denaturation at 95 ◦C for 10 s, annealing at
52 ◦C for 40 s, extension at 72 ◦C for 1 min, and a final elongation at 72 ◦C for 5 min. The
PCR-amplified products were confirmed using 1% agarose gel electrophoresis. The PCR
products were purified with the QIAquick PCR Purification kit (Qiagen, Valencia, CA, USA).
A cycle-sequencing reaction was performed using the ABI PRISM® Big DyeTM Terminator
Cycle Sequencing Ready Reaction Kit (Applied Biosystems, Foster City, CA, USA).

2.5. Alignment and Phylogenetic Analyses

Sequences were viewed and assembled in DNABaser version 4.36 (http://www.
dnabaser.com). Contigs were aligned using Mafft v6.624b online version 7 (http://mafft.
cbrc.jp/alignment/server/) [30] and the Q-INS-I option was used to consider rRNA sec-
ondary structures. The GTR+I+G substitution model was selected using the Akaike in-
formation criterion, as implemented in jModelTest version 2.1.4 [31]. For the analysis of
ITS1-5.8S-ITS2 sequences, the dataset contained 51 taxa and consisted of 621 characters (in-
cluding gaps inserted for alignment). The armored dinoflagellate Ensiculifera aff. loeblichii
(HQ845328) and Pentaphasodinium dalei (JX262496) were used as outgroup taxa. For the
analysis of LSU sequences, the dataset contained 44 taxa and consisted of 1024 characters
(including gaps inserted for alignment). The armored dinoflagellate Prorocentrum cordadum
(AF260379) was used as the outgroup taxon.

Phylogenetic trees for both datasets were independently constructed using maximum
likelihood (ML) analyses and Bayesian inference. ML analyses were performed using
PhyML ver. 3.1 [32]. The starting tree was generated using BIONJ with optimization
of the topology, branch lengths, and selected rate parameters. Six different substitution
rates were selected. Bootstrap analyses for both datasets were carried out using ML with
1000 replicates to evaluate the statistical reliability. Bayesian inference analyses were
conducted on both datasets using the MrBayes program version 3.2 [33]. The evolutionary
model used in the Bayesian inference analyses was the TVM+I+G model in the ITS region
and the GTR+I+G model for the LSU region with a gamma-distributed rate variation across
sites. Five Markov chain Monte Carlo (MCMC) chains were run for 10 million generations,
sampling every 100 generations.

3. Results
3.1. Morphology of the Resting Cysts of Scrippsiella precaria

Cysts of Scrippsiella precaria were observed in sediment samples (Figure 1a,b), as well
as in clonal cultures (Figure 1c–i). Cysts were yellowish or grayish, with granular cell
contents (Figure 1). The cyst bodies were spherical to ovoid and the cyst diameters ranged
from 18.8 to 25.6 µm (mean = 22.3 µm, n = 30). One or two red accumulation bodies were
located toward the apical or central part of the cyst bodies (Figure 1a,c–e). The archeopyle
was mesoepicystal, representing the loss of 2–4′ and 1–3a paraplates (Figure 1b). The
cysts were covered with numerous narrow spines ranging in length from 0.7 to 6.6 µm
(mean = 3.9 µm, n = 30), and the EDS indicated that the spines were composed of calcium
carbonate (CaCo3) (Figure 1i). The SEM observations revealed that the calcareous spines
that emerged directly from the cyst bodies were pentagonal and became narrower toward
the apex (Figure 1f–h). However, in the clonal culture, cysts without spiny processes
were occasionally observed (Figure 2a,b). Time-lapse sequences obtained using a live-cell
observation system showed the formation and changes in the length of the spiny processes
of the cyst (Figure 2). Resting cysts had a rounded shape without spines until 2 days of
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incubation, whereas very short spines emerged from the cyst bodies on day 3, where the
spine lengths subsequently increased until day 8 of incubation (Figure 2).
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processes over time, and (h) complete formation of a cyst. Scale bars: 10 µm.



J. Mar. Sci. Eng. 2021, 9, 154 6 of 15

3.2. Morphology of Vegetative Cells of Scrippsiella precaria

There were no significant differences in the morphology between motile cells germi-
nated from resting cysts and those collected from water samples. Motile cells of S. precaria
were oval and slightly dorso-ventrally compressed (Figures 3 and 4), and were usually
solitary and rarely found in pairs (Figure 3e). Cells were yellowish or grayish and filled with
pale white and grayish granules (Figure 3a–e), and were small, ranging from 20.4–28.5 µm
in length (mean = 24.7 µm, n = 36) and 18.1–24.4 µm in width (mean = 21.5 µm, n = 36).
The epitheca of the cell was conical and had a rounded apex, the cingulum was wide
and the hypotheca was hemispherical (Figure 3a,c–e and Figure 4a,b). The left half of the
hypotheca was sometimes prominent in the ventral view (Figure 3a,c). The epitheca was
slightly longer than the hypotheca, occasionally showing a red pigment in the epitheca
(Figure 3a,c–e and Figure 4a–d). A potential red eyespot was visible in the sulcal area
(Figure 3c,d). In the ventral view, the spherical nucleus was visible and located in the
anterior part of the cell (Figure 3f). The chloroplast was distributed toward the marginal
regions of the cell but its shape was unclear (Figure 3f).
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showing the position of the nucleus (green) and chloroplast (red). Scale bars: 5 µm.
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The thecal plate pattern of cells based on the SEM observations is shown in Figure 5.
The cells had thin plates arranged in the Kofoidian plate formula of Po, X, 4′, 3a, 7′′, 6C, 4S,
5′ ′′, 2′′ ′′ (Figures 4 and 5). Numerous small pores (mean diameter = 0.13 µm, n = 30) were
randomly scattered on the thecal surface. The apical pore complex (APC), including an
elongated pentagonal canal plate (X), was keyhole-shaped, comprising a polygonal pore
plate (Po) surrounded by a rim and a comma-shaped pore surrounded by a rim in the
middle of the APC (Figure 4h). The X plate contacted plate 1′. Plate 1′ was surrounded by
plates 2′, 4′, 1′′, and 7′′, and was narrow and irregularly rhombic, with truncate anterior
and posterior ends (Figure 4a,e). Plate 2′ was pentagonal, whereas plates 3′ and 4′ were
hexagonal and heptagonal, respectively (Figure 4e). Plate 4′ was larger than plates 2′ and
3′. There were three anterior intercalary plates in the dorsal part of the epitheca and the
plates contacted each other (Figure 4b,e,i,j and Figure 6). Plates 1a and 3a were hexagonal
and similar in size, while plate 2a was much smaller, rhombic but occasionally triangular
or rectangular, and either contacted plate 5′′ or not (Figure 4b,i,j and Figure 6). Plates
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3′′, 4′′, and 5′′ were much smaller than plates 1′′, 2′′, 6′′, and 7′′ due to the presence of
intercalary plates (Figure 4b,e). Plates 4′′ and 5′′ contacted the intercalary plates. The
cingulum, comprising six plates, was wide and deeply excavated and descended to about
its own width (Figure 4b,i). Among the cingulum plates, the first cingulum plate (1C) was
the smallest, while the other six plates were similar in size (Figures 4a–d and 5). There
were four sulcal plates. The anterior sulcal plate (Sa) was covered by the 7” plate, contacted
1C and the right sulcal plate (Sd), and had a sickle-like extension. Sd was narrow, with
a nib-shaped posterior end, and was wing-shaped on its left side (Figure 4a,g). The left
sulcal plate (Ss) was covered by Sa and Sd (Figure 4a,g). The posterior sulcal plate (Sp) was
wide and long and extended into the hypotheca without reaching the antapex (Figure 4a).
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In the postcingular series, plate 1′ ′′, which contacted plates Sp, 1C, 2C, 1′′ ′′, and 2′′ ′′,
was tetragonal and wider than the other four plates (Figure 4a). Plate 3′ ′′ was the largest
postcingular plate and contacted the antapical plates (1′′ ′′ and 2′′ ′′). Plate 2′ ′′ was the
second-largest plate and only contacted plate 1′′ ′′. Plates 4′ ′′ and 5′ ′′ contacted plate 2′′ ′′,
whereas plate 5′ ′′ also contacted plates Sp and Sd. The antapical plates were pentagonal
and similar in size and contacted plate Sp.

The plate overlap patterns of the epithecal, cingular, and hypothecal plate series
followed two general gradients: from dorsal to ventral and from cingulum to the two poles
(Figure 5). The fourth precingular (4′′) and third postcingular (3′ ′′) plates and the fourth
cingular (4C) plate were identified as keystone plates that overlapped all adjacent plates. In
the sulcal plate series, the Sp plate was overlapped by the cingulum and hypothecal plates.
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3.3. Molecular Phylogeny of Scrippsiella precaria

The inferred phylogenies from the ML and Bayesian inference (BI) analysis based
on ITS region (ITS1, ITS2, and 5.8S rDNA) and LSU rDNA sequences are shown in
Figures 7 and 8. The sequence of one strain of Scrippsiella precaria (LIMS-PS-2799) for
LSU rDNA, and the sequences of two strains of S. precaria (LIMS-PS-2799 and LMBE-C28)
for the ITS region, with other related species available from GenBank, were used for the
phylogenetic analysis.
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Figure 8. Phylogenetic positions of Korean isolates of Scrippsiella precaria that were inferred from the ITS and 5.8S sequences
based on ML. Ensiculifera aff. loeblichii and Pentapharsodinium dalei were used as outgroup taxa. The numbers on each node
are the Bayesian PP followed by the bootstrap values (%). Only bootstrap values above 50% and PP above 0.7 are shown.
STR: clade of Scrippsiella trochoidea species and its relatives, PRE: clade of Scrippsiella precaria and its relatives; CAL: clade
of Calciodinellum and its relatives; SPR: subclade of PRE, consisting of S. precaria; SIR: subclade of PRE, consisting of S.
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clades were based on the results of Gottschling et al. [18] and Luo et al. [15]. Scale bar: 0.05 nucleotide substitutions per site.
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ML and BI based on ITS region and LSU rDNA generated similar phylogenetic trees
that differed by only a few topological features. The molecular tree based on LSU rDNA
formed a clade (Scrippsiella sensu lato) that mainly consisted of Scrippsiella species and
those of genera Calciodinellum, Duboscquodinium, Naiadinium, Thelodinium, and Tintinnoph-
agus (Figure 7); however, this clade had weak support (posterior probability/ML boot-
strap = 0.73/58). Three subclades, namely, CAL (Calciodinellum and related species), STR
(Scrippsiella trochoidea and related species), and PRE (S. precaria and related species), were
identified (Figure 7), and the Korean strain of S. precaria was nested within the PRE clade
and shared an identical sequence with the Australian (DQ167863 and JN982389) and
Japanese (MH497037) strains of S. precaria (Figure 7).

The molecular tree based on the ITS region had a similar topology to the LSU rDNA
gene tree; however, the clade of Scrippsiella sensu lato received strong support (1/93)
(Figure 8) and comprised three clades (CAL, STR, and PRE). Korean strains of S. precaria
were nested within the PRE clade, which consisted of four subclades: the SPR clade
containing S. precaria, the SIR clade containing S. irregularis, the NPO clade consisting of
Naiadinium polonicum, and the SRA clade composed of S. ramonii (Figure 8). In the SPR
clade, two ribotypes were identified among the Chinese, Korean, Australian, Italian, and
Greek strains of S. precaria. Korean strains of S. precaria were nested within ribotype 1 and
grouped with Chinese and Australian strains (0.81/53), whereas ribotype 2 was composed
of Italian and Greek strains (1/100) of S. precaria.

4. Discussion
4.1. Morphological Features of Resting Cysts of Scrippsiella precaria

According to Gu et al. [13], the presence of a red body and the shape of the archeopyle
in resting cysts of Scripsiella species, including S. precaria, are potentially useful taxonomic
characters for the identification of the species because these characteristics are constant
among strains and from one generation to the next generation of cysts. Montresor and
Zingone [23] also described resting cysts of S. precaria with a red body. However, resting
cysts of S. precaria in this study had one or two prominent red bodies. Variability in the
number of red bodies has been observed in Scrippsiella spinifera [15]. This indicates that the
number of red bodies should not be used as a taxonomic character to distinguish between
vegetative cells of Scrippsiella species and other related species. By contrast, the shape of the
archeopyle appears to be a stable character because Scrippsiella species, including S. precaria,
usually have a cap-shaped operculum that includes apical (2′–4′) and/or intercalary (1a–3a)
paraplates (e.g., [4]). Such an archeopyle was found in S. precaria and has also been reported
in Scrippsiella regalis, S. trochoidea, Scrippsiella rotuda, and S. donghaiensis [12,13].

Cysts of Scrippsiella species are usually surrounded by calcareous ornaments [2,3,34,35],
whereas some species can produce noncalcareous cysts [15,22]. Previous studies on cyst–theca
relationships in S. precaria revealed that resting cysts are characterized by calcareous spines
with capitate or pointed ends [20,23,24]. Calcareous spines of resting cysts collected from
Korean sediments and those formed in clonal cultures also had pointed spines. However, the
capitate ends recorded by Monstresor and Zingone [23,24] were not observed in this study,
and the spine ends of resting cysts of S. precaria from Chinese and Japanese coastal areas were
pointed as well (e.g., [20,26]). This indicates that S. precaria has two types of spines. According
to Montresor et al. [19], the morphology of calcareous ornamentations can be influenced
by environmental conditions, such as macro- and micro-nutrient concentrations, pH, and
light availability. We were not able to address this issue based on the data obtained in our
study. Differences in spine type may be related to differences in environmental conditions
based on the geographic origins of S. precaria because strains of S. precaria from Asian coastal
areas, such as the Bohai Sea of Chinese and Korean coast, have identical ITS and LSU rDNA
sequences (Figures 7 and 8).

Several studies reported resting cysts of Scrippsiella species without calcareous or-
naments in culture, despite the observation of spiny cysts in the field (e.g., [13,24,36,37]).
Wang et al. [36] and Shin et al. [37] reported two morphotypes of S. trochoidea cysts from
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surface sediments and cultures: a typical type with short calcareous spines and a transpar-
ent type without calcareous spines (naked-type cyst). Montresor and Marino [24] observed
the formation of spines from the rounded form of resting cysts of S. precaria that were iden-
tical to our observations. These observations indicate that true resting cysts of calcareous
Scrippsiella species can have a rounded form. Shin et al. [37] also observed that in acidic
environments, the lengths of calcareous spines were shorter than those observed for typical
cysts and the shape of the spines was abnormal, indicating that the length and shape of
calcareous spines of Scrippsiella species are plastic and therefore unreliable characteristics
for classification [13].

According to Shin et al. [37], the formation of calcareous spines can help to protect
the cyst body from aerobic and anaerobic decay or mechanical damage during ingestion
and digestion by predators. If so, the rapid formation of calcareous spines may ensure
cyst survival. In this study, it took 8 days for the complete formation of calcareous spines
of S. precaria. This was the first record of the time required to form calcareous spines
in Scrippsiella species; however, because the relationship between cyst survival and the
formation time of calcareous spines remains unknown, further studies are needed.

4.2. Morphological Comparisons of Korean Isolates of Scrippsiella precaria with Previously
Described Species

According to Montresor and Zingone [23] and Gu et al. [20], Scrippsiella precaria
specimens from the Gulf of Naples and the Bohai Sea have the plate formula of Po, X, 4′,
3a, 7”, 6C, 5S, 5′ ′′, 2′′ ′′. They described a median sulcal plate (Sm) in the sulcal region,
whereas no Sm plate was observed in the Korean isolates. This was possibly because the
Sm was almost hidden by the wing of the right sulcal plate [23]. S. precaria described from
previous studies was characterized as being slightly compressed dorso-ventrally, with
the presence of a red pigment body and spherical nucleus, where these morphological
features are consistent with those observed in Korean isolates of S. precaria. A red pigment
body in the lower sulcal area was observed in S. precaria specimens collected from the
Gulf of Naples [23,24], which is consistent with our findings in Korean isolates. However,
reported cell sizes of isolates of S. precaria differed between studies: isolates from the
Gulf of Naples and the Bohai Sea, China, have similar sizes (15–25 µm in length and
13.5–20 µm in width) [20,23], but isolates from Korean and Japanese coastal waters are
slightly larger (e.g., [25,26]).

Scrippsiella species usually have three intercalary plates, with plates 1a and 3a sep-
arated by plate 2a (e.g., [13,15,18,19,22]). However, in some Scrippsiella species, such as
S. irregularis, S. ramonii, and S. precaria, the plates 1a and 3a contact each other, and thus
the 2a plate contacts not only the 1a and 3a plates, but also two precingular plates (4′′ and
5′′) [23,34,38]. Gu et al. [20] described the 2a plate of S. precaria collected from the Bohai
Sea of China as touching the 4” and 5” precingular plates. However, Korean isolates of
S. precaria had two types of the 5′′ plate: one type that contacted the 2a plate and the other
that did not. It is possible that Gu et al. [20] did not observe a specimen in which the 5′′

plate did not contact the 2a plate because in most S. precaria cells, the 2a plate contacts
the 4′′ and 5′′ plates. According to Attaran-Fariman and Bloch [38] and Gu et al. [20],
differences in the size of the 2a plate and the shape of the hypotheca are key characteristics
that can be used to separate S. precaria from S. irregularis and S. ramonii. Consequently, the
smaller size of the 2a plate, the shape of the hypotheca, and the locations of the 5′′ plate
may be distinct features that distinguish S. precaria from other Scrippsiella species.

The plate overlap pattern is considered to be conserved at higher taxonomic levels [39].
The epithecal plate overlap pattern of S. precaria is the same as that found in most peri-
dinioid dinophytes [3,40], with the fourth precingular plate forming the keystone. The
4C plate is the keystone plate of the cingular series of S. precaria, identical to S. acuminata
(heterotypic synonym of S. trochoidea) [3].
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4.3. Phylogenetic Position of the Korean Isolates of Scrippsiella precaria

The molecular phylogeny of Scrippsiella precaria based on the ITS and LSU sequences
in the present study was consistent with those reported in previous studies (e.g., [15,18,20]);
in a Scrippsiella sensu lato clade consisting of mainly Scrippsiella species, S. precaria was
nested within the PRE clade. Gu et al. [20] found that only one S. precaria isolate from the
Bohai Sea of China was a member of the PRE clade; however, Luo et al. [15] found that an
isolate from Australia was grouped with the Chinese isolate in the PRE clade. This result
agrees with the results of the current study. In addition, the PRE clade was divided into
four subclades (SPR, SIR, NPO, and SRA) in our phylogeny based on the ITS region, and the
Korean isolates were nested within the SPR clade (Figure 8). The SPR clade comprised two
ribotypes of S. precaria: ribotype 1 consisting of isolates from Korea, China, and Australia,
and ribotype 2 consisting of isolates from Italy and Greece. According to Shin et al. [41,42]
and Hallegraeff [43], the dispersal of harmful microalgae, such as Alexandrium species
in Asian coastal areas and Australia, is related to ocean currents and ballast waters via
international shipping, and because of this, the harmful species from Jinhae-Masan Bay,
Korea, are phylogenetically grouped with those from China and Australia. This suggests
that the lineages between isolates of the ribotype 1 could also be due to dispersal. In the
SPR clade, Korean isolates are characterized by cysts with pointed spines, as was also
reported for the Chinese and Japanese strains [20,26], while the Italian cysts are spiny and
mostly have a capitate end [23]. In addition, the 5” plate either contacts or does not contact
the 2a plate, which may be a distinguishing feature of ribotype 1, although 5” plates that
do not contact the 2a plate have not been found in the isolates from China and Australia.
Consequently, further studies are needed to clarify the morphological differences between
the ribotypes of S. precaria.
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