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Abstract: This paper deals with the hydrodynamic effect of the ship on a flexible dolphin during a
mooring manoeuvre. The hydrodynamic effect refers to the change in momentum of the surrounding
fluid, which is defined by the concept of added mass. The main reason for the present study is to
answer the question, “What is the effect of the added mass compared to the mass of the ship during
the mooring procedure for a particular type of ship?” Measured angular frequencies of dolphin
oscillations showed that the mathematical model can be approximated by the zero frequency limit.
This simplifies the problem to some extent. The mooring is a pure rocking motion, and the 3D study
is approximated by the strip theory approach. Moreover, the calculations were performed with
conformal mapping using conformal Lewis mapping for the hull geometry. The fluid flow is assumed
to be non-viscous, non-rotating and incompressible. The results showed that the additional mass
effect must be taken into account when calculating the flexible dolphin loads.

Keywords: added mass; conformal mapping; lewis mapping

1. Introduction

Since the beginning of naval history, ships transporting cargo or people from point
A to point B have required facilities for safe berthing, loading, and unloading at both
points A and B. Over time, ships have grown in size and specialised ships, terminals, and
equipment have been built to handle specific types of cargo, such as liquid bulk, dry bulk,
and containers. For liquid bulk terminals, a jetty is the typical berthing facility. The ship is
usually moored at berths to dedicated breasting dolphins, which may be single-pile flexible
dolphins or multi-pile rigid dolphins with fenders.

The primary objective of this work is to estimate the ship added mass. A typical
situation of this research geometry and motion is shown in Figures 1 and 2. A ship is
moving in a pure sway direction with a constant speed towards the pier. To avoid direct
contact with the infrastructure of the liquid cargo terminal, two flexible dolphins reduce
the speed of the ship and act as two huge shock absorbers. The current cargo terminal was
designed for smaller types of ships, but now larger ships also call at the Port of Koper. As
far as safety is concerned, it is also about the safety of the docking process. In the safety
analysis of the docking manoeuvre, many different factors need to be analysed in order to
get a complete picture of the ship dynamics and the response of the port infrastructure. In
this article, we focus exclusively on the estimation of the added mass for such an operation.

Hydrodynamic modelling of added mass phenomena goes way back to names such
as Green, Stokes, etc. The influence of added mass has been expressed mathematically and
accurately by the expression of the added mass of a sphere. The influence of a free surface
on the added mass for surface piercing bodies began many years later. For a given ship,
it can be determined by an experimental method. However, the experimental method is
limited to a certain condition. To simulate the ship motion, especially in the initial stage of
design, the added mass must be calculated by a theoretical method.
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Figure 1. View of the berth in Port of Koper. The dolphins are to the right and the left from the central
pier-yellow circles on the sea (photo M.Perkovic).
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Figure 2. Flexible dolphin mooring with all dimensions. The bottom structure consists of different
layers of material: Stones and mud. A ship with mass M + m22 and velocity V approaches the
mooring. The dolphin is curved by c and the force acting at this moment is F.

The principal for calculating the added mass for surface piercing bodies began with
the work of Ursell [1,2] for a cylindrical cross-section. The mathematical model is based on
the multipole expansion approach and is in some sense restricted to simple cross-sectional
geometries and infinite water depth. The extension of the model to shallow water goes
back to Thorne [3]. An important work by Ursell and co-authors can be found in [4].
The multipole expansion method was later used by many researchers, in particular it is
very attractive for those working in theoretical hydrodynamics. The completely different
approach began with Frank [5], who developed a method for arbitrary cross-sections based
on the integral equation approach. The problem can be solved in the frequency domain,
introducing a linear consideration of all quantities involved. However, the mean drift
forces of order 2nd can only be obtained with the linear solution, e.g., [6]. In addition, Inglis
and Price [7], Newman and Sclavounos [8], and Nakos and Sclavounos [9] are among the
most important studies of this type.

All of the above methods implement the potential flow assumption and completely
neglect viscous effects. The added mass can typically be approximated as not depending
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on viscosity for the particular case of sinusoidal relative motion between the flow and
the object [10]. Similarly, viscous effects are negligible for radiated gravity waves due
to body motion, but the same is not always true for damping. It is known that viscous
damping during roll is typically the most significant viscous effect on the motion of a ship.
Lavrov et al. [11] performed CFD calculations using the Navier-Stokes equations with the
k−ω turbulence model to study the flow in the vicinity of 2D ship sections subjected to
forced rolling motions. They concluded that for the same shapes, a 10–20% difference in
added mass was observed over the entire frequency range compared to results from using
a linear frequency domain potential flow code.

The approach taken in the present study is more in line with the Ursell method,
combined with the Conformal Mapping approach. Lewis [12] proposed the classical
extended Joukowski transformation method, creating the two-parameter Lewis family
of ship-like sections. The family was extended by Landweber and Macagno [13,14] to
include an additional parameter, the second moment of the cross-sectional area about
the horizontal x-axis. Ursell’s approach was used extensively in ship hydrodynamics
by Grim [15], Tasai [16], Porter [17], De Jong [18] and others. Later, Athanassoulis and
co-authors [19–21] extended this approach to unsymmetric sections as well. It should be
noted that the use of only three parameters leads to a quite satisfactory description of ship
sections of conventional hull shapes, as is the case here. This property was exploited, for
example, by Grigoropoulos and Loukakis [22,23] to optimize the hull shape in terms of
the seakeeping.

The problem of determining added mass traditionally falls within the scope of ship
manoeuvrability analysis [24–26]. The manoeuvrability of a ship under various conditions
has been studied by several authors [27–31] and many others. The most complex theories of
manoeuvring and seakeeping involve nonlinear wave loads with higher-order effects [25].
In our case, it is possible to simplify most of the complex theory. Incoming waves are
neglected since the ships sail in mostly closed waters. The measured periods of ship motion
are very small [32], so a common approach is to further simplify the motion at a zero
frequency limit. In this case, only radiated terms are relevant. A similar approach with
experimental setup was also studied in [33,34].

The underlying fluid model is nonviscous, nonrotating, and incompressible to simulate
flow around the hull. The ideal flow is represented by a complex velocity potential for the
channel geometry (the bottom boundary is included in the geometry—Figure 3). Using
the theory of complex functions with conformal mapping, it is possible to solve the flow
problem of a complex geometry in a simplified geometry [35–37]. In this study, a cylindrical
geometry is mapped to a hull geometry using Lewis mapping [12]. The complex velocity
potential is integrated over the simplified geometry to obtain the added mass coefficient.
The strip theory approach [38] simplifies the 3D problem to a set of 2D problems. The
added mass is calculated for three representative ships: Middle Range oil tanker (MR) with
range 25,000 t–55,000 t, Long Range type one oil tanker (LR1) with range 55,000 t–80,000 t
and Long Range type 2 oil tanker (LR2) with range 80,000 t–160,000 t. The analysis of the
under kill clearance (UKC) effect is also studied. For each type of ship, the velocity field is
calculated for 20 different drafts from the summer waterline at the intervals of 0.1 m.
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Figure 3. Description of the computational domain.

2. Formulation of the Problem

The added mass is associated with the change in momentum of the surrounding fluid
over time [24]. If the fluid is ideal (non-viscous and irrotational) and incompressible, then
the fluid is completely described by the complex velocity potential Φ in 2D [39]. Consider
a two-dimensional ideal and incompressible fluid in a bounded geometry Ω bounded
by the water surface (Γw), the bottom (Γb) and the hull (Γs), as shown in Figure 3. In
the (x, y) coordinate system (Figure 3), the velocity potential Φ(xxx, t), where xxx = (x, y) is
a point in domain Ω, for a moving body in an otherwise still fluid can be given by the
differential equation

∂2Φ
∂x2 +

∂2Φ
∂y2 = 0, xxx ∈ Ω (1)

and the boundary conditions

∂Φ
∂y

+ k Φ = 0, xxx ∈ Γw (2a)

nnn · ∇Φ = 0, xxx ∈ Γb (2b)

nnn · ∇Φ = nnn ·VVV, xxx ∈ Γs (2c)

where nnn is the normal unit vector always pointing out of domain Ω and k is a wavenumber
defined by the relation k = ω2/g (infinite depth [26]), where ω is the frequency of the
oscillating body, g is the acceleration due to gravity, and VVV is the velocity of the body.
Furthermore, the velocity potential for the oscillatory phenomena can be written in the form

Φ(xxx, t) = <
(

φ(xxx)e−iωt
)

, (3)

where the potential Φ is split into the temporal (e−iωt) and spatial components (φ(xxx)). It
can be shown that the system (1)–(2) is also valid for φ [26].

In the case we study, the oscillations are very slow (ω � 1), so the boundary
condition (2a) can be simplified to

∂Φ
∂y

= nnn · ∇Φ = 0, xxx ∈ Γw (for k→ 0). (4)

Now, the solution φ must satisfy the following system

∂2φ

∂x2 +
∂2φ

∂y2 = 0, xxx ∈ Ω (5a)

nnn · ∇φ = 0, xxx ∈ Γw, Γb (5b)

nnn · ∇φ = nnn ·VVV, xxx ∈ Γs (5c)



J. Mar. Sci. Eng. 2021, 9, 108 5 of 21

where the boundary notations are shown in Figure 3. The ship moves with velocity V in x
(sway) direction according to the orientation of the coordinate system shown in Figure 3.
The fluid flow can be represented by the potential φ as a moving dipole potential for a
body described by a cylindrical shape [24].

Let us convert the (x, y) coordinate system into the complex notation

z = x + iy, x, y ∈ R, z ∈ C. (6)

Such a representation simplifies the solution procedure. It is always possible to write the
complex velocity potential as the sum of two real-valued functions

Φ(z) = φ(x, y) + iψ(x, y), (7)

where we have the fluid velocity defined as the gradient of the real part of the complex
potential [26]

vvv := ∇<(Φ(z)) = ∇φ(x, y). (8)

The imaginary part of the complex potential ψ(x, y) = =(Φ(z)) is known in the literature
as streamlines [24].

The motion of the ship in the sway direction can be represented by a moving complex
dipole velocity potential oriented in the x direction and defined as

Φ(z) :=
A
z

, (9)

where the constant A is the dipole strength that opposes the fluid at the body boundary and
satisfies the nonpenetration boundary condition. The constant A has the unit [m3/s] while
the potential in a dimensional for has unit [m2/s]. The potential (9) does not satisfy the
boundary condition at the bottom Γb (2b) and must be corrected somehow. The potential
correction is done by using dipole images on both sides of the dipole center in y direction
at different positions, which are summed up in an infinite series (method of images [37]).
The resulting series converges to a new dipole potential

Φ(z) =
A
2h

coth
(πz

2h

)
, (10)

which also satisfies the missing boundary condition at Γb (2b), where the distance between
the Γw and Γb equals to h = Hw (Figure 3).

Proposition 1. The real part of the potential (10) is the solution of the system (5). The constant A
is the strength of the dipole potential Φ(z) and is obtained from the body boundary condition (5c)

nnn ·VVV = nnn · ∇φ, xxx ∈ Γb.

Proof. The proof of the proposition 1 is trivial. We need to start with φ = <(Φ) and
substitute this into the system (5). Since Φ(z) is holomorphic, its real part automatically
satisfies Laplace’s equation. Write the flow velocity vvv = (vx, vy), then the constant A
follows from the body boundary condition (5c) at the point xxx = (1, 0) where the velocity
equals vvv = (V, 0) and the constant A equals

A = V
(2h)2

π
sinh

( π

2h

)2
, (11)

where h is a dimensionless water column height

h =
Hw − T

T
+ 1, (12)
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where discussed parameters are shown in Figure 3. Velocity is a time-dependent quantity
and the potential can be decomposed as

φ = Vφ̃ → dφ

dt
= V̇φ̃, (13)

assuming that the velocity V and potential φ̃ are related to the velocity and potential in the
sway direction [26].

Typical solutions of Equation (10) for variables φ and ψ can be seen in Figures 4–9,
for V = 1 and various h in the case of a cylindrical body geometry. Let us further rewrite
the coordinate system into a more natural one for cylindrical geometry. The transforma-
tion from Cartesian coordinates (x, y) to polar coordinates (ρ, θ) with the notation of the
complex plane is

x =ρ sin θ, y = ρ cos θ, x, y, ρ, θ ∈ R (14a)

z =x + iy = iρ exp(−iθ), z ∈ C (14b)

as can be seen in Figure 3. The geometry of the cylindrical body can be transformed into a
shape similar to the ship-like shape using the conformal mapping w = f (z), preserving
the shape of the complex velocity potential Φ(z) [35]. This fact is used to compute the
hydrodynamic force in the cylindrical geometry Ωc of the flow generated by the ship
geometry Ωs Figure 10.
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Figure 4. Plot of Equation (10) in the form (7). The top plot shows the real part of the complex
potential φ(x, y), the bottom plot shows the imaginary part of the complex potential ψ(x, y) for
velocity V = 1 and channel gap width h = 1.2 for cylindrical geometry Γs with ρ = 1.
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Figure 5. Plot of the Equation (8). The top plot shows the velocity amplitude ‖vvv‖, the bottom plot
shows the velocity vector field for velocity V = 1 and the channel gap of width h = 1.2 for cylindrical
geometry Γs with ρ = 1.
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Figure 6. Plot of the Equation (10) in the form (7). The top plot shows the real part of the complex
potential φ(x, y), the bottom plot shows the imaginary part of the complex potential ψ(x, y) for
velocity V = 1 and channel gap width h = 2.0 for cylindrical geometry Γs with ρ = 1.
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Figure 7. Plot of the Equation (8). The top plot shows the velocity amplitude ‖vvv‖, the bottom plot
shows the velocity vector field for velocity V = 1 and the channel gap of width h = 2.0 for cylindrical
geometry Γs with ρ = 1.
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Figure 8. Plot of the Equation (10) in the form (7). The top plot shows the real part of the complex
potential φ(x, y), the bottom plot shows the imaginary part of the complex potential ψ(x, y) for
velocity V = 1 and channel gap width h = 5.0 for cylindrical geometry Γs with ρ = 1.
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Figure 9. Plot of the Equation (8). The top plot shows the velocity amplitude ‖vvv‖, the bottom plot
shows the velocity vector field for velocity V = 1 and the channel gap of width h = 5.0 for cylindrical
geometry Γs with ρ = 1.
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Ωc Ωs

w = f(z)

z = x + iy

Φ(z)

w = u + iv

Φ̃(w) = Φ(f(z))

Figure 10. Conformal mapping w = f (z) of a circular domain Ωc onto a ship-like domain Ωs with
coordinates and velocity complex potentials preserved by the mapping.

One of the most commonly used conformal mappings for ship-like forms is the Lewis
transformation [12], which uses only 3 free parameters a, a1 and a3

w = a
(

z +
a1

z
+

a3

z3

)
, z ∈ C, a, a1, a3 ∈ R, (15)

where a only causes the shape to expand/compress, but does not affect the appearance of
the shape. The free parameters are determined with the basic parameters of the specific
ship cross-section: B—maximal breadth, T—draft and S—area

σs =
S

BT
, (16a)

H =
B

2T
, (16b)

C1 =

(
3 +

4σs

π

)
+

(
1− 4σs

π

)(
H − 1
H + 1

)2
, (16c)

a =
B
2
(1 + a1 + a3), (16d)

a1 =(1 + a3)
H − 1
H + 1

, (16e)

a3 =
−C1 + 3 +

√
9− 2C1

C1
. (16f)

Figure 11 and Table 1 show the data used in the present calculations. The ship
constructed from these cross-sections is referred to as the Lewis ship. The hydrodynamic
properties of sway motion for the Lewis ship are shown in Figure 12 for infinite depth and
in Figure 13 for finite depth.

Table 1. Lewis mapping coefficients for MR, LR1 and LR2 oil tanker type with Cb = 0.78 producing
shapes in Figure 11. Only Bk needs to be scaled with β = B/T ratio for different draft calculations.

Section (k) Bk Tk σk L̃k

0 0.8 0.2 0.60 0.05
1 1.2 0.9 0.50 0.05
2 1.6 1.0 0.68 0.05
3 2.0 1.0 0.93 0.05
4 2.0 1.0 0.99 0.60
5 2.0 1.0 0.93 0.05
6 1.8 1.0 0.68 0.05
7 1.2 1.0 0.56 0.05
8 0.3 0.7 0.56 0.05
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Figure 11. Ship cross-sections used in the calculation. The parameters of the cross-section are shown
in Table 1.

0 1 2 3 4 5 6 7 8

Cross section k

10−1

100

101

Cross section parameters - infinite depth (h =∞)

c
(k)
22

Sk

B/T

Figure 12. Results for Lewis cross-sections k from Table 1 (Figure 11) for infinite water depth. c(k)22 is
the added mass coefficient, B/T is the ratio of beam/draft cross-section, and Sk is the cross-section
area. The scales on the ordinate are logarithmic for better result representation.
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Lewis ship added mass coefficient - infinite depth (h =∞)

Figure 13. Results for Lewis ship defined in Table 1 (Figure 11) for infinite water depth. c22 is the
added mass coefficient for the Lewis ship, and B/T is the ratio between beam and draft.

The hydrodynamic force resulting from the time variation of the surrounding fluid is
defined in [24] and is equal to

FFF =− ρ
d
dt

∫
Γs

φ nnn dS

− ρ
∫

Γw∪Γb

(nnn · ∇φ)∇φ dS

+ ρ
1
2

∫
Γw∪Γb

(∇φ · ∇φ) nnn

(17)

In the present study, the integrals over the boundary Γw ∪ Γb are zero, since we are only
interested in the sway component of the motion. Splitting the potential φ into a velocity
part and a space part (13) gives the final form of the hydrodynamic force

FFF = −ρ V̇ V
∫

Γs
φ̃ nnn dS

= −V̇ ρ V c22

= −V̇ m22,

(18)

where V is the displacement of the body, ρ is the fluid density, V̇ is the acceleration of
the body, c22 is added mass coefficient in sway mode, and m22 is the added mass in sway
mode. To calculate the integral over the body surface Γs, we perform the integration for
each cross-section k according to Table 1 and add their contribution to the total added
mass. The coefficient of the added mass for each cross-section k is calculated in the circular
cross-section in space Ωc and transferred to the ship cross-section in space Ωs using the
conformal mapping (15). The integral in (18) is transformed from Ωc to Ωs

c(k)22 =
2
S

∫ π/2

0
φ̃(w) (nnn(w) · eeex)

∣∣∣∣ dw
dz

dz
dθ

∣∣∣∣ dθ, (19)

where w = f (z) is a conformal mapping (15), z = z(ρ, θ) is defined in (14b), eeex is a unit
vector in x (sway) direction in Ωs (Figure 3), and S is the area of the cross-section k. The
integral (19) is computed as a contour integral over the cylinder in the polar coordinates
with radius ρ = 1 and θ ∈ [0, π/2]. The term dw/dz is the Jacobian of the conformal
mapping and dz/dθ follows from the chain rule in the derivative of conformal mapping.
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The potential in (19) is written in dimensionless form. The length scale is scaled by Ti
(specific draft configuration) and the velocity by the ship velocity V according to the
following scheme

x =x̃Ti, y =ỹTi, (20a)

ẋ =ṽxV, ẏ =ṽyV, (20b)

ẍ =ãxV2/Ti, ÿ =ãyV2/Ti. (20c)

The added mass of a cross-section k is given by the cross-section k added mass
coefficient (19) multiplied by the respective water density ρ and volume Vk

m(k)
22 = c(k)22 ρ Vk = c(k)22 ρ (S̃kBTi) (L̃kL), (21)

where S̃k is the dimensionless cross-sectional area and L̃k is the dimensionless cross-
sectional length. For each cross-section k the values for S̃k and L̃k are taken from Table 1,
and for each ship type, the constants B, Ti and L are taken from Table 2. The final added
mass of the ship for the slow sway motion is the sum of all added mass contributions of
the cross-sections k

m22 =
8

∑
k=0

m(k)
22 . (22)

Detailed description of added mass calculation procedure is described in next section.

Table 2. Oil tanker types used in simulation: L = Lbp—length between perpendiculars, B—maximal
breadth, Tmax—draft at summer line, Tmin—minimal draft in simulation, Cb block coefficient. Specific
draft Ti is in the interval [Tmin,Tmax].

Type L [m] B [m] Tmin [m] Tmax [m] Cb

MR 185.0 29.1 8.50 10.50 0.78
LR1 220.0 36.3 10.50 12.50 0.78
LR2 238.0 41.3 12.20 14.20 0.78

3. Results

The ship moves at a relatively slow speed when docked. In this study, the problem’s
formulation contains many reasonable simplifications to obtain results based only on
symbolic derivations. The further simplification of the full 3D problem is based on the
strip theory approach. The first step was to decompose the representative geometry of
the oil tanker into some cross-sections to obtain relevant shape differences. The Levis
map (15) is used to describe different cross-sections. The generated data for each cross-
section describing the shape of the oil tanker are shown in Table 1. The results can be seen
in Figure 11.

In Figures 4–9 are plots of the complex dipole potential (10) for different values of
the water height h, where ρ = 1 and V = 1. The sequence of images for different h shows
the difference between the deep water solution (h >> 1) and the shallow water solution
((h− 1) < 1. The gap effect can be well observed from the intensity of the velocity potential
φ. The maximum value is in the range from 2.5 to 1.2, for water heights from h = 1.2 to
h = 5.0. The magnitude of the velocity in the gap increases with smaller h. The higher
values of φ at the cylinder boudary result in a larger additional mass. The magnitude of
the velocity in the gap is related to the viscous damping. The larger the magnitude of the
velocity in the gap, the smaller the gap width and the stronger the viscous forces act.

Three different representative oil tanker types are studied for the selection of ship
types. The different types show the difference in the added mass in terms of ship size, their
particulars, and UKC distance. The influence of UKC on the added mass was determined
with 20 different ship drafts Ti. In this case, the number of draft subdivisions is not a
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limit, since the calculations for a single geometry are very fast (order of magnitude of
a few seconds). Table 2 gives the main specifications for the different oil tanker types
used in the simulation. All three types have the same block coefficient Cb = 0.78 with the
cross-sectional shapes defined in Table 1 and their particulars defined in Table 2.

To obtain the Lewis cross-sectional forms for various drafts Ti, we only need to
multiply the coefficient Bk in Table 1 by the constant βi

Bk → βiBk, βi =
B/Ti

2
. (23)

The ratio βi is defined as the ratio between the ship’s beam B and the current ship’s
draft Ti and the constant ratio B/T = 2 for the Lewis ship ( Table 1). The values of a given
ship configuration “i” (B/Ti) are calculated from Table 2. The cross-sectional area Sk for a
given configuration i is determined as

Sk = σk βi Bk Tk,

where k = {0, 1, . . . , 8} is the cross-section number and i = {1, 2, 3, 4, . . . , N} is the specific
draft configuration, where N is the number of different draft scenarios for a given tanker
type. In the present case, N was set to 20 to get nice continuous plots. The calculations are
very fast, and it takes about SI 1s to calculate a single draft configuration. One of the main
considerations in the present work was also the speed of the computation, and it could
only be achieved with a semi-analytical approach.

In the previous section, a complete model for calculating the added mass in slow
sway motion was formulated. The model is based on a potential flow theory with linear
boundary conditions (5). For simple geometries, such as the circular one, the solution φ
of (5) is a pulsating dipole with origin at the free surface (10) with constant A defined
in Equation (11). The solution (10) satisfies the PDE system (5) only for a circular body
geometry. The added mass coefficient c22 of a circular geometry can be easily obtained
using the integral (18) for different water heights h. Figure 14 shows the solution for the
added mass coefficient as a function of different dimensionless gap widths (UKC/R). For
this particular case, one obtains the explicit expression for the added mass coefficient

c22(h) =
2
S

∫ π/2

0
φ̃ sin θ dθ

=
4
π

∫ π/2

0
<
[

2h
π

sinh2
( π

2h

)
coth

( π

2h
z
)]

sin θ dθ,

z→ i exp(−iθ)

(24)

c22(h) ≈
[

1
3
+

(
2h
π

)2
]

sinh2 π

2h
, h > 1,

h = 1 + UKC/R,

(25)

where the term coth(x) in the integral function (24) has been expanded into Taylor series
(see [40]). For |z| = 1 the series converges very quickly. Already the first three terms
yield the solution error below 10−3. To obtain the added mass coefficient, the value of
the integral must be divided by the area of the cross-section. In this particular case for a
circular cross-section with unit radius, the value of the area is S = (πR2)/2 = π/2. The
result shown in Figure 14 will be used later when verifying the results of the proposed
method for calculating the added mass of a tanker-type ship.

The average water depth at the liquid terminal in the Port of Koper is approximately
Hw = 14.5 m. The variable h is calculated using Equation (12) for different Lewis shapes
(Table 1) and ship particulars (Table 2) for each draft configuration Ti. If h is known, the
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coefficient of added mass coefficient c22, as defined in Equation (19), can be calculated for
each cross-section k

c(k)22 =
2
S

∫ π/2

0
φ̃(w) (nnn(w) · eeex)

∣∣∣∣ dw
dz

dz
dθ

∣∣∣∣ dθ.

Now each term of the integral is explained in detail. Let us begin with the velocity potential

φ̃(w) = <
[

2h
π

sinh2 π

2h
coth

( π

2h
w
)]

= <
[

2h
π

sinh2 π

2h
coth

( π

2h
a
(

z +
a1

z
+

a3

z3

))]
, z→ i exp(−iθ),

=
2h
π

sinh2( π
2h
)

sinh
(

π
2h sin θ

)
cosh

(
π
2h sin θ

)
sin2( π

2h cos θ
)
+ sinh2( π

2h sin θ
)

Next is the Jacobian of the transformation

dw
dz

dz
dθ

= a[a1 exp(i2θ)− 3a3 exp(i4θ) + 1] exp(−iθ)

= a[a1 exp(iθ)− 3a3 exp(i3θ) + exp(−iθ)]

= a[(a1 + 1) cos θ − 3a3 cos 3θ] + ia[(a1 − 1) sin θ − 3a3 sin 3θ].

150 200 250 300 350 400

c22 [%]
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Added mass coefficient for circle shape (R = 1)

Figure 14. Plot of the solution (25) for the added mass coefficient c22 with respect to the dimensionless
UKC for the solution with circular (Figures 4–9). For the larger UKC, the typical result for the solution
with infinite depth (c22 = 100%) can be seen. UKC is scaled in dimensionless form with the radius of
the circle R and is related to h defined in Equation (25).
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The absolute value of the Jacobian is found using the relation |z| =
√
<(z)2 +=(z)2.

The normal vector is found by

rrr(w) =
dw
dz

dz
dθ

= (rx, ry) = (<(rrr),=(rrr)),

ttt(w) =
rrr(w)

|rrr(w)| =
(rx, ry)√

r2
x + r2

y

,

nnn(w) = i ttt(w),

nx = nnn(w) · eeex = <[nnn(w)],

ny = nnn(w) · eeey = =[nnn(w)],

where the vector nnn is written in complex notation, where the xcomponent is equal to the
real part (nx = <(nnn)) and the ycomponent is equal to the imaginary part (ny = =(nnn)). The
last one is the explanation of the cross-sectional area

S = σk βi Bk Tk,

where all the coefficients are taken/calculated form Table 1. The integral is evaluated
numerically using the Gaussian quadrature rule for each cross-section k for a single draft
and tanker-type configuration with arbitrary accuracy.

The cross-sectional added mass coefficient c(k)22 is then multiplied by the corresponding

cross-sectional volume to obtain the cross-sectional added mass m(k)
22 for a given ship type

under various draft conditions. Finally, all cross-sectional masses are summed to obtain
the ship added mass m22 for the sway motion for a given ship type and draft.

Figures 15–17 show the results of calculated ship added mass m22 (Equation (22)) for
all three tanker types MR, LR1 and LR2 for different drafts. The maximum draft is the
draft at the summer load line as given in Table 2. The results show that the added mass
increases with ship draft T (green line) resulting in smaller UKC (blue line). Smaller UKC
causes higher velocity magnitudes in the hull neighbourhood and higher values of the
potential φ at the ship boundary. The effect appears weakly nonlinear and could not be
predicted using crude approximation methods, especially if one is interested in fairly good
estimates of the added mass for a given ship type. In contrast, the added mass relative to
displacement increases almost linearly (red line). The difference in added mass relative
to draft is about 30–45% per 1 meter draft change. Assuming that it is constant over the
entire draft range is not good practice in this case, and the effect of draft should always be
considered in calculations for the flexible mooring problem.
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Figure 15. Results for the added mass m22 of the MR tanker type for different drafts. Labeled
variables are: B/T (green line—left side scale), UKC (blue line—first right side scale), and the
ratio between the added mass and the displacement in percent m22/Disp (red line—second right
side scale).
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Figure 16. Results for the added mass m22 of the LR1 tanker type for different drafts. Labeled
variables are: B/T (green line—left side scale), UKC (blue line—first right side scale), and the
ratio between the added mass and the displacement in percent m22/Disp (red line—second right
side scale).
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Figure 17. Results for the added mass m22 of the LR2 tanker type for different drafts. Labeled
variables are: B/T (green line— left side scale), UKC (blue line—first right side scale), and the
ratio between the added mass and the displacement in percent m22/Disp (red line—second right
side scale).

Figures 18–20 show the same result as in Figures 15–17, but are composed in a different
way. Figure 18 shows the added mass as a function of the B/T ratio. The effect of smaller
UKC is seen in a faster increase of the added mass. The same phenomenon is observed
in Figures 19 and 20. The result shown in Figure 21 is very revealing. The plot shows the
added mass coefficient with respect to the dimensionless UKC. Compared with Figure 14
(dash-dot line), the same trend is observed. There is a difference in the added mass
coefficient c22 between the circular cross-section and the ship-shaped geometry. The
difference is due to the different cross-section shapes. Figure 22 is from Vugts research
published in [33] and clearly shows the dependence on the B/T ratio with respect to the
added mass coefficient c22 for the square cross-section. The larger the B/T ratio is, the
smaller the added coefficient is. In our case, the B/T ratio is in the interval between 2.8
and 3.4 (Figure 18). The results in Figure 22 were obtained for infinite water depth. To
obtain a clear validation of the present results, the same experiment is performed for the
Lewis ship (Table 1) for different B/T ratios. The results are shown in Figure 13 and show
the decay of c22 of the ship-like shape versus the B/T ratio. Comparing the range of the
B/T ratio and the data from Figure 13, the estimate of the added mass coefficient for the
Lewis-type shape lies in the interval c22 ∈ [0.6, 0.73]. For each cross-section k, the results for
the infinitely deep water are shown in Figure 12 for c(k)22 , Sk and B/T (βi = 1). The added
mass coefficients of the ship-shaped cross-section are always smaller than the added mass
coefficients of the circular cross-section. This fact is mostly related to the B/T ratio.
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Figure 18. Results for the added mass m22 of the MR, LR1 and LR2 tanker type with respect to
B/T ratio.
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Figure 19. Results for the added mass m22 of the MR, LR1 and LR2 tanker type with respect to
m22/Disp ratio.
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Figure 20. Results for the added mass m22 of the MR, LR1 and LR2 tanker type with respect to UKC.
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Figure 21. Results for the added mass coefficient c22 = m22/Disp of the MR, LR1 and LR2 tanker
type with respect to UKC/T ratio. Dashed line is the same as in Figure 14.

Figure 22. Results for the added mass coefficient c22 obtained from Vugts [33]. Comparison with
present results can be made with the results of zero frequency case ω = 0.

4. Discussion and Conclusions

The effect of added mass during the berthing manoeuvre was analysed at the liquid
berth in the port of Koper for different types of oil tankers. The formulation of the problem
is based on the theory of ideal incompressible fluid so that the velocity of the surrounding
fluid can be expressed as a complex velocity potential. Measured ship oscillation times
under dolphin loading are long, and the simplification of the zero-frequency limit leads to
the simplification of the free surface boundary condition (longwave approximation). The
described simplifications and the use of complex analysis methods facilitate the calculation
of added mass. One of the missing effects is the viscosity effect. If viscosity were included, it
would complicate the system of equations to such an extent that a symbolic solution would
not be possible, which was the motivation of this study to avoid numerical calculations as
much as possible.

In the present case, the complex velocity potential represents the finite depth situation
to include the effect of under keel clearance (UKC) in the calculations of added mass.
The simplification of 3D calculations into 2D calculations is applied with the strip theory
approach for the zero head velocity. All the described simplifications resulted in a system
of equations that can be solved symbolically. The rather complicated system of equations is
described in Python [41] environment with SymPy [42] module for the symbolic calculations
and can be found in the Zenodo repository [43].

Conformal maps as Lewis map [12] defines a simplified ship geometry with only three
parameters. The geometry is simplified, but the overall shape is very close to that of an oil
tanker. A similar system is discussed in [34]. The results in [34] are very similar to those
in this study for the larger values of UKC/R. The sway motion was also analysed in [33]
and the results are comparable. The computational system is written in complex Python
language form and it is very easy to manipulate with it for a variety of different parameters,
cross-section geometries, ship details, UKC etc.
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The main objective of this study was to accurately estimate the amount of added mass
for certain types of ships docking at the liquid jetty where flexible dolphins are installed.
The information of added mass can now be used in future fatigue analyses of flexible
dolphins. To support a broader analysis, three different ship types are identified as the
representative fleet: MR oil tanker, LR1 oil tanker and LR2 oil tanker. Each class is analysed
under different draft conditions with a constant water height of the port basin in the full
simulation procedure. In the port of Koper, the average tidal range is about 0.5 m. In this
case, the minimum mooring UKC at low tide should always be 10 cm. All these aspects
were included in the analyses to obtain accurate data for the ship added mass.

One of the general aspects of added mass in relation to UKC can be reduced from
the results shown in Figure 21. With a fair degree of confidence, it can be extrapolated to
similar scenarios for different ports and a variety of ships with Cb ≈ 0.8.

The observed added mass is in the range of 100–160% of displacement for MR oil
tanker type, 130–200% of displacement for LR1 oil tanker type and 170–260% of displace-
ment for LR2 oil tanker type. As observed, the values of added mass are very high and
must always be considered in the loading analysis of flexible dolphins.
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